%--------------------------------------------------% % vim: ft=mercury ts=4 sw=4 et %--------------------------------------------------% % Copyright (C) 2006-2007 The University of Melbourne. % Copyright (C) 2014-2018 The Mercury team. % This file is distributed under the terms specified in COPYING.LIB. %--------------------------------------------------% % % File: rtree.m. % Main author: gjd. % Stability: low. % % This module provides a region tree (R-tree) ADT. A region tree associates % values with regions in some space, e.g. rectangles in the 2D plane, or % bounding spheres in 3D space. Region trees accept spatial queries, e.g. a % typical usage is "find all pubs within a 2km radius". % % This module also provides the typeclass region(K) which allows the user to % define new regions and spaces. Three "builtin" instances for region(K) % are provided: region(interval), region(box) and region(box3d) % corresponding to "square" regions in one, two and three dimensional spaces % respectively. % %--------------------------------------------------% %--------------------------------------------------% :- module rtree. :- interface. :- import_module list. %--------------------------------------------------% :- type rtree(K, V). :- typeclass region(K) where [ % Succeeds iff two regions intersect. % pred intersects(K::in, K::in) is semidet, % Succeeds iff the first region is contained within the second. % pred contains(K::in, K::in) is semidet, % Returns the "size" of a region. % e.g. for a two dimensional box one possible measure of "size" % would be the area. % func size(K) = float, % Return a region that contains both input regions. % The region returned should be minimal region that contains % both input regions. % func bounding_region(K, K) = K, % Computes the size of the bounding region returned by % bounding_region/2, i.e. % % bounding_region_size(K1, K2) = size(bounding_region(K1, K2)). % % While the above definition would suffice, a more efficient % implementation often exists, e.g. for intervals: % % bounding_region_size(interval(X0, X1), interval(Y0, Y1)) = % max(X1, Y1) - min(X0, Y0). % % This version is more efficient since it does not create a % temporary interval. % func bounding_region_size(K, K) = float ]. %--------------------------------------------------% % Initialize an empty rtree. % :- func init = (rtree(K, V)::uo) is det <= region(K). % Succeeds iff the given rtree is empty. % :- pred is_empty(rtree(K, V)::in) is semidet. % Insert a new key and corresponding value into an rtree. % :- func insert(K, V, rtree(K, V)) = rtree(K, V) <= region(K). :- pred insert(K::in, V::in, rtree(K, V)::in, rtree(K, V)::out) is det <= region(K). % Delete a key-value pair from an rtree. % Assumes that K is either the key for V, or is contained in the key % for V. % % Fails if the key-value pair is not in the tree. % :- pred delete(K::in, V::in, rtree(K, V)::in, rtree(K, V)::out) is semidet <= region(K). % Search for all values with keys that intersect the query key. % :- func search_intersects(rtree(K, V), K) = list(V) <= region(K). % Search for all values with keys that contain the query key. % :- func search_contains(rtree(K, V), K) = list(V) <= region(K). % search_general(KTest, VTest, T) = V. % % Search for all values V with associated keys K that satisfy % KTest(K) /\ VTest(V). The search assumes that for all K1, K2 % such that K1 contains K2, then if KTest(K2) holds we have that % KTest(K1) also holds. % % We have that: % % search_intersects(T, K, Vs) % <=> search_general(intersects(K), true, T, Vs) % % search_contains(T, K, Vs) % <=> search_general(contains(K), true, T, Vs) % :- func search_general(pred(K)::in(pred(in) is semidet), pred(V)::in(pred(in) is semidet), rtree(K, V)::in) = (list(V)::out) is det. % search_first(KTest, VTest, Max, T, V, L). % % Search for a value V with associated key K such that % KTest(K, _) /\ VTest(V, L) is satisfied and there does not exist a % V' with K' such that KTest(K', _) /\ VTest(V', L') /\ (L' < L) is % satisfied. Fail if no such key-value pair exists. % % The search assumes that for all K1, K2 such that % K1 contains K2, then if KTest(K2, L2) holds we have that % KTest(K1, L1) holds with L2 >= L1. % % If there exist multiple key-value pairs that satisfy the above % conditions, then one of the candidates is chosen arbitrarily. % :- pred search_first(pred(K, L), pred(V, L), rtree(K, V), L, V, L). :- mode search_first(pred(in, out) is semidet, pred(in, out) is semidet, in, in, out, out) is semidet. % search_general_fold(KTest, VPred, T, !A). % % Apply accumulator VPred to each key-value pair K-V that satisfies % KTest(K). The same assumptions for KTest from search_general apply % here. % :- pred search_general_fold(pred(K), pred(K, V, A, A), rtree(K, V), A, A). :- mode search_general_fold(pred(in) is semidet, pred(in, in, in, out) is det, in, in, out) is det. :- mode search_general_fold(pred(in) is semidet, pred(in, in, di, uo) is det, in, di, uo) is det. % Perform a traversal of the rtree, applying an accumulator predicate % for each key-value pair. % :- pred fold(pred(K, V, A, A), rtree(K, V), A, A). :- mode fold(pred(in, in, in, out) is det, in, in, out) is det. :- mode fold(pred(in, in, di, uo) is det, in, di, uo) is det. :- mode fold(pred(in, in, in, out) is semidet, in, in, out) is semidet. % Apply a transformation predicate to all the values in an rtree. % :- pred map_values(pred(K, V, W), rtree(K, V), rtree(K, W)). :- mode map_values(pred(in, in, out) is det, in, out) is det. :- mode map_values(pred(in, in, out) is semidet, in, out) is semidet. %--------------------------------------------------% % % Pre-defined regions. % % An interval type represented as interval(Min, Max). % :- type interval ---> interval(float, float). % A 2D axis aligned box represented as box(XMin, XMax, YMin, YMax). % :- type box ---> box(float, float, float, float). % A 3D axis aligned box represented as % box(XMin, XMax, YMin, YMax, ZMin, ZMax). % :- type box3d ---> box3d(float, float, float, float, float, float). :- instance region(interval). :- instance region(box). :- instance region(box3d). %--------------------------------------------------% %--------------------------------------------------%