%--------------------------------------------------% % vim: ts=4 sw=4 et ft=mercury %--------------------------------------------------% % Copyright (C) 2018-2023 The Mercury team. % This file is distributed under the terms specified in COPYING.LIB. %--------------------------------------------------% % % File: uint64.m % Main author: juliensf % Stability: low. % % Predicates and functions for dealing with unsigned 64-bit integer numbers. % %--------------------------------------------------% :- module uint64. :- interface. :- import_module pretty_printer. %--------------------------------------------------% % % Conversion from int. % % from_int(I, U64): % % Convert an int into a uint64. % Fails if I is not in [0, 2^64 - 1]. % :- pred from_int(int::in, uint64::out) is semidet. % det_from_int(I) = U64: % % Convert an int into a uint64. % Throws an exception if I is not in [0, 2^64 - 1]. % :- func det_from_int(int) = uint64. % cast_from_int(I) = U64: % % Convert an int to a uint64. % Always succeeds, but will yield a result that is mathematically equal % to I only if I is in [0, 2^64 - 1]. % :- func cast_from_int(int) = uint64. %--------------------------------------------------% % % Conversion from uint. % % cast_from_uint(U) = U64: % % Convert a uint to a uint64. % Always succeeds, and will always yield a result that is % mathematically equal U. % :- func cast_from_uint(uint) = uint64. %--------------------------------------------------% % % Conversion to int. % % cast_to_int(U64) = I: % % Convert a uint64 to an int. % Always succeeds. If ints are 64 bits, I will be mathematically % equal to U64 only if U64 is in [0, 2^63 - 1]. If ints are 32 % bits, I will be mathematically equal to U64 only if U64 is in % [0, 2^31 - 1]. % :- func cast_to_int(uint64) = int. %--------------------------------------------------% % % Conversion to uint. % % cast_to_uint(U64) = U: % % Convert a uint64 to a uint. % Always succeeds, but will yield a result that is mathematically equal % to U64 only if uints are 64 bits. % :- func cast_to_uint(uint64) = uint. %--------------------------------------------------% % % Conversion to/from uint8 % % cast_to_uint8(U64) = U8: % % Convert a uint64 to a uint8. % Always succeeds, but will yield a result that is mathematically equal % to U64 only if U64 is in [0, 2^8 - 1]. % :- func cast_to_uint8(uint64) = uint8. % cast_from_uint8(U8) = U64: % % Convert a uint8 to a uint64. % Always succeeds, and yields a result that is mathematically equal % to U8. % :- func cast_from_uint8(uint8) = uint64. %--------------------------------------------------% % % Change of signedness. % % cast_from_int64(I64) = U64: % % Convert an int64 to a uint64. This will yield a result that is % mathematically equal to I64 only if I64 is in [0, 2^63 - 1]. % :- func cast_from_int64(int64) = uint64. %--------------------------------------------------% % % Conversion from byte sequence. % % from_bytes_le(Byte0, Byte1, ..., Byte7) = U64: % % U64 is the uint64 whose bytes are given in little-endian order by the % arguments from left-to-right (i.e. Byte0 is the least significant byte % and Byte7 is the most significant byte). % :- func from_bytes_le(uint8, uint8, uint8, uint8, uint8, uint8, uint8, uint8) = uint64. % from_bytes_be(Byte0, Byte1, ..., Byte7) = U64: % % U64 is the uint64 whose bytes are given in big-endian order by the % arguments in left-to-right order (i.e. Byte0 is the most significant % byte and Byte7 is the least significant byte). % :- func from_bytes_be(uint8, uint8, uint8, uint8, uint8, uint8, uint8, uint8) = uint64. %--------------------------------------------------% % % Comparisons and related operations. % % Less than. % :- pred (uint64::in) < (uint64::in) is semidet. % Greater than. % :- pred (uint64::in) > (uint64::in) is semidet. % Less than or equal. % :- pred (uint64::in) =< (uint64::in) is semidet. % Greater than or equal. % :- pred (uint64::in) >= (uint64::in) is semidet. % Maximum. % :- func max(uint64, uint64) = uint64. % Minimum. % :- func min(uint64, uint64) = uint64. %--------------------------------------------------% % % Arithmetic operations. % % Addition. % :- func uint64 + uint64 = uint64. :- mode in + in = uo is det. :- mode uo + in = in is det. :- mode in + uo = in is det. :- func plus(uint64, uint64) = uint64. % Subtraction. % :- func uint64 - uint64 = uint64. :- mode in - in = uo is det. :- mode uo - in = in is det. :- mode in - uo = in is det. :- func minus(uint64, uint64) = uint64. % Multiplication. % :- func (uint64::in) * (uint64::in) = (uint64::uo) is det. :- func times(uint64, uint64) = uint64. % Truncating integer division. % % Throws a `domain_error' exception if the right operand is zero. % :- func (uint64::in) div (uint64::in) = (uint64::uo) is det. % Truncating integer division. % % Throws a `domain_error' exception if the right operand is zero. % :- func (uint64::in) // (uint64::in) = (uint64::uo) is det. % (/)/2 is a synonym for (//)/2. % :- func (uint64::in) / (uint64::in) = (uint64::uo) is det. % unchecked_quotient(X, Y) is the same as X // Y, but the behaviour % is undefined if the right operand is zero. % :- func unchecked_quotient(uint64::in, uint64::in) = (uint64::uo) is det. % Modulus. % X mod Y = X - (X div Y) * Y % % Throws a `domain_error' exception if the right operand is zero. % :- func (uint64::in) mod (uint64::in) = (uint64::uo) is det. % Remainder. % X rem Y = X - (X // Y) * Y. % % Throws a `domain_error/` exception if the right operand is zero. % :- func (uint64::in) rem (uint64::in) = (uint64::uo) is det. % unchecked_rem(X, Y) is the same as X rem Y, but the behaviour is % undefined if the right operand is zero. % :- func unchecked_rem(uint64::in, uint64::in) = (uint64::uo) is det. % even(X) is equivalent to (X mod 2 = 0). % :- pred even(uint64::in) is semidet. % odd(X) is equivalent to (not even(X)), i.e. (X mod 2 = 1). % :- pred odd(uint64::in) is semidet. %--------------------------------------------------% % % Shift operations. % % Left shift. % X << Y returns X "left shifted" by Y bits. % The bit positions vacated by the shift are filled by zeros. % Throws an exception if Y is not in [0, 64). % :- func (uint64::in) << (int::in) = (uint64::uo) is det. :- func (uint64::in) <<u (uint::in) = (uint64::uo) is det. % unchecked_left_shift(X, Y) is the same as X << Y except that % the behaviour is undefined if Y is not in [0, 64). % It will typically be implemented more efficiently than X << Y. % :- func unchecked_left_shift(uint64::in, int::in) = (uint64::uo) is det. :- func unchecked_left_ushift(uint64::in, uint::in) = (uint64::uo) is det. % Right shift. % X >> Y returns X "right shifted" by Y bits. % The bit positions vacated by the shift are filled by zeros. % Throws an exception if Y is not in [0, 64). % :- func (uint64::in) >> (int::in) = (uint64::uo) is det. :- func (uint64::in) >>u (uint::in) = (uint64::uo) is det. % unchecked_right_shift(X, Y) is the same as X >> Y except that % the behaviour is undefined if Y is not in [0, 64). % It will typically be implemented more efficiently than X >> Y. % :- func unchecked_right_shift(uint64::in, int::in) = (uint64::uo) is det. :- func unchecked_right_ushift(uint64::in, uint::in) = (uint64::uo) is det. %--------------------------------------------------% % % Logical operations. % % Bitwise and. % :- func (uint64::in) /\ (uint64::in) = (uint64::uo) is det. % Bitwise or. % :- func (uint64::in) \/ (uint64::in) = (uint64::uo) is det. % Bitwise exclusive or (xor). % :- func xor(uint64, uint64) = uint64. :- mode xor(in, in) = uo is det. :- mode xor(in, uo) = in is det. :- mode xor(uo, in) = in is det. % Bitwise complement. % :- func \ (uint64::in) = (uint64::uo) is det. %--------------------------------------------------% % % Operations on bits and bytes. % % num_zeros(U) = N: % % N is the number of zeros in the binary representation of U. % :- func num_zeros(uint64) = int. % num_ones(U) = N: % % N is the number of ones in the binary representation of U. % :- func num_ones(uint64) = int. % num_leading_zeros(U) = N: % % N is the number of leading zeros in the binary representation of U. % :- func num_leading_zeros(uint64) = int. % num_trailing_zeros(U) = N: % N is the number of trailing zeros in the binary representation of U. % :- func num_trailing_zeros(uint64) = int. % reverse_bytes(A) = B: % % B is the value that results from reversing the bytes in the binary % representation of A. % :- func reverse_bytes(uint64) = uint64. % reverse_bits(A) = B: % % B is the is value that results from reversing the bits % in the binary representation of A. % :- func reverse_bits(uint64) = uint64. % rotate_left(U, D) = N: % % N is the value obtained by rotating the binary representation of U % left by D bits. Throws an exception if D is not in the range [0, 63]. % :- func rotate_left(uint64, uint) = uint64. % unchecked_rotate_left(U, D) = N: % % N is the value obtained by rotating the binary representation of U % left by an amount given by the lowest 6 bits of D. % :- func unchecked_rotate_left(uint64, uint) = uint64. % rotate_right(U, D) = N: % % N is the value obtained by rotating the binary representation of U % right by D bits. Throws an exception if D is not in the range [0, 63]. % :- func rotate_right(uint64, uint) = uint64. % unchecked_rotate_left(U, D) = N: % % N is the value obtained by rotating the binary representation of U % right by an amount given by the lowest 6 bits of D. % :- func unchecked_rotate_right(uint64, uint) = uint64. % set_bit(U, I) = N: % N is the value obtained by setting the I'th bit (the bit worth 2^I) of U % to one. An exception is thrown if I is not in the range [0, 63]. % :- func set_bit(uint64, uint) = uint64. % unchecked_set_bit(U, I) = N: % As above, but the behaviour is undefined if I is not in the range % [0, 63]. % :- func unchecked_set_bit(uint64, uint) = uint64. % clear_bit(U, I) = N: % N is the value obtained by setting the I'th bit (the bit worth 2^I) of U % to zero. An exception is thrown if I is not in the range [0, 63]. % :- func clear_bit(uint64, uint) = uint64. % unchecked_clear_bit(U, I) = N: % As above, but the behaviour is undefined if I is not in the range % [0, 63]. % :- func unchecked_clear_bit(uint64, uint) = uint64. % flip_bit(U, I) = N: % N is the value obtained by flipping the I'th bit (the bit worth 2^I) of % U. An exception is thrown if I is not in the range [0, 63]. % :- func flip_bit(uint64, uint) = uint64. % unchecked_flip_bit(U, I) = N: % As above, but the behaviour is undefined if I is not in the range % [0, 63]. % :- func unchecked_flip_bit(uint64, uint) = uint64. % bit_is_set(U, I): % True iff the I'th bit (the bit worth 2^I) of U is one. % An exception is thrown if I is not in the range [0, 63]. % :- pred bit_is_set(uint64::in, uint::in) is semidet. % unchecked_bit_is_set(U, I): % As above, but the behaviour is undefined if I is not in the range % [0, 63]. % :- pred unchecked_bit_is_set(uint64::in, uint::in) is semidet. % bit_is_clear(U, I): % True iff the I'th bit (the bit worth 2^I) of U is zero. % An exception is thrown if I is not in the range [0, 63]. % :- pred bit_is_clear(uint64::in, uint::in) is semidet. % unchecked_bit_is_clear(U, I): % As above, but the behaviour is undefined if I is not in the range % [0, 63]. % :- pred unchecked_bit_is_clear(uint64::in, uint::in) is semidet. %--------------------------------------------------% % % Limits. % :- func max_uint64 = uint64. %--------------------------------------------------% % % Prettyprinting. % % Convert a uint64 to a pretty_printer.doc for formatting. % :- func uint64_to_doc(uint64) = pretty_printer.doc. :- pragma obsolete(func(uint64_to_doc/1), [pretty_printer.uint64_to_doc/1]). %--------------------------------------------------% %--------------------------------------------------%