%--------------------------------------------------% % vim: ft=mercury ts=4 sw=4 et %--------------------------------------------------% % Copyright (C) 2006, 2009-2012 The University of Melbourne. % Copyright (C) 2014-2018 The Mercury team. % This file is distributed under the terms specified in COPYING.LIB. %--------------------------------------------------% % % File: tree_bitset.m. % Author: zs, based on sparse_bitset.m by stayl. % Stability: medium. % % This module provides an ADT for storing sets of non-negative integers. % If the integers stored are closely grouped, a tree_bitset is more compact % than the representation provided by set.m, and the operations will be much % faster. Compared to sparse_bitset.m, the operations provided by this module % for contains, union, intersection and difference can be expected to have % lower asymptotic complexity (often logarithmic in the number of elements in % the sets, rather than linear). The price for this is a representation that % requires more memory, higher constant factors, and an additional factor % representing the tree in the complexity of the operations that construct % tree_bitsets. However, since the depth of the tree has a small upper bound % for all sets of a practical size, we will fold this into the "higher % constant factors" in the descriptions of the complexity of the individual % operations below. % % All this means that using a tree_bitset in preference to a sparse_bitset % is likely to be a good idea only when the sizes of the sets to be manipulated % are quite big, or when worst-case performance is important. % % For the time being, this module can only handle items that map to nonnegative % integers. This may change once unsigned integer operations are available. % %--------------------------------------------------% :- module tree_bitset. :- interface. :- import_module enum. :- import_module list. :- import_module term. :- use_module set. %--------------------------------------------------% :- type tree_bitset(T). % <= enum(T). %--------------------------------------------------% % % Initial creation of sets. % % Return an empty set. % :- func init = tree_bitset(T). % `make_singleton_set(Elem)' returns a set containing just the single % element `Elem'. % :- func make_singleton_set(T) = tree_bitset(T) <= enum(T). %--------------------------------------------------% % % Emptiness and singleton-ness tests. % :- pred empty(tree_bitset(T)). :- mode empty(in) is semidet. :- mode empty(out) is det. :- pragma obsolete(pred(empty/1), [init/0, is_empty/1]). :- pred is_empty(tree_bitset(T)::in) is semidet. :- pred is_non_empty(tree_bitset(T)::in) is semidet. % Is the given set a singleton, and if yes, what is the element? % :- pred is_singleton(tree_bitset(T)::in, T::out) is semidet <= enum(T). %--------------------------------------------------% % % Membership tests. % % `member(X, Set)' is true iff `X' is a member of `Set'. % Takes O(card(Set)) time for the semidet mode. % :- pred member(T, tree_bitset(T)) <= enum(T). :- mode member(in, in) is semidet. :- mode member(out, in) is nondet. % `contains(Set, X)' is true iff `X' is a member of `Set'. % Takes O(log(card(Set))) time. % :- pred contains(tree_bitset(T)::in, T::in) is semidet <= enum(T). %--------------------------------------------------% % % Insertions and deletions. % % `insert(Set, X)' returns the union of `Set' and the set containing % only `X'. Takes O(log(card(Set))) time and space. % :- func insert(tree_bitset(T), T) = tree_bitset(T) <= enum(T). :- pred insert(T::in, tree_bitset(T)::in, tree_bitset(T)::out) is det <= enum(T). % `insert_new(X, Set0, Set)' returns the union of `Set' and the set % containing only `X' is `Set0' does not contain 'X'; if it does, it fails. % Takes O(log(card(Set))) time and space. % :- pred insert_new(T::in, tree_bitset(T)::in, tree_bitset(T)::out) is semidet <= enum(T). % `insert_list(Set, X)' returns the union of `Set' and the set containing % only the members of `X'. Same as `union(Set, list_to_set(X))', but may be % more efficient. % :- func insert_list(tree_bitset(T), list(T)) = tree_bitset(T) <= enum(T). :- pred insert_list(list(T)::in, tree_bitset(T)::in, tree_bitset(T)::out) is det <= enum(T). %--------------------------------------------------% % `delete(Set, X)' returns the difference of `Set' and the set containing % only `X'. Takes O(card(Set)) time and space. % :- func delete(tree_bitset(T), T) = tree_bitset(T) <= enum(T). :- pred delete(T::in, tree_bitset(T)::in, tree_bitset(T)::out) is det <= enum(T). % `delete_list(Set, X)' returns the difference of `Set' and the set % containing only the members of `X'. Same as % `difference(Set, list_to_set(X))', but may be more efficient. % :- func delete_list(tree_bitset(T), list(T)) = tree_bitset(T) <= enum(T). :- pred delete_list(list(T)::in, tree_bitset(T)::in, tree_bitset(T)::out) is det <= enum(T). % `remove(X, Set0, Set)' returns in `Set' the difference of `Set0' % and the set containing only `X', failing if `Set0' does not contain `X'. % Takes O(log(card(Set))) time and space. % :- pred remove(T::in, tree_bitset(T)::in, tree_bitset(T)::out) is semidet <= enum(T). % `remove_list(X, Set0, Set)' returns in `Set' the difference of `Set0' % and the set containing all the elements of `X', failing if any element % of `X' is not in `Set0'. Same as `subset(list_to_set(X), Set0), % difference(Set0, list_to_set(X), Set)', but may be more efficient. % :- pred remove_list(list(T)::in, tree_bitset(T)::in, tree_bitset(T)::out) is semidet <= enum(T). % `remove_leq(Set, X)' returns `Set' with all elements less than or equal % to `X' removed. In other words, it returns the set containing all the % elements of `Set' which are greater than `X'. Takes O(log(card(Set))) % time and space. % :- func remove_leq(tree_bitset(T), T) = tree_bitset(T) <= enum(T). % `remove_gt(Set, X)' returns `Set' with all elements greater than `X' % removed. In other words, it returns the set containing all the elements % of `Set' which are less than or equal to `X'. Takes O(log(card(Set))) % time and space. % :- func remove_gt(tree_bitset(T), T) = tree_bitset(T) <= enum(T). % `remove_least(Set0, X, Set)' is true iff `X' is the least element in % `Set0', and `Set' is the set which contains all the elements of `Set0' % except `X'. Takes O(1) time and space. % :- pred remove_least(T::out, tree_bitset(T)::in, tree_bitset(T)::out) is semidet <= enum(T). %--------------------------------------------------% % % Comparisons between sets. % % `equal(SetA, SetB)' is true iff `SetA' and `SetB' contain the same % elements. Takes O(min(card(SetA), card(SetB))) time. % :- pred equal(tree_bitset(T)::in, tree_bitset(T)::in) is semidet <= enum(T). % `subset(Subset, Set)' is true iff `Subset' is a subset of `Set'. % Same as `intersect(Set, Subset, Subset)', but may be more efficient. % :- pred subset(tree_bitset(T)::in, tree_bitset(T)::in) is semidet. % `superset(Superset, Set)' is true iff `Superset' is a superset of `Set'. % Same as `intersect(Superset, Set, Set)', but may be more efficient. % :- pred superset(tree_bitset(T)::in, tree_bitset(T)::in) is semidet. %--------------------------------------------------% % % Operations on two or more sets. % % `union(SetA, SetB)' returns the union of `SetA' and `SetB'. The % efficiency of the union operation is not sensitive to the argument % ordering. Takes somewhere between O(log(card(SetA)) + log(card(SetB))) % and O(card(SetA) + card(SetB)) time and space. % :- func union(tree_bitset(T), tree_bitset(T)) = tree_bitset(T). :- pred union(tree_bitset(T)::in, tree_bitset(T)::in, tree_bitset(T)::out) is det. % `union_list(Sets, Set)' returns the union of all the sets in Sets. % :- func union_list(list(tree_bitset(T))) = tree_bitset(T). :- pred union_list(list(tree_bitset(T))::in, tree_bitset(T)::out) is det. % `intersect(SetA, SetB)' returns the intersection of `SetA' and `SetB'. % The efficiency of the intersection operation is not sensitive to the % argument ordering. Takes somewhere between % O(log(card(SetA)) + log(card(SetB))) and O(card(SetA) + card(SetB)) time, % and O(min(card(SetA)), card(SetB)) space. % :- func intersect(tree_bitset(T), tree_bitset(T)) = tree_bitset(T). :- pred intersect(tree_bitset(T)::in, tree_bitset(T)::in, tree_bitset(T)::out) is det. % `intersect_list(Sets, Set)' returns the intersection of all the sets % in Sets. % :- func intersect_list(list(tree_bitset(T))) = tree_bitset(T). :- pred intersect_list(list(tree_bitset(T))::in, tree_bitset(T)::out) is det. % `difference(SetA, SetB)' returns the set containing all the elements % of `SetA' except those that occur in `SetB'. Takes somewhere between % O(log(card(SetA)) + log(card(SetB))) and O(card(SetA) + card(SetB)) time, % and O(card(SetA)) space. % :- func difference(tree_bitset(T), tree_bitset(T)) = tree_bitset(T). :- pred difference(tree_bitset(T)::in, tree_bitset(T)::in, tree_bitset(T)::out) is det. %--------------------------------------------------% % % Operations that divide a set into two parts. % % divide(Pred, Set, InPart, OutPart): % InPart consists of those elements of Set for which Pred succeeds; % OutPart consists of those elements of Set for which Pred fails. % :- pred divide(pred(T)::in(pred(in) is semidet), tree_bitset(T)::in, tree_bitset(T)::out, tree_bitset(T)::out) is det <= enum(T). % divide_by_set(DivideBySet, Set, InPart, OutPart): % InPart consists of those elements of Set which are also in DivideBySet; % OutPart consists of those elements of Set which are not in DivideBySet. % :- pred divide_by_set(tree_bitset(T)::in, tree_bitset(T)::in, tree_bitset(T)::out, tree_bitset(T)::out) is det <= enum(T). %--------------------------------------------------% % % Converting lists to sets. % % `list_to_set(List)' returns a set containing only the members of `List'. % Takes O(length(List)) time and space. % :- func list_to_set(list(T)) = tree_bitset(T) <= enum(T). :- pred list_to_set(list(T)::in, tree_bitset(T)::out) is det <= enum(T). % `sorted_list_to_set(List)' returns a set containing only the members % of `List'. `List' must be sorted. Takes O(length(List)) time and space. % :- func sorted_list_to_set(list(T)) = tree_bitset(T) <= enum(T). :- pred sorted_list_to_set(list(T)::in, tree_bitset(T)::out) is det <= enum(T). %--------------------------------------------------% % % Converting sets to lists. % % `to_sorted_list(Set)' returns a list containing all the members of `Set', % in sorted order. Takes O(card(Set)) time and space. % :- func to_sorted_list(tree_bitset(T)) = list(T) <= enum(T). :- pred to_sorted_list(tree_bitset(T)::in, list(T)::out) is det <= enum(T). %--------------------------------------------------% % % Converting between different kinds of sets. % % `from_set(Set)' returns a bitset containing only the members of `Set'. % Takes O(card(Set)) time and space. % :- func from_set(set.set(T)) = tree_bitset(T) <= enum(T). % `to_sorted_list(Set)' returns a set.set containing all the members % of `Set', in sorted order. Takes O(card(Set)) time and space. % :- func to_set(tree_bitset(T)) = set.set(T) <= enum(T). %--------------------------------------------------% % % Counting. % % `count(Set)' returns the number of elements in `Set'. % Takes O(card(Set)) time. % :- func count(tree_bitset(T)) = int <= enum(T). %--------------------------------------------------% % % Standard higher order functions on collections. % % all_true(Pred, Set) succeeds iff Pred(Element) succeeds % for all the elements of Set. % :- pred all_true(pred(T)::in(pred(in) is semidet), tree_bitset(T)::in) is semidet <= enum(T). % `filter(Pred, Set) = TrueSet' returns the elements of Set for which % Pred succeeds. % :- func filter(pred(T), tree_bitset(T)) = tree_bitset(T) <= enum(T). :- mode filter(pred(in) is semidet, in) = out is det. % `filter(Pred, Set, TrueSet, FalseSet)' returns the elements of Set % for which Pred succeeds, and those for which it fails. % :- pred filter(pred(T), tree_bitset(T), tree_bitset(T), tree_bitset(T)) <= enum(T). :- mode filter(pred(in) is semidet, in, out, out) is det. % `foldl(Func, Set, Start)' calls Func with each element of `Set' % (in sorted order) and an accumulator (with the initial value of `Start'), % and returns the final value. Takes O(card(Set)) time. % :- func foldl(func(T, U) = U, tree_bitset(T), U) = U <= enum(T). :- pred foldl(pred(T, U, U), tree_bitset(T), U, U) <= enum(T). :- mode foldl(pred(in, in, out) is det, in, in, out) is det. :- mode foldl(pred(in, mdi, muo) is det, in, mdi, muo) is det. :- mode foldl(pred(in, di, uo) is det, in, di, uo) is det. :- mode foldl(pred(in, in, out) is semidet, in, in, out) is semidet. :- mode foldl(pred(in, mdi, muo) is semidet, in, mdi, muo) is semidet. :- mode foldl(pred(in, di, uo) is semidet, in, di, uo) is semidet. :- mode foldl(pred(in, in, out) is nondet, in, in, out) is nondet. :- mode foldl(pred(in, mdi, muo) is nondet, in, mdi, muo) is nondet. :- mode foldl(pred(in, di, uo) is cc_multi, in, di, uo) is cc_multi. :- mode foldl(pred(in, in, out) is cc_multi, in, in, out) is cc_multi. :- pred foldl2(pred(T, U, U, V, V), tree_bitset(T), U, U, V, V) <= enum(T). :- mode foldl2(pred(in, di, uo, di, uo) is det, in, di, uo, di, uo) is det. :- mode foldl2(pred(in, in, out, di, uo) is det, in, in, out, di, uo) is det. :- mode foldl2(pred(in, in, out, in, out) is det, in, in, out, in, out) is det. :- mode foldl2(pred(in, in, out, in, out) is semidet, in, in, out, in, out) is semidet. :- mode foldl2(pred(in, in, out, in, out) is nondet, in, in, out, in, out) is nondet. :- mode foldl2(pred(in, di, uo, di, uo) is cc_multi, in, di, uo, di, uo) is cc_multi. :- mode foldl2(pred(in, in, out, di, uo) is cc_multi, in, in, out, di, uo) is cc_multi. :- mode foldl2(pred(in, in, out, in, out) is cc_multi, in, in, out, in, out) is cc_multi. % `foldr(Func, Set, Start)' calls Func with each element of `Set' % (in reverse sorted order) and an accumulator (with the initial value % of `Start'), and returns the final value. Takes O(card(Set)) time. % :- func foldr(func(T, U) = U, tree_bitset(T), U) = U <= enum(T). :- pred foldr(pred(T, U, U), tree_bitset(T), U, U) <= enum(T). :- mode foldr(pred(in, di, uo) is det, in, di, uo) is det. :- mode foldr(pred(in, in, out) is det, in, in, out) is det. :- mode foldr(pred(in, in, out) is semidet, in, in, out) is semidet. :- mode foldr(pred(in, in, out) is nondet, in, in, out) is nondet. :- mode foldr(pred(in, di, uo) is cc_multi, in, di, uo) is cc_multi. :- mode foldr(pred(in, in, out) is cc_multi, in, in, out) is cc_multi. :- pred foldr2(pred(T, U, U, V, V), tree_bitset(T), U, U, V, V) <= enum(T). :- mode foldr2(pred(in, di, uo, di, uo) is det, in, di, uo, di, uo) is det. :- mode foldr2(pred(in, in, out, di, uo) is det, in, in, out, di, uo) is det. :- mode foldr2(pred(in, in, out, in, out) is det, in, in, out, in, out) is det. :- mode foldr2(pred(in, in, out, in, out) is semidet, in, in, out, in, out) is semidet. :- mode foldr2(pred(in, in, out, in, out) is nondet, in, in, out, in, out) is nondet. :- mode foldr2(pred(in, di, uo, di, uo) is cc_multi, in, di, uo, di, uo) is cc_multi. :- mode foldr2(pred(in, in, out, di, uo) is cc_multi, in, in, out, di, uo) is cc_multi. :- mode foldr2(pred(in, in, out, in, out) is cc_multi, in, in, out, in, out) is cc_multi. %--------------------------------------------------%