%--------------------------------------------------% % vim: ts=4 sw=4 et ft=mercury %--------------------------------------------------% % Copyright (C) 2017-2023 The Mercury team. % This file is distributed under the terms specified in COPYING.LIB. %--------------------------------------------------% % % File: int32.m % Main author: juliensf % Stability: low. % % Predicates and functions for dealing with signed 32-bit integer numbers. % %--------------------------------------------------% :- module int32. :- interface. :- import_module pretty_printer. %--------------------------------------------------% % % Conversion from int. % % from_int(I, I32): % % Convert an int to an int32. % Fails if I is not in [-(2^31), 2^31 - 1]. % :- pred from_int(int::in, int32::out) is semidet. % det_from_int(I) = I32: % % Convert an int to an int32. % Throws an exception if I is not in [-(2^31), 2^31 - 1]. % :- func det_from_int(int) = int32. % cast_from_int(I) = I32: % % Convert an int to an int32. % Always succeeds, but will yield a result that is mathematically equal % to I only if I is in [-(2^31), 2^31 - 1]. % :- func cast_from_int(int) = int32. %--------------------------------------------------% % % Conversion to int. % % to_int(I32) = I: % % Convert an int32 to an int. Since an int can be only 32 or 64 bits, % this is guaranteed to yield a result that is mathematically equal % to the original. % :- func to_int(int32) = int. % cast_to_int(I32) = I: % % Convert an int32 to an int. Since an int can be only 32 or 64 bits, % this is guaranteed to yield a result that is mathematically equal % to the original. % :- func cast_to_int(int32) = int. %--------------------------------------------------% % % Conversion to/from int8. % % cast_to_int8(I32) = I8: % % Convert an int32 to an int8. % Always succeeds, but will yield a result that is mathematically equal % to I32 only if I32 is in [-(2^7), 2^7 - 1]. % :- func cast_to_int8(int32) = int8. % cast_from_int8(I8) = I32: % % Convert an int8 to an int32. % Always succeeds, and yields a result that is mathematically equal to I8. % :- func cast_from_int8(int8) = int32. %--------------------------------------------------% % % Conversion to/from int16. % % cast_to_int16(I32) = I16: % % Convert an int32 to an int16. % Always succeeds, but will yield a result that is mathematically equal % to I32 only if I32 is in [-(2^15), 2^15 - 1]. % :- func cast_to_int16(int32) = int16. % cast_from_int16(I16) = I32: % % Convert an int16 to an int32. % Always succeeds, and yields a result that is mathematically equal to I16. % :- func cast_from_int16(int16) = int32. %--------------------------------------------------% % % Conversion to/from int64. % % cast_to_int64(I32) = I64: % % Convert an int32 to an int64. % Always succeeds, and always yields a result that is % mathematically equal to I32. % :- func cast_to_int64(int32) = int64. % cast_from_int64(I64) = I32: % % Convert an int64 to an int32. % Always succeeds, but will yield a result that is mathematically equal % to I64 only if I64 is in [-(2^31), 2^31 - 1]. % :- func cast_from_int64(int64) = int32. %--------------------------------------------------% % % Change of signedness. % % cast_from_uint32(U32) = I32: % % Convert a uint32 to an int32. This will yield a result that is % mathematically equal to U32 only if U32 is in [0, 2^31 - 1]. % :- func cast_from_uint32(uint32) = int32. %--------------------------------------------------% % % Conversion from byte sequence. % % from_bytes_le(Byte0, Byte1, Byte2, Byte3) = I32: % % I32 is the int32 whose bytes are given in little-endian order by the % arguments from left-to-right (i.e. Byte0 is the least significant byte % and Byte3 is the most significant byte). % :- func from_bytes_le(uint8, uint8, uint8, uint8) = int32. % from_bytes_be(Byte0, Byte1, Byte2, Byte3) = I32: % % I32 is the int32 whose bytes are given in big-endian order by the % arguments in left-to-right order (i.e. Byte0 is the most significant % byte and Byte3 is the least significant byte). % :- func from_bytes_be(uint8, uint8, uint8, uint8) = int32. %--------------------------------------------------% % % Comparisons and related operations. % % Less than. % :- pred (int32::in) < (int32::in) is semidet. % Greater than. % :- pred (int32::in) > (int32::in) is semidet. % Less than or equal. % :- pred (int32::in) =< (int32::in) is semidet. % Greater than or equal. % :- pred (int32::in) >= (int32::in) is semidet. % Maximum. % :- func max(int32, int32) = int32. % Minimum. % :- func min(int32, int32) = int32. %--------------------------------------------------% % % Absolute values. % % abs(X) returns the absolute value of X. % Throws an exception if X = int32.min_int32. % :- func abs(int32) = int32. % unchecked_abs(X) returns the absolute value of X, except that the result % is undefined if X = int32.min_int32. % :- func unchecked_abs(int32) = int32. % nabs(X) returns the negative of the absolute value of X. % Unlike abs/1 this function is defined for X = int32.min_int32. % :- func nabs(int32) = int32. %--------------------------------------------------% % % Arithmetic operations. % % Unary plus. % :- func + (int32::in) = (int32::uo) is det. % Unary minus. % :- func - (int32::in) = (int32::uo) is det. % Addition. % :- func int32 + int32 = int32. :- mode in + in = uo is det. :- mode uo + in = in is det. :- mode in + uo = in is det. :- func plus(int32, int32) = int32. % Subtraction. % :- func int32 - int32 = int32. :- mode in - in = uo is det. :- mode uo - in = in is det. :- mode in - uo = in is det. :- func minus(int32, int32) = int32. % Multiplication. % :- func (int32::in) * (int32::in) = (int32::uo) is det. :- func times(int32, int32) = int32. % Flooring integer division. % Truncates towards minus infinity, e.g. (-10_i32) div 3_i32 = (-4_i32). % % Throws a `domain_error' exception if the right operand is zero. % :- func (int32::in) div (int32::in) = (int32::uo) is det. % Truncating integer division. % Truncates towards zero, e.g. (-10_i32) // 3_i32 = (-3_i32). % `div' has nicer mathematical properties for negative operands, % but `//' is typically more efficient. % % Throws a `domain_error' exception if the right operand is zero. % :- func (int32::in) // (int32::in) = (int32::uo) is det. % (/)/2 is a synonym for (//)/2. % :- func (int32::in) / (int32::in) = (int32::uo) is det. % unchecked_quotient(X, Y) is the same as X // Y, but the behaviour % is undefined if the right operand is zero. % :- func unchecked_quotient(int32::in, int32::in) = (int32::uo) is det. % Modulus. % X mod Y = X - (X div Y) * Y % % Throws a `domain_error' exception if the right operand is zero. % :- func (int32::in) mod (int32::in) = (int32::uo) is det. % Remainder. % X rem Y = X - (X // Y) * Y. % % Throws a `domain_error/` exception if the right operand is zero. % :- func (int32::in) rem (int32::in) = (int32::uo) is det. % unchecked_rem(X, Y) is the same as X rem Y, but the behaviour is % undefined if the right operand is zero. % :- func unchecked_rem(int32::in, int32::in) = (int32::uo) is det. % even(X) is equivalent to (X mod 2 = 0). % :- pred even(int32::in) is semidet. % odd(X) is equivalent to (not even(X)), i.e. (X mod 2 = 1). % :- pred odd(int32::in) is semidet. %--------------------------------------------------% % % Shift operations. % % Left shift. % X << Y returns X "left shifted" by Y bits. % The bit positions vacated by the shift are filled by zeros. % Throws an exception if Y is not in [0, 32). % :- func (int32::in) << (int::in) = (int32::uo) is det. :- func (int32::in) <<u (uint::in) = (int32::uo) is det. % unchecked_left_shift(X, Y) is the same as X << Y except that the % behaviour is undefined if Y is not in [0, 32). % It will typically be implemented more efficiently than X << Y. % :- func unchecked_left_shift(int32::in, int::in) = (int32::uo) is det. :- func unchecked_left_ushift(int32::in, uint::in) = (int32::uo) is det. % Right shift. % X >> Y returns X "right shifted" by Y bits. % The bit positions vacated by the shift are filled by the sign bit. % Throws an exception if Y is not in [0, 32). % :- func (int32::in) >> (int::in) = (int32::uo) is det. :- func (int32::in) >>u (uint::in) = (int32::uo) is det. % unchecked_right_shift(X, Y) is the same as X >> Y except that the % behaviour is undefined if Y is not in [0, bits_per_int32). % It will typically be implemented more efficiently than X >> Y. % :- func unchecked_right_shift(int32::in, int::in) = (int32::uo) is det. :- func unchecked_right_ushift(int32::in, uint::in) = (int32::uo) is det. %--------------------------------------------------% % % Logical operations. % % Bitwise and. % :- func (int32::in) /\ (int32::in) = (int32::uo) is det. % Bitwise or. % :- func (int32::in) \/ (int32::in) = (int32::uo) is det. % Bitwise exclusive or (xor). % :- func xor(int32, int32) = int32. :- mode xor(in, in) = uo is det. :- mode xor(in, uo) = in is det. :- mode xor(uo, in) = in is det. % Bitwise complement. % :- func \ (int32::in) = (int32::uo) is det. %--------------------------------------------------% % % Operations on bits and bytes. % % num_zeros(I) = N: % % N is the number of zeros in the binary representation of I. % :- func num_zeros(int32) = int. % num_ones(I) = N: % % N is the number of ones in the binary representation of I. % :- func num_ones(int32) = int. % num_leading_zeros(I) = N: % % N is the number of leading zeros in the binary representation of I, % starting at the most significant bit position. % Note that num_leading_zeros(0i32) = 32. % :- func num_leading_zeros(int32) = int. % num_trailing_zeros(I) = N: % % N is the number of trailing zeros in the binary representation of I, % starting at the least significant bit position. % Note that num_trailing_zeros(0i32) = 32. % :- func num_trailing_zeros(int32) = int. % reverse_bytes(A) = B: % % B is the value that results from reversing the bytes in the binary % representation of A. % :- func reverse_bytes(int32) = int32. % reverse_bits(A) = B: % % B is the is value that results from reversing the bits in the binary % representation of A. % :- func reverse_bits(int32) = int32. %--------------------------------------------------% % % Limits. % :- func min_int32 = int32. :- func max_int32 = int32. %--------------------------------------------------% % % Prettyprinting. % % Convert an int32 to a pretty_printer.doc for formatting. % :- func int32_to_doc(int32) = pretty_printer.doc. :- pragma obsolete(func(int32_to_doc/1), [pretty_printer.int32_to_doc/1]). %--------------------------------------------------% %--------------------------------------------------%