Next: random.sfc16, Previous: queue, Up: Top [Contents]
%--------------------------------------------------% % vim: ft=mercury ts=4 sw=4 et %--------------------------------------------------% % Copyright (C) 1994-1998,2001-2006, 2011 The University of Melbourne. % Copyright (C) 2015-2016, 2018-2019 The Mercury team. % This file is distributed under the terms specified in COPYING.LIB. %--------------------------------------------------% % % File: random.m % Main author: Mark Brown % % This module provides interfaces to several random number generators, % implementations of which can be found in the submodules. % % The interfaces can be used in three styles: % % - In the "ground" or "shared" style, an instance of the random/1 % typeclass is passed through the code using 'in' and 'out' modes. This % value is used to generate random numbers, and since the value is % ground it can also easily be stored in larger data structures. The % major drawback of this style is that the generators tend to be either % fast or of good quality, but not both. % % - In the "unique" style, the urandom/2 typeclass is used instead. Each % instance consists of a "params" type which is passed into the code % using an 'in' mode, and a "state" type which is passed through the % code using modes 'di' and 'uo'. The uniqueness allows destructive % update, which means that these generators can be both fast and good. % % - A generator can be attached to the I/O state. In this case, the % interface is the same as the unique style, with 'io' being used as % the unique state. This is particularly convenient for use in code % where the I/O state is already being passed around. % % Each generator defined in the submodules is natively one of the first % two styles. Adaptors are defined below for converting between these, % or from either of these to the third style. % % % Example, ground style: % % main(!IO) :- % R0 = sfc16.init, % roll(R0, R1, !IO), % roll(R1, _, !IO). % % :- pred roll(R::in, R::out, io::di, io::uo) is det <= random(R). % % roll(!R, !IO) :- % uniform_int_in_range(1, 6, N, !R), % io.format("You rolled a %d\n", [i(N)], !IO). % % % Example, unique style: % % main(!IO) :- % sfc64.init(P, S0), % roll(P, S0, S1, !IO), % roll(P, S1, _, !IO). % % :- pred roll(P::in, S::di, S::uo, io::di, io::uo) is det <= urandom(P, S). % % roll(P, !S, !IO) :- % uniform_int_in_range(P, 1, 6, N, !S), % io.format("You rolled a %d\n", [i(N)], !IO). % % % Example, attached to I/O state: % % main(!IO) :- % % Using a ground generator. % R = sfc16.init, % make_io_random(R, M1, !IO), % roll(M1, !IO), % roll(M1, !IO), % % % Using a unique generator. % sfc64.init(P, S), % make_io_urandom(P, S, M2, !IO), % roll(M2, !IO), % roll(M2, !IO). % % :- pred roll(M::in, io::di, io::uo) is det <= urandom(M, io). % % roll(M, !IO) :- % uniform_int_in_range(M, 1, 6, N, !IO), % io.format("You rolled a %d\n", [i(N)], !IO). % % % Notes for RNG implementors: % % To implement a random number generator library using the interface % defined in this module, an instance must be created for either the % random/1 typeclass or the urandom/2 typeclass. The choice depends on % whether or not the implementation destructively updates its state. % For implementations that do destructively update their state, the % urandom/2 typeclass should be used as it provides the necessary % unique modes. % % For most RNGs, destructive update is desirable since the state can be % quite large and it would be expensive to make a copy of the state for % each number generated. Destructive update is often achieved with the % use of arrays, hence array-based implementations typically require % the use of urandom/2. The compiler doesn't properly enforce this, % however - see the warning at the start of array.m - so some care is % required. The sfc32 and sfc64 submodules demonstrate the use of arrays % for the generator state. % % In some cases it may be acceptable to implement only the shared % interface, for example if the state is small. The sfc16 submodule % provides an example of this. % % Generally, it is sufficient to provide an implementation for only % one of the above two typeclasses. As mentioned earlier, users can % create instances of other typeclasses using the following predicates % in this module: % % make_urandom/3 % make_io_random/4 % make_io_urandom/5 % % If an implementation of urandom_dup/1 is also provided, then the % function make_shared_random/2 can be used to make a shared version % which will copy the state after each call. Care should be taken with % this, however, as users may unintentionally consume large amounts of % memory with its use. % % Further implementation examples can be found in the extras/random % directory. % %--------------------------------------------------% %--------------------------------------------------% :- module random. :- interface. :- include_module sfc16. :- include_module sfc32. :- include_module sfc64. :- include_module system_rng. :- import_module array. :- import_module io. :- import_module list. %--------------------------------------------------% % Interface to random number generators. % :- typeclass random(R) where [ % Generate a uniformly distributed pseudo-random unsigned integer % of 8, 16, 32 or 64 bits, respectively. % pred generate_uint8(uint8::out, R::in, R::out) is det, pred generate_uint16(uint16::out, R::in, R::out) is det, pred generate_uint32(uint32::out, R::in, R::out) is det, pred generate_uint64(uint64::out, R::in, R::out) is det ]. % uniform_int_in_range(Start, Range, N, !R) % % Generate a pseudo-random integer that is uniformly distributed % in the range Start to (Start + Range - 1), inclusive. % % Throws an exception if Range < 1 or Range > uint32_max. % :- pred uniform_int_in_range(int::in, int::in, int::out, R::in, R::out) is det <= random(R). % uniform_uint_in_range(Start, Range, N, !R) % % Generate a pseudo-random unsigned integer that is uniformly % distributed in the range Start to (Start + Range - 1), inclusive. % % Throws an exception if Range < 1 or Range > uint32_max. % :- pred uniform_uint_in_range(uint::in, uint::in, uint::out, R::in, R::out) is det <= random(R). % uniform_float_in_range(Start, Range, N, !R) % % Generate a pseudo-random float that is uniformly distributed % in the interval [Start, Start + Range). % :- pred uniform_float_in_range(float::in, float::in, float::out, R::in, R::out) is det <= random(R). % uniform_float_around_mid(Mid, Delta, N, !R) % % Generate a pseudo-random float that is uniformly distributed % in the interval (Mid - Delta, Mid + Delta). % :- pred uniform_float_around_mid(float::in, float::in, float::out, R::in, R::out) is det <= random(R). % uniform_float_in_01(N, !R) % % Generate a pseudo-random float that is uniformly distributed % in the interval [0.0, 1.0). % :- pred uniform_float_in_01(float::out, R::in, R::out) is det <= random(R). % normal_floats(M, SD, U, V, !R) % % Generate two pseudo-random floats from a normal (i.e., Gaussian) % distribution with mean M and standard deviation SD, using the % Box-Muller method. % % We generate two at a time for efficiency; they are independent of % each other. % :- pred normal_floats(float::in, float::in, float::out, float::out, R::in, R::out) is det <= random(R). % normal_floats(U, V, !R) % % Generate two pseudo-random floats from a normal (i.e., Gaussian) % distribution with mean 0.0 and standard deviation 1.0, using the % Nox-Muller method. % % We generate two at a time for efficiency; they are independent of % each other. % :- pred normal_floats(float::out, float::out, R::in, R::out) is det <= random(R). % Generate a random permutation of a list. % :- pred shuffle_list(list(T)::in, list(T)::out, R::in, R::out) is det <= random(R). % Generate a random permutation of an array. % :- pred shuffle_array(array(T)::array_di, array(T)::array_uo, R::in, R::out) is det <= random(R). %--------------------------------------------------% % Interface to unique random number generators. Callers need to % ensure they preserve the uniqueness of the random state, and in % turn instances can use destructive update on it. % :- typeclass urandom(P, S) <= (P -> S) where [ % Generate a uniformly distributed pseudo-random unsigned integer % of 8, 16, 32 or 64 bits, respectively. % pred generate_uint8(P::in, uint8::out, S::di, S::uo) is det, pred generate_uint16(P::in, uint16::out, S::di, S::uo) is det, pred generate_uint32(P::in, uint32::out, S::di, S::uo) is det, pred generate_uint64(P::in, uint64::out, S::di, S::uo) is det ]. :- typeclass urandom_dup(S) where [ % urandom_dup(!S, !:Sdup) % % Create a duplicate random state that will generate the same % sequence of integers. % pred urandom_dup(S::di, S::uo, S::uo) is det ]. % uniform_int_in_range(P, Start, Range, N, !S) % % Generate a pseudo-random integer that is uniformly distributed % in the range Start to (Start + Range - 1), inclusive. % % Throws an exception if Range < 1 or Range > uint32_max. % :- pred uniform_int_in_range(P::in, int::in, int::in, int::out, S::di, S::uo) is det <= urandom(P, S). % uniform_uint_in_range(P, Start, Range, N, !S) % % Generate a pseudo-random unsigned integer that is uniformly % distributed in the range Start to (Start + Range - 1), inclusive. % % Throws an exception if Range < 1 or Range > uint32_max. % :- pred uniform_uint_in_range(P::in, uint::in, uint::in, uint::out, S::di, S::uo) is det <= urandom(P, S). % uniform_float_in_range(P, Start, Range, N, !S) % % Generate a pseudo-random float that is uniformly distributed % in the interval [Start, Start + Range). % :- pred uniform_float_in_range(P::in, float::in, float::in, float::out, S::di, S::uo) is det <= urandom(P, S). % uniform_float_around_mid(P, Mid, Delta, N, !S) % % Generate a pseudo-random float that is uniformly distributed % in the interval (Mid - Delta, Mid + Delta). % :- pred uniform_float_around_mid(P::in, float::in, float::in, float::out, S::di, S::uo) is det <= urandom(P, S). % uniform_float_in_01(P, N, !S) % % Generate a pseudo-random float that is uniformly distributed % in the interval [0.0, 1.0). % :- pred uniform_float_in_01(P::in, float::out, S::di, S::uo) is det <= urandom(P, S). % normal_floats(P, M, S, U, V, !S) % % Generate two pseudo-random floats from a normal (i.e., Gaussian) % distribution with mean M and standard deviation S, using the % Box-Muller method. % % We generate two at a time for efficiency; they are independent of % each other. % :- pred normal_floats(P::in, float::in, float::in, float::out, float::out, S::di, S::uo) is det <= urandom(P, S). % normal_floats(P, U, V, !S) % % Generate two pseudo-random floats from a normal (i.e., Gaussian) % distribution with mean 0.0 and standard deviation 1.0, using the % Box-Muller method. % % We generate two at a time for efficiency; they are independent of % each other. % :- pred normal_floats(P::in, float::out, float::out, S::di, S::uo) is det <= urandom(P, S). % Generate a random permutation of a list. % :- pred shuffle_list(P::in, list(T)::in, list(T)::out, S::di, S::uo) is det <= urandom(P, S). % Generate a random permutation of an array. % :- pred shuffle_array(P::in, array(T)::array_di, array(T)::array_uo, S::di, S::uo) is det <= urandom(P, S). %--------------------------------------------------% %--------------------------------------------------% % Convert any instance of random/1 into an instance of urandom/2. % This creates additional overhead in the form of additional % typeclass method calls. % :- type urandom_params(R). :- type urandom_state(R). :- instance urandom(urandom_params(R), urandom_state(R)) <= random(R). :- instance urandom_dup(urandom_state(R)) <= random(R). :- pred make_urandom(R::in, urandom_params(R)::out, urandom_state(R)::uo) is det. %--------------------------------------------------% % Convert any instance of urandom/2 and urandom_dup/1 into an % instance of random/1. This duplicates the state every time a % random number is generated, hence may use significantly more % memory than if the unique version were used directly. % :- type shared_random(P, S). :- instance random(shared_random(P, S)) <= (urandom(P, S), urandom_dup(S)). :- func make_shared_random(P::in, S::di) = (shared_random(P, S)::out) is det. %--------------------------------------------------% % Convert any instance of random/1 into an instance of urandom/2 % where the state is the I/O state. % :- type io_random(R). :- instance urandom(io_random(R), io) <= random(R). :- pred make_io_random(R::in, io_random(R)::out, io::di, io::uo) is det <= random(R). %--------------------------------------------------% % Convert any instance of urandom/2 into an instance of urandom/2 % where the state is the I/O state. % :- type io_urandom(P, S). :- instance urandom(io_urandom(P, S), io) <= urandom(P, S). :- pred make_io_urandom(P::in, S::di, io_urandom(P, S)::out, io::di, io::uo) is det <= urandom(P, S). %--------------------------------------------------% %--------------------------------------------------% % % Interface to the older random number generator. This is now deprecated. % % Define a set of random number generator predicates. This implementation % uses a threaded random-number supply. The supply can be used in a % non-unique way, which means that each thread returns the same list of % random numbers. However, this may not be desired so in the interests % of safety it is also declared with (backtrackable) unique modes. % % The coefficients used in the implementation were taken from Numerical % Recipes in C (Press et al), and are originally due to Knuth. These % coefficients are described as producing a "Quick and Dirty" random number % generator, which generates the numbers very quickly but not necessarily % with a high degree of quality. As with all random number generators, % the user is advised to consider carefully whether this generator meets % their requirements in terms of "randomness". For applications which have % special needs (e.g. cryptographic key generation), a generator such as % this is unlikely to be suitable. % % Note that random number generators of this type have several known % pitfalls which the user may need to avoid: % % 1) The high bits tend to be more random than the low bits. If % you wish to generate a random integer within a given range, you % should something like 'div' to reduce the random numbers to the % required range rather than something like 'mod' (or just use % random.random/5). % % 2) Similarly, you should not try to break a random number up into % components. Instead, you should generate each number with a % separate call to this module. % % 3) There can be sequential correlation between successive calls, % so you shouldn't try to generate tuples of random numbers, for % example, by generating each component of the tuple in sequential % order. If you do, it is likely that the resulting sequence will % not cover the full range of possible tuples. % %--------------------------------------------------% % The type `supply' represents a supply of random numbers. % :- type supply. % init(Seed, RS). % % Creates a supply of random numbers RS using the specified Seed. % % This predicate has been declared obsolete because all of the % interface from here on is deprecated. All code using this part % of the interface will need to be updated. % :- pragma obsolete(pred(init/2)). :- pred init(int::in, supply::uo) is det. % random(Num, !RS). % % Extracts a number Num in the range 0 .. RandMax from the random number % supply !RS. % :- pred random(int, supply, supply). :- mode random(out, in, out) is det. :- mode random(out, mdi, muo) is det. % random(Low, Range, Num, !RS). % % Extracts a number Num in the range Low .. (Low + Range - 1) from the % random number supply !RS. For best results, the value of Range should be % no greater than about 100. % :- pred random(int, int, int, supply, supply). :- mode random(in, in, out, in, out) is det. :- mode random(in, in, out, mdi, muo) is det. % randmax(RandMax, !RS). % % Binds RandMax to the maximum random number that can be returned from the % random number supply !RS, the state of the supply is unchanged. % :- pred randmax(int, supply, supply). :- mode randmax(out, in, out) is det. :- mode randmax(out, mdi, muo) is det. % randcount(RandCount, !RS). % % Binds RandCount to the number of distinct random numbers that can be % returned from the random number supply !RS. The state of the supply is % unchanged. This will be one more than the number returned by randmax/3. % :- pred randcount(int, supply, supply). :- mode randcount(out, in, out) is det. :- mode randcount(out, mdi, muo) is det. % permutation(List0, List, !RS). % % Binds List to a random permutation of List0. % :- pred permutation(list(T), list(T), supply, supply). :- mode permutation(in, out, in, out) is det. :- mode permutation(in, out, mdi, muo) is det. %--------------------------------------------------% %--------------------------------------------------%
Next: random.sfc16, Previous: queue, Up: Top [Contents]