%--------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%--------------------------------------------------%
% Copyright (C) 1994-1995, 1997-1999, 2003-2006, 2011 The University of Melbourne.
% Copyright (C) 2014-2016, 2018 The Mercury team.
% This file is distributed under the terms specified in COPYING.LIB.
%--------------------------------------------------%
%
% File: queue.m.
% Main author: fjh.
% Stability: high.
%
% This file contains a `queue' ADT.
% A queue holds a sequence of values, and provides operations
% to insert values at the end of the queue (put) and remove them from
% the front of the queue (get).
%
% This implementation is in terms of a pair of lists.
% The put and get operations are amortized constant-time.
%
%--------------------------------------------------%
%--------------------------------------------------%
:- module queue.
:- interface.
:- import_module list.
%--------------------------------------------------%
:- type queue(T).
% `init(Queue)' is true iff `Queue' is an empty queue.
%
:- func init = queue(T).
:- pred init(queue(T)::out) is det.
% 'queue_equal(Q1, Q2)' is true iff Q1 and Q2 contain the same
% elements in the same order.
%
:- pred equal(queue(T)::in, queue(T)::in) is semidet.
% `is_empty(Queue)' is true iff `Queue' is an empty queue.
%
:- pred is_empty(queue(T)::in) is semidet.
% `is_full(Queue)' is intended to be true iff `Queue' is a queue
% whose capacity is exhausted. This implementation allows arbitrary-sized
% queues, so is_full always fails.
%
:- pred is_full(queue(T)::in) is semidet.
% `put(Elem, Queue0, Queue)' is true iff `Queue' is the queue
% which results from appending `Elem' onto the end of `Queue0'.
%
:- func put(queue(T), T) = queue(T).
:- pred put(T::in, queue(T)::in, queue(T)::out) is det.
% `put_list(Elems, Queue0, Queue)' is true iff `Queue' is the queue
% which results from inserting the items in the list `Elems' into `Queue0'.
%
:- func put_list(queue(T), list(T)) = queue(T).
:- pred put_list(list(T)::in, queue(T)::in, queue(T)::out) is det.
% `first(Queue, Elem)' is true iff `Queue' is a non-empty queue
% whose first element is `Elem'.
%
:- pred first(queue(T)::in, T::out) is semidet.
% `get(Elem, Queue0, Queue)' is true iff `Queue0' is a non-empty
% queue whose first element is `Elem', and `Queue' the queue which results
% from removing that element from the front of `Queue0'.
%
:- pred get(T::out, queue(T)::in, queue(T)::out) is semidet.
% `length(Queue, Length)' is true iff `Queue' is a queue
% containing `Length' elements.
%
:- func length(queue(T)) = int.
:- pred length(queue(T)::in, int::out) is det.
% `list_to_queue(List, Queue)' is true iff `Queue' is a queue
% containing the elements of List, with the first element of List at
% the head of the queue.
%
:- func list_to_queue(list(T)) = queue(T).
:- pred list_to_queue(list(T)::in, queue(T)::out) is det.
% A synonym for list_to_queue/1.
%
:- func from_list(list(T)) = queue(T).
% `to_list(Queue) = List' is the inverse of from_list/1.
%
:- func to_list(queue(T)) = list(T).
% `delete_all(Elem, Queue0, Queue)' is true iff `Queue' is the same
% queue as `Queue0' with all occurrences of `Elem' removed from it.
%
:- func delete_all(queue(T), T) = queue(T).
:- pred delete_all(T::in, queue(T)::in, queue(T)::out) is det.
% `put_on_front(Queue0, Elem) = Queue' pushes `Elem' on to
% the front of `Queue0', giving `Queue'.
%
:- func put_on_front(queue(T), T) = queue(T).
:- pred put_on_front(T::in, queue(T)::in, queue(T)::out) is det.
% `put_list_on_front(Queue0, Elems) = Queue' pushes `Elems'
% on to the front of `Queue0', giving `Queue' (the N'th member
% of `Elems' becomes the N'th member from the front of `Queue').
%
:- func put_list_on_front(queue(T), list(T)) = queue(T).
:- pred put_list_on_front(list(T)::in, queue(T)::in, queue(T)::out)
is det.
% `get_from_back(Elem, Queue0, Queue)' removes `Elem' from
% the back of `Queue0', giving `Queue'.
%
:- pred get_from_back(T::out, queue(T)::in, queue(T)::out) is semidet.
%--------------------------------------------------%
%--------------------------------------------------%