%--------------------------------------------------% % vim: ts=4 sw=4 et ft=mercury %--------------------------------------------------% % Copyright (C) 2000-2007, 2011-2012 The University of Melbourne. % Copyright (C) 2014-2018 The Mercury team. % This file is distributed under the terms specified in COPYING.LIB. %--------------------------------------------------% % % File: sparse_bitset.m. % Author: stayl. % Stability: medium. % % This module provides an ADT for storing sets of integers. % If the integers stored are closely grouped, a sparse_bitset % is much more compact than the representation provided by set.m, % and the operations will be much faster. % % Efficiency notes: % % A sparse bitset is represented as a sorted list of pairs of integers. % For a pair `Offset - Bits', `Offset' is a multiple of `int.bits_per_int'. % The bits of `Bits' describe which of the elements of the range % `Offset' .. `Offset + bits_per_int - 1' are in the set. % Pairs with the same value of `Offset' are merged. % Pairs in which `Bits' is zero are removed. % % The values of `Offset' in the list need not be *contiguous* multiples % of `bits_per_int', hence the name *sparse* bitset. % % A sparse_bitset is suitable for storing sets of integers which % can be represented using only a few `Offset - Bits' pairs. % In the worst case, where the integers stored are not closely grouped, % a sparse_bitset will take more memory than an ordinary set, but % the operations should not be too much slower. % % In the asymptotic complexities of the operations below, % `rep_size(Set)' is the number of pairs needed to represent `Set', % and `card(Set)' is the number of elements in `Set'. % %--------------------------------------------------% :- module sparse_bitset. :- interface. :- import_module enum. :- import_module list. :- import_module term. :- use_module set. %--------------------------------------------------% :- type sparse_bitset(T). % <= enum(T). %--------------------------------------------------% % % Initial creation of sets. % % Return an empty set. % :- func init = sparse_bitset(T). :- pred init(sparse_bitset(T)::out) is det. % Note: set.m contains the reverse mode of this predicate, but it is % difficult to implement both modes using the representation in this % module. % :- pred singleton_set(sparse_bitset(T)::out, T::in) is det <= enum(T). % `make_singleton_set(Elem)' returns a set containing just the single % element `Elem'. % :- func make_singleton_set(T) = sparse_bitset(T) <= enum(T). %--------------------------------------------------% % % Emptiness and singleton-ness tests. % :- pred empty(sparse_bitset(T)). :- mode empty(in) is semidet. :- mode empty(out) is det. :- pragma obsolete(pred(empty/1), [init/0, is_empty/1]). :- pred is_empty(sparse_bitset(T)::in) is semidet. :- pred is_non_empty(sparse_bitset(T)::in) is semidet. % Is the given set a singleton, and if yes, what is the element? % :- pred is_singleton(sparse_bitset(T)::in, T::out) is semidet <= enum(T). %--------------------------------------------------% % % Membership tests. % % `member(X, Set)' is true iff `X' is a member of `Set'. % Takes O(rep_size(Set)) time. % :- pred member(T, sparse_bitset(T)) <= enum(T). :- mode member(in, in) is semidet. :- mode member(out, in) is nondet. % `contains(Set, X)' is true iff `X' is a member of `Set'. % Takes O(rep_size(Set)) time. % :- pred contains(sparse_bitset(T)::in, T::in) is semidet <= enum(T). %--------------------------------------------------% % % Insertions and deletions. % % `insert(Set, X)' returns the union of `Set' and the set containing % only `X'. Takes O(rep_size(Set)) time and space. % :- func insert(sparse_bitset(T), T) = sparse_bitset(T) <= enum(T). :- pred insert(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det <= enum(T). % `insert_new(X, Set0, Set)' returns the union of `Set0' and the set % containing only `X' if `Set0' does not already contain `X'; if it does, % it fails. Takes O(rep_size(Set)) time and space. % :- pred insert_new(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is semidet <= enum(T). % `insert_list(Set, X)' returns the union of `Set' and the set containing % only the members of `X'. Same as `union(Set, list_to_set(X))', but may be % more efficient. % :- func insert_list(sparse_bitset(T), list(T)) = sparse_bitset(T) <= enum(T). :- pred insert_list(list(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det <= enum(T). %--------------------------------------------------% % `delete(Set, X)' returns the difference of `Set' and the set containing % only `X'. Takes O(rep_size(Set)) time and space. % :- func delete(sparse_bitset(T), T) = sparse_bitset(T) <= enum(T). :- pred delete(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det <= enum(T). % `delete_list(Set, X)' returns the difference of `Set' and the set % containing only the members of `X'. Same as % `difference(Set, list_to_set(X))', but may be more efficient. % :- func delete_list(sparse_bitset(T), list(T)) = sparse_bitset(T) <= enum(T). :- pred delete_list(list(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det <= enum(T). % `remove(X, Set0, Set)' returns in `Set' the difference of `Set0' % and the set containing only `X', failing if `Set0' does not contain `X'. % Takes O(rep_size(Set)) time and space. % :- pred remove(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is semidet <= enum(T). % `remove_list(X, Set0, Set)' returns in `Set' the difference of `Set0' % and the set containing all the elements of `X', failing if any element % of `X' is not in `Set0'. Same as `subset(list_to_set(X), Set0), % difference(Set0, list_to_set(X), Set)', but may be more efficient. % :- pred remove_list(list(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is semidet <= enum(T). % `remove_leq(Set, X)' returns `Set' with all elements less than or equal % to `X' removed. In other words, it returns the set containing all the % elements of `Set' which are greater than `X'. % :- func remove_leq(sparse_bitset(T), T) = sparse_bitset(T) <= enum(T). :- pred remove_leq(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det <= enum(T). % `remove_gt(Set, X)' returns `Set' with all elements greater than `X' % removed. In other words, it returns the set containing all the elements % of `Set' which are less than or equal to `X'. % :- func remove_gt(sparse_bitset(T), T) = sparse_bitset(T) <= enum(T). :- pred remove_gt(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det <= enum(T). % `remove_least(Set0, X, Set)' is true iff `X' is the least element in % `Set0', and `Set' is the set which contains all the elements of `Set0' % except `X'. Takes O(1) time and space. % :- pred remove_least(T::out, sparse_bitset(T)::in, sparse_bitset(T)::out) is semidet <= enum(T). %--------------------------------------------------% % % Comparisons between sets. % % `equal(SetA, SetB' is true iff `SetA' and `SetB' contain the same % elements. Takes O(min(rep_size(SetA), rep_size(SetB))) time. % :- pred equal(sparse_bitset(T)::in, sparse_bitset(T)::in) is semidet. % `subset(Subset, Set)' is true iff `Subset' is a subset of `Set'. % Same as `intersect(Set, Subset, Subset)', but may be more efficient. % :- pred subset(sparse_bitset(T)::in, sparse_bitset(T)::in) is semidet. % `superset(Superset, Set)' is true iff `Superset' is a superset of `Set'. % Same as `intersect(Superset, Set, Set)', but may be more efficient. % :- pred superset(sparse_bitset(T)::in, sparse_bitset(T)::in) is semidet. %--------------------------------------------------% % % Operations on two or more sets. % % `union(SetA, SetB)' returns the union of `SetA' and `SetB'. The % efficiency of the union operation is not sensitive to the argument % ordering. Takes O(rep_size(SetA) + rep_size(SetB)) time and space. % :- func union(sparse_bitset(T), sparse_bitset(T)) = sparse_bitset(T). :- pred union(sparse_bitset(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det. % `union_list(Sets, Set)' returns the union of all the sets in Sets. % :- func union_list(list(sparse_bitset(T))) = sparse_bitset(T). :- pred union_list(list(sparse_bitset(T))::in, sparse_bitset(T)::out) is det. % `intersect(SetA, SetB)' returns the intersection of `SetA' and `SetB'. % The efficiency of the intersection operation is not sensitive to the % argument ordering. Takes O(rep_size(SetA) + rep_size(SetB)) time and % O(min(rep_size(SetA)), rep_size(SetB)) space. % :- func intersect(sparse_bitset(T), sparse_bitset(T)) = sparse_bitset(T). :- pred intersect(sparse_bitset(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det. % `intersect_list(Sets, Set)' returns the intersection of all the sets % in Sets. % :- func intersect_list(list(sparse_bitset(T))) = sparse_bitset(T). :- pred intersect_list(list(sparse_bitset(T))::in, sparse_bitset(T)::out) is det. % `difference(SetA, SetB)' returns the set containing all the elements % of `SetA' except those that occur in `SetB'. Takes % O(rep_size(SetA) + rep_size(SetB)) time and O(rep_size(SetA)) space. % :- func difference(sparse_bitset(T), sparse_bitset(T)) = sparse_bitset(T). :- pred difference(sparse_bitset(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det. %--------------------------------------------------% % % Operations that divide a set into two parts. % % divide(Pred, Set, InPart, OutPart): % InPart consists of those elements of Set for which Pred succeeds; % OutPart consists of those elements of Set for which Pred fails. % :- pred divide(pred(T)::in(pred(in) is semidet), sparse_bitset(T)::in, sparse_bitset(T)::out, sparse_bitset(T)::out) is det <= enum(T). % divide_by_set(DivideBySet, Set, InPart, OutPart): % InPart consists of those elements of Set which are also in DivideBySet; % OutPart consists of those elements of Set which are not in DivideBySet. % :- pred divide_by_set(sparse_bitset(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out, sparse_bitset(T)::out) is det <= enum(T). %--------------------------------------------------% % % Converting lists to sets. % % `list_to_set(List)' returns a set containing only the members of `List'. % In the worst case this will take O(length(List)^2) time and space. % If the elements of the list are closely grouped, it will be closer % to O(length(List)). % :- func list_to_set(list(T)) = sparse_bitset(T) <= enum(T). :- pred list_to_set(list(T)::in, sparse_bitset(T)::out) is det <= enum(T). % `sorted_list_to_set(List)' returns a set containing only the members % of `List'. `List' must be sorted. Takes O(length(List)) time and space. % :- func sorted_list_to_set(list(T)) = sparse_bitset(T) <= enum(T). :- pred sorted_list_to_set(list(T)::in, sparse_bitset(T)::out) is det <= enum(T). %--------------------------------------------------% % % Converting sets to lists. % % `to_sorted_list(Set)' returns a list containing all the members of `Set', % in sorted order. Takes O(card(Set)) time and space. % :- func to_sorted_list(sparse_bitset(T)) = list(T) <= enum(T). :- pred to_sorted_list(sparse_bitset(T)::in, list(T)::out) is det <= enum(T). %--------------------------------------------------% % % Converting between different kinds of sets. % % `from_set(Set)' returns a bitset containing only the members of `Set'. % Takes O(card(Set)) time and space. % :- func from_set(set.set(T)) = sparse_bitset(T) <= enum(T). % `to_sorted_list(Set)' returns a set.set containing all the members % of `Set', in sorted order. Takes O(card(Set)) time and space. % :- func to_set(sparse_bitset(T)) = set.set(T) <= enum(T). %--------------------------------------------------% % % Counting. % % `count(Set)' returns the number of elements in `Set'. % Takes O(card(Set)) time. % :- func count(sparse_bitset(T)) = int <= enum(T). %--------------------------------------------------% % % Standard higher order functions on collections. % % all_true(Pred, Set) succeeds iff Pred(Element) succeeds % for all the elements of Set. % :- pred all_true(pred(T)::in(pred(in) is semidet), sparse_bitset(T)::in) is semidet <= enum(T). % `filter(Pred, Set) = TrueSet' returns the elements of Set for which % Pred succeeds. % :- func filter(pred(T), sparse_bitset(T)) = sparse_bitset(T) <= enum(T). :- mode filter(pred(in) is semidet, in) = out is det. % `filter(Pred, Set, TrueSet, FalseSet)' returns the elements of Set % for which Pred succeeds, and those for which it fails. % :- pred filter(pred(T), sparse_bitset(T), sparse_bitset(T), sparse_bitset(T)) <= enum(T). :- mode filter(pred(in) is semidet, in, out, out) is det. % `foldl(Func, Set, Start)' calls Func with each element of `Set' % (in sorted order) and an accumulator (with the initial value of `Start'), % and returns the final value. Takes O(card(Set)) time. % :- func foldl(func(T, U) = U, sparse_bitset(T), U) = U <= enum(T). :- pred foldl(pred(T, U, U), sparse_bitset(T), U, U) <= enum(T). :- mode foldl(pred(in, in, out) is det, in, in, out) is det. :- mode foldl(pred(in, mdi, muo) is det, in, mdi, muo) is det. :- mode foldl(pred(in, di, uo) is det, in, di, uo) is det. :- mode foldl(pred(in, in, out) is semidet, in, in, out) is semidet. :- mode foldl(pred(in, mdi, muo) is semidet, in, mdi, muo) is semidet. :- mode foldl(pred(in, di, uo) is semidet, in, di, uo) is semidet. :- mode foldl(pred(in, in, out) is nondet, in, in, out) is nondet. :- mode foldl(pred(in, in, out) is cc_multi, in, in, out) is cc_multi. :- mode foldl(pred(in, di, uo) is cc_multi, in, di, uo) is cc_multi. :- pred foldl2(pred(T, U, U, V, V), sparse_bitset(T), U, U, V, V) <= enum(T). :- mode foldl2(pred(in, in, out, in, out) is det, in, in, out, in, out) is det. :- mode foldl2(pred(in, in, out, mdi, muo) is det, in, in, out, mdi, muo) is det. :- mode foldl2(pred(in, in, out, di, uo) is det, in, in, out, di, uo) is det. :- mode foldl2(pred(in, di, uo, di, uo) is det, in, di, uo, di, uo) is det. :- mode foldl2(pred(in, in, out, in, out) is semidet, in, in, out, in, out) is semidet. :- mode foldl2(pred(in, in, out, mdi, muo) is semidet, in, in, out, mdi, muo) is semidet. :- mode foldl2(pred(in, in, out, di, uo) is semidet, in, in, out, di, uo) is semidet. :- mode foldl2(pred(in, in, out, in, out) is nondet, in, in, out, in, out) is nondet. :- mode foldl2(pred(in, in, out, in, out) is cc_multi, in, in, out, in, out) is cc_multi. :- mode foldl2(pred(in, in, out, di, uo) is cc_multi, in, in, out, di, uo) is cc_multi. :- mode foldl2(pred(in, di, uo, di, uo) is cc_multi, in, di, uo, di, uo) is cc_multi. % `foldr(Func, Set, Start)' calls Func with each element of `Set' % (in reverse sorted order) and an accumulator (with the initial value % of `Start'), and returns the final value. Takes O(card(Set)) time. % :- func foldr(func(T, U) = U, sparse_bitset(T), U) = U <= enum(T). :- pred foldr(pred(T, U, U), sparse_bitset(T), U, U) <= enum(T). :- mode foldr(pred(in, in, out) is det, in, in, out) is det. :- mode foldr(pred(in, mdi, muo) is det, in, mdi, muo) is det. :- mode foldr(pred(in, di, uo) is det, in, di, uo) is det. :- mode foldr(pred(in, in, out) is semidet, in, in, out) is semidet. :- mode foldr(pred(in, mdi, muo) is semidet, in, mdi, muo) is semidet. :- mode foldr(pred(in, di, uo) is semidet, in, di, uo) is semidet. :- mode foldr(pred(in, in, out) is nondet, in, in, out) is nondet. :- mode foldr(pred(in, in, out) is cc_multi, in, in, out) is cc_multi. :- mode foldr(pred(in, di, uo) is cc_multi, in, di, uo) is cc_multi. :- pred foldr2(pred(T, U, U, V, V), sparse_bitset(T), U, U, V, V) <= enum(T). :- mode foldr2(pred(in, in, out, in, out) is det, in, in, out, in, out) is det. :- mode foldr2(pred(in, in, out, mdi, muo) is det, in, in, out, mdi, muo) is det. :- mode foldr2(pred(in, in, out, di, uo) is det, in, in, out, di, uo) is det. :- mode foldr2(pred(in, di, uo, di, uo) is det, in, di, uo, di, uo) is det. :- mode foldr2(pred(in, in, out, in, out) is semidet, in, in, out, in, out) is semidet. :- mode foldr2(pred(in, in, out, mdi, muo) is semidet, in, in, out, mdi, muo) is semidet. :- mode foldr2(pred(in, in, out, di, uo) is semidet, in, in, out, di, uo) is semidet. :- mode foldr2(pred(in, in, out, in, out) is nondet, in, in, out, in, out) is nondet. :- mode foldr2(pred(in, di, uo, di, uo) is cc_multi, in, di, uo, di, uo) is cc_multi. :- mode foldr2(pred(in, in, out, di, uo) is cc_multi, in, in, out, di, uo) is cc_multi. :- mode foldr2(pred(in, in, out, in, out) is cc_multi, in, in, out, in, out) is cc_multi. %--------------------------------------------------% %--------------------------------------------------%