%--------------------------------------------------% % vim: ts=4 sw=4 et ft=mercury %--------------------------------------------------% % Copyright (C) 2018-2021 The Mercury team. % This file is distributed under the terms specified in COPYING.LIB. %--------------------------------------------------% % % File: int64.m % Main author: juliensf % Stability: low. % % Predicates and functions for dealing with signed 64-bit integer numbers. % %--------------------------------------------------% :- module int64. :- interface. :- import_module pretty_printer. %--------------------------------------------------% % % Conversion from int. % % from_int(I) = I64: % % Convert an int to an int64. % % Since an int can be only 32 or 64 bits, this is guaranteed to yield % a result that is mathematically equal to the original. % :- func from_int(int) = int64. % cast_from_int(I) = I64: % % Convert an int to an int64. % % While a cast from int to intN for N =< 32 may yield a result % that is not mathematically equal to the original (because % the original integer may be too big to be representable), % casting an int to int64 *will* yield a result that is mathematically % equal to the original. It is therefore a synonym for the from_int % function. It is provided only for uniformity, to allow an int % to be cast to intN for *all* of int8, int16, int32 and int64. % :- func cast_from_int(int) = int64. %--------------------------------------------------% % % Conversion to int. % % to_int(I64, I): % % Convert an int64 into an int. % Fails if I64 is not in [int.min_int, int.max_int]. % :- pred to_int(int64::in, int::out) is semidet. % det_to_int(I64) = I: % % Convert an int64 into an int. % Throws an exception if I64 is not in [int.min_int, int.max_int]. % :- func det_to_int(int64) = int. % cast_to_int(I64) = I: % % Convert an int64 to an int. % Always succeeds. If ints are 64 bits, I will always be % mathematically equal to I64. However, if ints are 32 bits, % then I will be mathematically equal to I64 only if % I64 is in [-(2^31), 2^31 - 1]. % :- func cast_to_int(int64) = int. %--------------------------------------------------% % % Change of signedness. % % cast_from_uint64(U64) = I64: % % Convert a uint64 to an int64. This will yield a result that is % mathematically equal to U64 only if U64 is in [0, 2^63 - 1]. % :- func cast_from_uint64(uint64) = int64. %--------------------------------------------------% % % Conversion from byte sequence. % % from_bytes_le(Byte0, Byte1, ..., Byte7) = I64: % % I64 is the int64 whose bytes are given in little-endian order by the % arguments from left-to-right (i.e. Byte0 is the least significant byte % and Byte7 is the most significant byte). % :- func from_bytes_le(uint8, uint8, uint8, uint8, uint8, uint8, uint8, uint8) = int64. % from_bytes_be(Byte0, Byte1, ..., Byte7) = I64: % % I64 is the int64 whose bytes are given in big-endian order by the % arguments in left-to-right order (i.e. Byte0 is the most significant % byte and Byte7 is the least significant byte). % :- func from_bytes_be(uint8, uint8, uint8, uint8, uint8, uint8, uint8, uint8) = int64. %--------------------------------------------------% % % Comparisons and related operations. % % Less than. % :- pred (int64::in) < (int64::in) is semidet. % Greater than. % :- pred (int64::in) > (int64::in) is semidet. % Less than or equal. % :- pred (int64::in) =< (int64::in) is semidet. % Greater than or equal. % :- pred (int64::in) >= (int64::in) is semidet. % Maximum. % :- func max(int64, int64) = int64. % Minimum. % :- func min(int64, int64) = int64. %--------------------------------------------------% % % Absolute values. % % abs(X) returns the absolute value of X. % Throws an exception if X = int64.min_int64. % :- func abs(int64) = int64. % unchecked_abs(X) returns the absolute value of X, except that the result % is undefined if X = int64.min_int64. % :- func unchecked_abs(int64) = int64. % nabs(X) returns the negative of the absolute value of X. % Unlike abs/1 this function is defined for X = int64.min_int64. % :- func nabs(int64) = int64. %--------------------------------------------------% % % Arithmetic operations. % % Unary plus. % :- func + (int64::in) = (int64::uo) is det. % Unary minus. % :- func - (int64::in) = (int64::uo) is det. % Addition. % :- func int64 + int64 = int64. :- mode in + in = uo is det. :- mode uo + in = in is det. :- mode in + uo = in is det. :- func plus(int64, int64) = int64. % Subtraction. % :- func int64 - int64 = int64. :- mode in - in = uo is det. :- mode uo - in = in is det. :- mode in - uo = in is det. :- func minus(int64, int64) = int64. % Multiplication. % :- func (int64::in) * (int64::in) = (int64::uo) is det. :- func times(int64, int64) = int64. % Flooring integer division. % Truncates towards minus infinity, e.g. -10_i64 div 3_i64 = -4_i64. % % Throws a `domain_error' exception if the right operand is zero. % :- func (int64::in) div (int64::in) = (int64::uo) is det. % Truncating integer division. % Truncates towards zero, e.g. -10_i64 // 3_i64 = -3_i64. % `div' has nicer mathematical properties for negative operands, % but `//' is typically more efficient. % % Throws a `domain_error' exception if the right operand is zero. % :- func (int64::in) // (int64::in) = (int64::uo) is det. % (/)/2 is a synonym for (//)/2. % :- func (int64::in) / (int64::in) = (int64::uo) is det. % unchecked_quotient(X, Y) is the same as X // Y, but the behaviour % is undefined if the right operand is zero. % :- func unchecked_quotient(int64::in, int64::in) = (int64::uo) is det. % Modulus. % X mod Y = X - (X div Y) * Y % % Throws a `domain_error' exception if the right operand is zero. % :- func (int64::in) mod (int64::in) = (int64::uo) is det. % Remainder. % X rem Y = X - (X // Y) * Y. % % Throws a `domain_error/` exception if the right operand is zero. % :- func (int64::in) rem (int64::in) = (int64::uo) is det. % unchecked_rem(X, Y) is the same as X rem Y, but the behaviour is % undefined if the right operand is zero. % :- func unchecked_rem(int64::in, int64::in) = (int64::uo) is det. % even(X) is equivalent to (X mod 2 = 0). % :- pred even(int64::in) is semidet. % odd(X) is equivalent to (not even(X)), i.e. (X mod 2 = 1). % :- pred odd(int64::in) is semidet. %--------------------------------------------------% % % Shift operations. % % Left shift. % X << Y returns X "left shifted" by Y bits. % The bit positions vacated by the shift are filled by zeros. % Throws an exception if Y is not in [0, 64). % :- func (int64::in) << (int::in) = (int64::uo) is det. :- func (int64::in) <<u (uint::in) = (int64::uo) is det. % unchecked_left_shift(X, Y) is the same as X << Y except that % the behaviour is undefined if Y is not in [0, 64). % It will typically be implemented more efficiently than X << Y. % :- func unchecked_left_shift(int64::in, int::in) = (int64::uo) is det. :- func unchecked_left_ushift(int64::in, uint::in) = (int64::uo) is det. % Right shift. % X >> Y returns X "right shifted" by Y bits. % The bit positions vacated by the shift are filled by the sign bit. % Throws an exception if Y is not in [0, 64). % :- func (int64::in) >> (int::in) = (int64::uo) is det. :- func (int64::in) >>u (uint::in) = (int64::uo) is det. % unchecked_right_shift(X, Y) is the same as X >> Y except that % the behaviour is undefined if Y is not in [0, 64). % It will typically be implemented more efficiently than X >> Y. % :- func unchecked_right_shift(int64::in, int::in) = (int64::uo) is det. :- func unchecked_right_ushift(int64::in, uint::in) = (int64::uo) is det. %--------------------------------------------------% % % Logical operations. % % Bitwise and. % :- func (int64::in) /\ (int64::in) = (int64::uo) is det. % Bitwise or. % :- func (int64::in) \/ (int64::in) = (int64::uo) is det. % Bitwise exclusive or (xor). % :- func xor(int64, int64) = int64. :- mode xor(in, in) = uo is det. :- mode xor(in, uo) = in is det. :- mode xor(uo, in) = in is det. % Bitwise complement. % :- func \ (int64::in) = (int64::uo) is det. %--------------------------------------------------% % % Operations on bits and bytes. % % num_zeros(I) = N: % % N is the number of zeros in the binary representation of I. % :- func num_zeros(int64) = int. % num_ones(I) = N: % % N is the number of ones in the binary representation of I. % :- func num_ones(int64) = int. % num_leading_zeros(I) = N: % % N is the number of leading zeros in the binary representation of I, % starting at the most significant bit position. % Note that num_leading_zeros(0i64) = 64. % :- func num_leading_zeros(int64) = int. % num_trailing_zeros(I) = N: % % N is the number of trailing zeros in the binary representation of I, % starting at the least significant bit position. % Note that num_trailing_zeros(0i64) = 64. % :- func num_trailing_zeros(int64) = int. % reverse_bytes(A) = B: % % B is the value that results from reversing the bytes % in the binary representation of A. % :- func reverse_bytes(int64) = int64. % reverse_bits(A) = B: % % B is the is value that results from reversing the bits % in the binary representation of A. % :- func reverse_bits(int64) = int64. %--------------------------------------------------% % % Limits. % :- func min_int64 = int64. :- func max_int64 = int64. %--------------------------------------------------% % % Prettyprinting. % % Convert an int64 to a pretty_printer.doc for formatting. % :- func int64_to_doc(int64) = pretty_printer.doc. :- pragma obsolete(func(int64_to_doc/1), [pretty_printer.int64_to_doc/1]). %--------------------------------------------------% %--------------------------------------------------%