Next: rational, Previous: random.system_rng, Up: Top [Contents]
%--------------------------------------------------% % vim: ft=mercury ts=4 sw=4 et %--------------------------------------------------% % Copyright (C) 2006-2009 The University of Melbourne. % Copyright (C) 2013-2016 Opturion Pty Ltd. % Copyright (C) 2017-2018 The Mercury team. % This file is distributed under the terms specified in COPYING.LIB. %--------------------------------------------------% % % File: ranges.m. % Authors: Mark Brown. % Stability: medium. % % This module defines the ranges abstract type. % %--------------------------------------------------% :- module ranges. :- interface. :- import_module list. :- import_module set. %--------------------------------------------------% % Range lists represent sets of integers. Each contiguous block % of integers in the set is stored as a range which specifies % the bounds of the block, and these ranges are kept in a list-like % structure. % :- type ranges. % empty returns the empty set. % :- func empty = ranges. % is_empty(Set): % Succeeds iff Set is the empty set. % :- pred is_empty(ranges::in) is semidet. % is_non_empty(Set): % Succeeds iff Set is not the empty set. % :- pred is_non_empty(ranges::in) is semidet. % universe returns the largest set that can be handled by this module. % This is the set of integers (min_int+1)..max_int. Note that min_int % cannot be represented in any set. % :- func universe = ranges. % range(Min, Max) is the set of all integers from Min to Max inclusive. % :- func range(int, int) = ranges. % split(D, L, H, Rest) is true iff L..H is the first range % in D, and Rest is the domain D with this range removed. % :- pred split(ranges::in, int::out, int::out, ranges::out) is semidet. % is_contiguous(R, L, H) <=> split(R, L, H, empty): % Test if the set is a contiguous set of integers and return the endpoints % of this set if this is the case. % :- pred is_contiguous(ranges::in, int::out, int::out) is semidet. % Add an integer to the set. % :- func insert(int, ranges) = ranges. :- pred insert(int::in, ranges::in, ranges::out) is det. % Delete an integer from the set. % :- func delete(int, ranges) = ranges. % Return the number of distinct integers which are in the ranges % (as opposed to the number of ranges). % :- func size(ranges) = int. % Returns the median value of the set. In case of a tie, returns % the lower of the two options. % :- func median(ranges) = int. % least(A, N) is true iff N is the least element of A. % :- pred least(ranges::in, int::out) is semidet. % greatest(A, N) is true iff N is the greatest element of A. % :- pred greatest(ranges::in, int::out) is semidet. % next(A, N0, N) is true iff N is the least element of A greater % than N0. % :- pred next(ranges::in, int::in, int::out) is semidet. % Test set membership. % :- pred member(int::in, ranges::in) is semidet. % Nondeterministically produce each range. % :- pred range_member(int::out, int::out, ranges::in) is nondet. % Nondeterministically produce each element. % :- pred nondet_member(int::out, ranges::in) is nondet. % subset(A, B) is true iff every value in A is in B. % :- pred subset(ranges::in, ranges::in) is semidet. % disjoint(A, B) is true iff A and B have no values in common. % :- pred disjoint(ranges::in, ranges::in) is semidet. % union(A, B) contains all the integers in either A or B. % :- func union(ranges, ranges) = ranges. % intersection(A, B) contains all the integers in both A and B. % :- func intersection(ranges, ranges) = ranges. % difference(A, B) contains all the integers which are in A but % not in B. % :- func difference(ranges, ranges) = ranges. % restrict_min(Min, A) contains all integers in A which are greater % than or equal to Min. % :- func restrict_min(int, ranges) = ranges. % restrict_max(Max, A) contains all integers in A which are less than % or equal to Max. % :- func restrict_max(int, ranges) = ranges. % restrict_range(Min, Max, A) contains all integers I in A which % satisfy Min =< I =< Max. % :- func restrict_range(int, int, ranges) = ranges. % prune_to_next_non_member(A0, A, N0, N): % % N is the smallest integer larger than or equal to N0 which is not % in A0. A is the set A0 restricted to values greater than N. % :- pred prune_to_next_non_member(ranges::in, ranges::out, int::in, int::out) is det. % prune_to_prev_non_member(A0, A, N0, N): % % N is the largest integer smaller than or equal to N0 which is not % in A0. A is the set A0 restricted to values less than N. % :- pred prune_to_prev_non_member(ranges::in, ranges::out, int::in, int::out) is det. % Negate all numbers: A in R <=> -A in negate(R) % :- func negate(ranges) = ranges. % The sum of two ranges. % :- func plus(ranges, ranges) = ranges. % Shift a range by const C. % :- func shift(ranges, int) = ranges. % Dilate a range by const C. % :- func dilation(ranges, int) = ranges. % Contract a range by const C. % :- func contraction(ranges, int) = ranges. %--------------------------------------------------% % Convert to a sorted list of integers. % :- func to_sorted_list(ranges) = list(int). % Convert from a list of integers. % :- func from_list(list(int)) = ranges. % Convert from a set of integers. % :- func from_set(set(int)) = ranges. %--------------------------------------------------% % Compare the sets of integers given by the two ranges using lexicographic % ordering on the sorted set form. % :- pred compare_lex(comparison_result::uo, ranges::in, ranges::in) is det. %--------------------------------------------------% :- pred foldl(pred(int, A, A), ranges, A, A). :- mode foldl(pred(in, in, out) is det, in, in, out) is det. :- mode foldl(pred(in, mdi, muo) is det, in, mdi, muo) is det. :- mode foldl(pred(in, di, uo) is det, in, di, uo) is det. :- mode foldl(pred(in, in, out) is semidet, in, in, out) is semidet. :- mode foldl(pred(in, mdi, muo) is semidet, in, mdi, muo) is semidet. :- mode foldl(pred(in, di, uo) is semidet, in, di, uo) is semidet. :- pred foldl2(pred(int, A, A, B, B), ranges, A, A, B, B). :- mode foldl2(pred(in, in, out, in, out) is det, in, in, out, in, out) is det. :- mode foldl2(pred(in, in, out, mdi, muo) is det, in, in, out, mdi, muo) is det. :- mode foldl2(pred(in, in, out, di, uo) is det, in, in, out, di, uo) is det. :- mode foldl2(pred(in, in, out, in, out) is semidet, in, in, out, in, out) is semidet. :- mode foldl2(pred(in, in, out, mdi, muo) is semidet, in, in, out, mdi, muo) is semidet. :- mode foldl2(pred(in, in, out, di, uo) is semidet, in, in, out, di, uo) is semidet. :- pred foldl3(pred(int, A, A, B, B, C, C), ranges, A, A, B, B, C, C). :- mode foldl3(pred(in, in, out, in, out, in, out) is det, in, in, out, in, out, in, out) is det. :- mode foldl3(pred(in, in, out, in, out, mdi, muo) is det, in, in, out, in, out, mdi, muo) is det. :- mode foldl3(pred(in, in, out, in, out, di, uo) is det, in, in, out, in, out, di, uo) is det. :- mode foldl3(pred(in, in, out, in, out, di, uo) is semidet, in, in, out, in, out, di, uo) is semidet. :- pred foldr(pred(int, A, A), ranges, A, A). :- mode foldr(pred(in, in, out) is det, in, in, out) is det. :- mode foldr(pred(in, mdi, muo) is det, in, mdi, muo) is det. :- mode foldr(pred(in, di, uo) is det, in, di, uo) is det. :- mode foldr(pred(in, in, out) is semidet, in, in, out) is semidet. :- mode foldr(pred(in, mdi, muo) is semidet, in, mdi, muo) is semidet. :- mode foldr(pred(in, di, uo) is semidet, in, di, uo) is semidet. %--------------------------------------------------% % For each range, call the predicate, passing it the lower and % upper bound and threading through an accumulator. % :- pred range_foldl(pred(int, int, A, A), ranges, A, A). :- mode range_foldl(pred(in, in, in, out) is det, in, in, out) is det. :- mode range_foldl(pred(in, in, mdi, muo) is det, in, mdi, muo) is det. :- mode range_foldl(pred(in, in, di, uo) is det, in, di, uo) is det. :- mode range_foldl(pred(in, in, in, out) is semidet, in, in, out) is semidet. :- mode range_foldl(pred(in, in, mdi, muo) is semidet, in, mdi, muo) is semidet. :- mode range_foldl(pred(in, in, di, uo) is semidet, in, di, uo) is semidet. % As above, but with two accumulators. % :- pred range_foldl2(pred(int, int, A, A, B, B), ranges, A, A, B, B). :- mode range_foldl2(pred(in, in, in, out, in, out) is det, in, in, out, in, out) is det. :- mode range_foldl2(pred(in, in, in, out, mdi, muo) is det, in, in, out, mdi, muo) is det. :- mode range_foldl2(pred(in, in, in, out, di, uo) is det, in, in, out, di, uo) is det. :- mode range_foldl2(pred(in, in, in, out, in, out) is semidet, in, in, out, in, out) is semidet. :- mode range_foldl2(pred(in, in, in, out, mdi, muo) is semidet, in, in, out, mdi, muo) is semidet. :- mode range_foldl2(pred(in, in, in, out, di, uo) is semidet, in, in, out, di, uo) is semidet. :- pred range_foldr(pred(int, int, A, A), ranges, A, A). :- mode range_foldr(pred(in, in, in, out) is det, in, in, out) is det. :- mode range_foldr(pred(in, in, mdi, muo) is det, in, mdi, muo) is det. :- mode range_foldr(pred(in, in, di, uo) is det, in, di, uo) is det. :- mode range_foldr(pred(in, in, in, out) is semidet, in, in, out) is semidet. :- mode range_foldr(pred(in, in, mdi, muo) is semidet, in, mdi, muo) is semidet. :- mode range_foldr(pred(in, in, di, uo) is semidet, in, di, uo) is semidet. %--------------------------------------------------% % % C interface to ranges. % % This section describes the C interface to the ranges/0 type that is exported % by this module. % % In C the ranges/0 type is represented by the ML_Ranges type. % The following operations are exported and may be called from C or C++ % code. % % ML_Ranges ML_ranges_empty(void); % Return the empty set. % % ML_Ranges ML_ranges_universe(void); % Return the set of integers from (min_int+1)..max_int. % % ML_Ranges ML_ranges_range(MR_Integer l, MR_Integer h); % Return the set of integers from `l' to `h' inclusive. % % int ML_ranges_is_empty(ML_Ranges r); % Return true iff `r` is the empty set. % % MR_Integer ML_ranges_size(ML_Ranges r); % Return the number of distinct integers in `r'. % % int ML_ranges_split(ML_Ranges d, MR_Integer *l, MR_Integer *h, % ML_Ranges *rest); % Return true if `d' is not the empty set, setting `l' and `h' to the % lower and upper bound of the first range in `d', and setting `rest' % to `d' with the first range removed. % Return false if `d' is the empty set. % % ML_Ranges ML_ranges_insert(MR_Integer i, ML_ranges r); % Return the ranges value that is the result of inserting the integer % `i' into the ranges value `r'. %--------------------------------------------------% % % Java interface to ranges. % % This section describes the Java interface to the ranges/0 type that is % exported by this module. % % In Java the ranges/0 type is represented by the ranges.Ranges_0 class. % The following operations are exported as public static methods of the ranges % module and may be called from Java code. % % ranges.Ranges_0 empty(); % Return the empty set. % % ranges.Ranges_0 universe(); % Return the set of integers from (min_int+1)..max_int. % % ranges.Ranges_0 range(int l, int, h); % Return the set of integers from `l' to `h' inclusive. % % boolean is_empty(ranges.Ranges_0 r); % Return true iff `r' is the empty set. % % int size(ranges.Ranges_0 r); % Return the number of distinct integers in `r'. % % boolean split(ranges.Ranges_0 d, % jmercury.runtime.Ref<Integer> l, % jmercury.runtime.Ref<Integer> h, % jmercury.runtime.Ref<ranges.Ranges_0> rest); % Return true if `d' is not the empty set, setting `l' and `h' to the % lower and upper bound of the first range in `d', and setting `rest' % to `d' with the first range removed. % Return false if `d' is the empty set. % % ranges.Ranges_0 insert(int i, ranges.Ranges_0 r); % Return the ranges value that is the result of inserting the integer % `i' into the ranges value `r'. %--------------------------------------------------% %--------------------------------------------------%
Next: rational, Previous: random.system_rng, Up: Top [Contents]