%--------------------------------------------------% % vim: ts=4 sw=4 et ft=mercury %--------------------------------------------------% % Copyright (C) 2017-2022 The Mercury team. % This file is distributed under the terms specified in COPYING.LIB. %--------------------------------------------------% % % File: int16.m % Main author: juliensf % Stability: low. % % Predicates and functions for dealing with signed 16-bit integer numbers. % %--------------------------------------------------% :- module int16. :- interface. :- import_module pretty_printer. %--------------------------------------------------% % % Conversion from int. % % from_int(I, I16): % % Convert an int to an int16. % Fails if I is not in [-(2^15), 2^15 - 1]. % :- pred from_int(int::in, int16::out) is semidet. % det_from_int(I) = I16: % % Convert an int to an int16. % Throws an exception if I is not in [-(2^15), 2^15 - 1]. % :- func det_from_int(int) = int16. % cast_from_int(I) = I16: % % Convert an int to an int16. % Always succeeds, but will yield a result that is mathematically equal % to I only if I is in [-(2^15), 2^15 - 1]. % :- func cast_from_int(int) = int16. %--------------------------------------------------% % % Conversion to int. % % to_int(I16) = I: % % Convert an int16 to an int. Since an int can be only 32 or 64 bits, % this is guaranteed to yield a result that is mathematically equal % to the original. % :- func to_int(int16) = int. % cast_to_int(I16) = I: % % Convert an int16 to an int. Since an int can be only 32 or 64 bits, % this is guaranteed to yield a result that is mathematically equal % to the original. % :- func cast_to_int(int16) = int. %--------------------------------------------------% % % Change of signedness. % % cast_from_uint16(U16) = I16: % % Convert a uint16 to an int16. This will yield a result that is % mathematically equal to U16 only if U16 is in [0, 2^15 - 1]. % :- func cast_from_uint16(uint16) = int16. %--------------------------------------------------% % % Conversion from byte sequence. % % from_bytes_le(LSB, MSB) = I16: % % I16 is the int16 whose least and most significant bytes are given by the % uint8s LSB and MSB respectively. % :- func from_bytes_le(uint8, uint8) = int16. % from_bytes_be(MSB, LSB) = I16: % % I16 is the int16 whose least and most significant bytes are given by the % uint8s LSB and MSB respectively. % :- func from_bytes_be(uint8, uint8) = int16. %--------------------------------------------------% % % Comparisons and related operations. % % Less than. % :- pred (int16::in) < (int16::in) is semidet. % Greater than. % :- pred (int16::in) > (int16::in) is semidet. % Less than or equal. % :- pred (int16::in) =< (int16::in) is semidet. % Greater than or equal. % :- pred (int16::in) >= (int16::in) is semidet. % Maximum. % :- func max(int16, int16) = int16. % Minimum. % :- func min(int16, int16) = int16. %--------------------------------------------------% % % Absolute values. % % abs(X) returns the absolute value of X. % Throws an exception if X = int16.min_int16. % :- func abs(int16) = int16. % unchecked_abs(X) returns the absolute value of X, except that the result % is undefined if X = int16.min_int16. % :- func unchecked_abs(int16) = int16. % nabs(X) returns the negative of the absolute value of X. % Unlike abs/1 this function is defined for X = int16.min_int16. % :- func nabs(int16) = int16. %--------------------------------------------------% % % Arithmetic operations. % % Unary plus. % :- func + (int16::in) = (int16::uo) is det. % Unary minus. % :- func - (int16::in) = (int16::uo) is det. % Addition. % :- func int16 + int16 = int16. :- mode in + in = uo is det. :- mode uo + in = in is det. :- mode in + uo = in is det. :- func plus(int16, int16) = int16. % Subtraction. % :- func int16 - int16 = int16. :- mode in - in = uo is det. :- mode uo - in = in is det. :- mode in - uo = in is det. :- func minus(int16, int16) = int16. % Multiplication. % :- func (int16::in) * (int16::in) = (int16::uo) is det. :- func times(int16, int16) = int16. % Flooring integer division. % Truncates towards minus infinity, e.g. (-10_i16) div 3_i16 = (-4_i16). % % Throws a `domain_error' exception if the right operand is zero. % :- func (int16::in) div (int16::in) = (int16::uo) is det. % Truncating integer division. % Truncates towards zero, e.g. (-10_i16) // 3_i16 = (-3_i16). % `div' has nicer mathematical properties for negative operands, % but `//' is typically more efficient. % % Throws a `domain_error' exception if the right operand is zero. % :- func (int16::in) // (int16::in) = (int16::uo) is det. % (/)/2 is a synonym for (//)/2. % :- func (int16::in) / (int16::in) = (int16::uo) is det. % unchecked_quotient(X, Y) is the same as X // Y, but the behaviour % is undefined if the right operand is zero. % :- func unchecked_quotient(int16::in, int16::in) = (int16::uo) is det. % Modulus. % X mod Y = X - (X div Y) * Y % % Throws a `domain_error' exception if the right operand is zero. % :- func (int16::in) mod (int16::in) = (int16::uo) is det. % Remainder. % X rem Y = X - (X // Y) * Y. % % Throws a `domain_error/` exception if the right operand is zero. % :- func (int16::in) rem (int16::in) = (int16::uo) is det. % unchecked_rem(X, Y) is the same as X rem Y, but the behaviour is % undefined if the right operand is zero. % :- func unchecked_rem(int16::in, int16::in) = (int16::uo) is det. % even(X) is equivalent to (X mod 2i16 = 0i16). % :- pred even(int16::in) is semidet. % odd(X) is equivalent to (not even(X)), i.e. (X mod 2i16 = 1i16). % :- pred odd(int16::in) is semidet. %--------------------------------------------------% % % Shift operations. % % Left shift. % X << Y returns X "left shifted" by Y bits. % The bit positions vacated by the shift are filled by zeros. % Throws an exception if Y is not in [0, 16). % :- func (int16::in) << (int::in) = (int16::uo) is det. :- func (int16::in) <<u (uint::in) = (int16::uo) is det. % unchecked_left_shift(X, Y) is the same as X << Y except that the % behaviour is undefined if Y is not in [0, 16). % It will typically be implemented more efficiently than X << Y. % :- func unchecked_left_shift(int16::in, int::in) = (int16::uo) is det. :- func unchecked_left_ushift(int16::in, uint::in) = (int16::uo) is det. % Right shift. % X >> Y returns X "right shifted" by Y bits. % The bit positions vacated by the shift are filled by the sign bit. % Throws an exception if Y is not in [0, 16). % :- func (int16::in) >> (int::in) = (int16::uo) is det. :- func (int16::in) >>u (uint::in) = (int16::uo) is det. % unchecked_right_shift(X, Y) is the same as X >> Y except that the % behaviour is undefined if Y is not in [0, 16). % It will typically be implemented more efficiently than X >> Y. % :- func unchecked_right_shift(int16::in, int::in) = (int16::uo) is det. :- func unchecked_right_ushift(int16::in, uint::in) = (int16::uo) is det. %--------------------------------------------------% % % Logical operations. % % Bitwise and. % :- func (int16::in) /\ (int16::in) = (int16::uo) is det. % Bitwise or. % :- func (int16::in) \/ (int16::in) = (int16::uo) is det. % Bitwise exclusive or (xor). % :- func xor(int16, int16) = int16. :- mode xor(in, in) = uo is det. :- mode xor(in, uo) = in is det. :- mode xor(uo, in) = in is det. % Bitwise complement. % :- func \ (int16::in) = (int16::uo) is det. %--------------------------------------------------% % % Operations on bits and bytes. % % num_zeros(I) = N: % % N is the number of zeros in the binary representation of I. % :- func num_zeros(int16) = int. % num_ones(I) = N: % % N is the number of ones in the binary representation of I. % :- func num_ones(int16) = int. % num_leading_zeros(I) = N: % % N is the number of leading zeros in the binary representation of I, % starting at the most significant bit position. % Note that num_leading_zeros(0i16) = 16. % :- func num_leading_zeros(int16) = int. % num_trailing_zeros(I) = N: % % N is the number of trailing zeros in the binary representation of I, % starting at the least significant bit position. % Note that num_trailing_zeros(0i16) = 16. % :- func num_trailing_zeros(int16) = int. % reverse_bytes(A) = B: % % B is the value that results from reversing the bytes in the binary % representation of A. % :- func reverse_bytes(int16) = int16. % reverse_bits(A) = B: % % B is the is value that results from reversing the bits in the binary % representation of A. % :- func reverse_bits(int16) = int16. %--------------------------------------------------% % % Limits. % :- func min_int16 = int16. :- func max_int16 = int16. %--------------------------------------------------% % % Prettyprinting. % % Convert an int16 to a pretty_printer.doc for formatting. % :- func int16_to_doc(int16) = pretty_printer.doc. :- pragma obsolete(func(int16_to_doc/1), [pretty_printer.int16_to_doc/1]). %--------------------------------------------------% %--------------------------------------------------%