Next: , Previous: , Up: Top   [Contents]


17 cord

%--------------------------------------------------%
% vim: ft=mercury ts=4 sw=4 et
%--------------------------------------------------%
% Copyright (C) 2002-2011 The University of Melbourne.
% Copyright (C) 2013-2018, 2021-2022, 2024-2025 The Mercury team.
% This file is distributed under the terms specified in COPYING.LIB.
%--------------------------------------------------%
%
% File: cord.m.
% Author: Ralph Becket <rafe@cs.mu.oz.au>
% Stability: high.
%
% Like lists, cords contain a sequence of elements. The difference is that
% many operations that construct cords (such as appending two cords together,
% or adding a new element to the end of a cord) are O(1) operations, not O(N).
% In general, if you want to construct a list in any order other than
% strictly back-to-front, then you should consider constructing a cord instead,
% and then converting the final cord to a list.
%
% The reason why such lower asymptotic complexities are possible for many
% operations is that cords are essentially binary trees that store elements
% in their leaf nodes.
%
% The price of lower complexity for cord-construction operations is
% (a) higher complexity for some inspection operations, such as head_tail/3,
% and (b) higher constant factors for most operations.
%
%--------------------------------------------------%
%--------------------------------------------------%

:- module cord.
:- interface.

:- import_module list.

%--------------------------------------------------%

    % Conceptually, a cord contains a list of elements of type T.
    %
    % Cords that contain the same elements in the same order will not
    % necessarily have the same representation. Therefore it is possible
    % that they may not unify, and that comparing them may return a result
    % other than "equal".
    %
    % The exception to this rule is that the empty cord does have a
    % unique representation.
    %
    % You can test two cords for equality using the cord.equal predicate below.
    %
:- type cord(T).

%--------------------------------------------------%
%
% Constructing a cord from scratch.
%

    % The init and empty functions do the same job: return the empty cord.
    %
    % list(cord(init)) = [].
    % list(cord(empty)) = [].
    %
:- func init = cord(T).
:- func empty = cord(T).

    % Return a cord containing just the given element.
    %
    % list(cord(singleton(X))) = [X].
    %
:- func singleton(T) = cord(T).

%--------------------------------------------------%
%
% Constructing a new cord from one existing cord.
%

    % cons(Element, Cord0) = Cord:
    % cons(Element, Cord0, Cord):
    %
    % Return Cord, which is the cord you get when you add Element
    % to the front of Cord0.
    %
    % list(cons(Element, Cord0)) = [Element | list(Cord0)]
    %
    % This is an O(1) operation.
    %
:- func cons(T, cord(T)) = cord(T).
:- pred cons(T::in, cord(T)::in, cord(T)::out) is det.

    % cons_list(List, Cord0) = Cord:
    % cons_list(List, Cord0, Cord):
    %
    % Return Cord, which is the cord you get when you add List
    % to the front of Cord0.
    %
    % list(cons_list(List, Cord0)) = List ++ list(Cord0)
    %
    % This is an O(1) operation.
    %
:- func cons_list(list(T), cord(T)) = cord(T).
:- pred cons_list(list(T)::in, cord(T)::in, cord(T)::out) is det.

    % snoc(Cord0, Element) = Cord:
    % snoc(Element, Cord0, Cord):
    %
    % Return Cord, which is the cord you get when you add Element
    % to the end of Cord0. (The argument order of the predicate version
    % simplifies its use when the cord is represented by a state variable.)
    %
    % list(snoc(Cord0, Element)) = list(Cord0) ++ [Element]
    %
    % This is an O(1) operation.
    %
:- func snoc(cord(T), T) = cord(T).
:- pred snoc(T::in, cord(T)::in, cord(T)::out) is det.

    % snoc_list(Cord0, List) = Cord:
    % snoc_list(List, Cord0, Cord):
    %
    % Return Cord, which is the cord you get when you add List
    % to the end of Cord0. (The argument order of the predicate version
    % simplifies its use when the cord is represented by a state variable.)
    %
    % list(snoc_list(Cord0, List)) = list(Cord0) ++ List
    %
    % This is an O(1) operation.
    %
:- func snoc_list(cord(T), list(T)) = cord(T).
:- pred snoc_list(list(T)::in, cord(T)::in, cord(T)::out) is det.

%--------------------------------------------------%
%
% Constructing a new cord from two or more existing cords.
%

    % CA ++ CB = C:
    %
    % Return C, which is the cord you get when you append CB to the end of CA.
    %
    % list(CA ++ CB) = list(CA) ++ list(CB)
    %
    % This is an O(1) operation.
    % (With lists, the complexity would be O(len(CA)).)
    %
:- func cord(T) ++ cord(T) = cord(T).

    % Append together a list of cords.
    %
:- func cord_list_to_cord(list(cord(T))) = cord(T).

    % Reverse the given list (of cords), and then
    % append together the resulting list of cords.
    %
:- func rev_cord_list_to_cord(list(cord(T))) = cord(T).

    % Cord = condense(CordOfCords):
    %
    % Cord is the result of concatenating all the elements of CordOfCords.
    %
:- func condense(cord(cord(T))) = cord(T).

%--------------------------------------------------%
%
% Simple tests on cords.
%

    % Succeed if-and-only-if the given cord is empty.
    %
:- pred is_empty(cord(T)::in) is semidet.

    % Succeed if-and-only-if the given cord is not empty.
    %
:- pred is_non_empty(cord(T)::in) is semidet.

    % If the given cord contains exactly one element, then return that element.
    % Otherwise, fail.
    %
:- pred is_singleton(cord(T)::in, T::out) is semidet.

%--------------------------------------------------%
%
% Getting single elements out of cords.
%

    % head(Cord, Head):
    % get_first(Cord, Head):
    %
    % Return just the first element in Cord, if Cord contains any elements.
    % Otherwise, fail.
    %
    %     head(Cord, Head)  =>  some [Tail]: list(Cord) = [Head] ++ Tail.
    % not head(Cord, _)     =>  Cord = empty
    %
    % This is an O(n) operation.
    %
:- pred head(cord(T)::in, T::out) is semidet.
:- pred get_first(cord(T)::in, T::out) is semidet.

    % head_tail(Cord, Head, Tail):
    %
    % If the cord Cord is not empty, then return its first element as Head,
    % and the cord containing all the remaining elements as T.
    % If the cord is empty, then fail.
    %
    %     head_tail(Cord, Head, Tail)  =>  list(Cord) = [Head | list(Tail)]
    % not head_tail(Cord, _, _)        =>  Cord = empty
    %
    % This is an O(n) operation, although traversing an entire cord with
    % head_tail/3 gives O(1) amortized cost for each call.
    %
:- pred head_tail(cord(T)::in, T::out, cord(T)::out) is semidet.

    % get_last(Cord, Last):
    %
    % Return just the last element in Cord, if Cord contains any elements.
    % Otherwise, fail.
    %
    %     get_last(Cord, Lasr)  =>  some [List]: list(Cord) = List ++ [Last].
    % not get_last(Cord, _)     =>  Cord = empty
    %
    % This is an O(n) operation.
    %
:- pred get_last(cord(T)::in, T::out) is semidet.

    % split_last(Cord, Prev, Last):
    %
    % If the cord Cord is not empty, then return its last element as Last,
    % and the cord containing all the previous elements as Prev.
    % If the cord is empty, then fail.
    %
    %     split_last(Cord, Prev, Last)  =>  list(Cord) = list(Prev) ++ [Last].
    % not split_last(Cord, _, _)        =>  Cord = empty
    %
    % This is an O(n) operation, although traversing an entire cord with
    % split_last/3 gives O(1) amortized cost for each call.
    %
:- pred split_last(cord(T)::in, cord(T)::out, T::out) is semidet.

%--------------------------------------------------%
%
% Operations on whole cords.
%

    % length(C) = list.length(list(C))
    %
    % This is an O(n) operation.
    %
:- func length(cord(T)) = int.

    % member(X, C) <=> list.member(X, list(C)).
    %
:- pred member(T::out, cord(T)::in) is nondet.

    % equal(CA, CB):
    %
    % Succeed if-and-only-if CA and CB contain the same elements
    % in the same % order.
    %
    % equal(CA, CB)  <=>  list(CA) = list(CB).
    % (Note: the current implementation works exactly this way.)
    %
    % This is an O(n) operation where n = length(CA) + length(CB).
    %
:- pred equal(cord(T)::in, cord(T)::in) is semidet.

%--------------------------------------------------%
%
% Converting lists to cords.
%

    % from_list(List) = Cord:
    %
    % Return a cord containing the same elements in the same order as List.
    %
    % list(from_list(Xs)) = Xs
    %
    % This is an O(1) operation.
    %
:- func from_list(list(T)) = cord(T).

%--------------------------------------------------%
%
% Converting cords to lists.
%

    % list(Cord) = List:
    % to_list(Cord) = List:
    %
    % Return a list containing the same elements in the same order as Cord.
    %
    % The list of data in a cord:
    %
    %   list(empty        ) = []
    %   list(from_list(Xs)) = Xs
    %   list(cons(X, C)   ) = [X | list(C)]
    %   list(TA ++ TB     ) = list(TA) ++ list(TB)
    %
:- func list(cord(T)) = list(T).
:- func to_list(cord(T)) = list(T).

    % rev_list(Cord) = RevList:
    % to_rev_list(Cord) = RevList:
    %
    % Return a list containing the same elements as Cord,
    % but in the reverse order.
    %
    % rev_list(Cord) = list.reverse(list(Cord).
    %
:- func rev_list(cord(T)) = list(T).
:- func to_rev_list(cord(T)) = list(T).

    % Append together a list of cords, and return the result as a list.
    %
:- func cord_list_to_list(list(cord(T))) = list(T).

    % Reverse the given list (of cords), append together
    % the resulting list of cords, and return it as a list.
    %
:- func rev_cord_list_to_list(list(cord(T))) = list(T).

%--------------------------------------------------%
%
% Some standard higher order operations.
%

    % find_first_match(Pred, Cord, FirstMatch):
    %
    % Return as FirstMatch the first element E in Cord
    % for which Pred(E) is true. If there is no such element, fail.
    %
:- pred find_first_match(pred(T)::in(pred(in) is semidet),
    cord(T)::in, T::out) is semidet.

    % map(Func, Cord) = MappedCord:
    %
    % Apply Func to every element of Cord, and return the result.
    %
    % list(map(Func, Cord)) = list.map(Func, list(Cord))
    %
:- func map(func(T) = U, cord(T)) = cord(U).

    % map_pred(Pred, Cord, MappedCord):
    %
    % Apply Pred to every element of Cord, and return the result.
    %
    % cord.map_pred(Pred, Cord, MappedCord), MappedList = cord.list(MappedCord)
    % is equivalent to
    % list.map(Pred, cord.list(Cord), MappedList)
    %
:- pred map_pred(pred(T, U)::in(pred(in, out) is det),
    cord(T)::in, cord(U)::out) is det.

    % filter(Pred, Cord, TrueCord):
    %
    % For each member E of Cord,
    % - if Pred(E) is true, then include E in TrueCord.
    %
    % The order of the included elements is preserved.
    %
:- pred filter(pred(T)::in(pred(in) is semidet),
    cord(T)::in, cord(T)::out) is det.

    % filter(Pred, Cord, TrueCord, FalseCord):
    %
    % For each member E of Cord,
    % - if Pred(E) is true, then include E in TrueCord.
    % - if Pred(E) is false, then include E in FalseCord.
    %
    % The order of the included elements is preserved.
    %
:- pred filter(pred(T)::in(pred(in) is semidet),
    cord(T)::in, cord(T)::out, cord(T)::out) is det.

%--------------------------------------------------%
%
% Foldl operations.
%

    % foldl(F, C, A) = list.foldl(F, list(C), A).
    %
:- func foldl(func(T, A) = A, cord(T), A) = A.

    % foldl_pred(P, C, !AccA)
    %
    % Equivalent to list.foldl(P, list(C), !AccA), but faster.
    %
:- pred foldl_pred(pred(T, A, A), cord(T), A, A).
:- mode foldl_pred(in(pred(in, in, out) is det), in, in, out) is det.
:- mode foldl_pred(in(pred(in, mdi, muo) is det), in, mdi, muo) is det.
:- mode foldl_pred(in(pred(in, di, uo) is det), in, di, uo) is det.
:- mode foldl_pred(in(pred(in, in, out) is semidet), in, in, out) is semidet.
:- mode foldl_pred(in(pred(in, mdi, muo) is semidet), in, mdi, muo) is semidet.
:- mode foldl_pred(in(pred(in, di, uo) is semidet), in, di, uo) is semidet.

    % foldl2(P, C, !AccA, !AccB)
    %
    % Equivalent to list.foldl2(P, list(C), !AccA, !AccB), but faster.
    %
:- pred foldl2(pred(T, A, A, B, B), cord(T), A, A, B, B).
:- mode foldl2(in(pred(in, in, out, in, out) is det),
    in, in, out, in, out) is det.
:- mode foldl2(in(pred(in, in, out, mdi, muo) is det),
    in, in, out, mdi, muo) is det.
:- mode foldl2(in(pred(in, in, out, di, uo) is det),
    in, in, out, di, uo) is det.
:- mode foldl2(in(pred(in, in, out, in, out) is semidet),
    in, in, out, in, out) is semidet.
:- mode foldl2(in(pred(in, in, out, mdi, muo) is semidet),
    in, in, out, mdi, muo) is semidet.
:- mode foldl2(in(pred(in, in, out, di, uo) is semidet),
    in, in, out, di, uo) is semidet.

    % foldl3(P, C, !AccA, !AccB, !AccC)
    %
    % Equivalent to list.foldl3(P, list(C), !AccA, !AccB, !AccC), but faster.
    %
:- pred foldl3(pred(T, A, A, B, B, C, C), cord(T), A, A, B, B, C, C).
:- mode foldl3(in(pred(in, in, out, in, out, in, out) is det),
    in, in, out, in, out, in, out) is det.
:- mode foldl3(in(pred(in, in, out, in, out, mdi, muo) is det),
    in, in, out, in, out, mdi, muo) is det.
:- mode foldl3(in(pred(in, in, out, in, out, di, uo) is det),
    in, in, out, in, out, di, uo) is det.
:- mode foldl3(in(pred(in, in, out, in, out, in, out) is semidet),
    in, in, out, in, out, in, out) is semidet.
:- mode foldl3(in(pred(in, in, out, in, out, mdi, muo) is semidet),
    in, in, out, in, out, mdi, muo) is semidet.
:- mode foldl3(in(pred(in, in, out, in, out, di, uo) is semidet),
    in, in, out, in, out, di, uo) is semidet.

%--------------------------------------------------%
%
% Foldr operations.
%

    % foldr(F, C, A) = list.foldr(F, list(C), A).
    %
:- func foldr(func(T, A) = A, cord(T), A) = A.

    % foldr(F, C, !AccA)
    %
    % Equivalent to list.foldr(F, list(C), !AccA), but faster.
    %
:- pred foldr_pred(pred(T, A, A), cord(T), A, A).
:- mode foldr_pred(in(pred(in, in, out) is det), in, in, out) is det.
:- mode foldr_pred(in(pred(in, mdi, muo) is det), in, mdi, muo) is det.
:- mode foldr_pred(in(pred(in, di, uo) is det), in, di, uo) is det.
:- mode foldr_pred(in(pred(in, in, out) is semidet), in, in, out) is semidet.
:- mode foldr_pred(in(pred(in, mdi, muo) is semidet), in, mdi, muo) is semidet.
:- mode foldr_pred(in(pred(in, di, uo) is semidet), in, di, uo) is semidet.

    % foldr2(P, C, !AccA, !AccB):
    %
    % Equivalent to list.foldr2(P, list(C), !AccA, !AccB), but faster.
    %
:- pred foldr2(pred(T, A, A, B, B), cord(T), A, A, B, B).
:- mode foldr2(in(pred(in, in, out, in, out) is det), in, in, out,
    in, out) is det.
:- mode foldr2(in(pred(in, in, out, mdi, muo) is det), in, in, out,
    mdi, muo) is det.
:- mode foldr2(in(pred(in, in, out, di, uo) is det), in, in, out,
    di, uo) is det.
:- mode foldr2(in(pred(in, in, out, in, out) is semidet), in, in, out,
    in, out) is semidet.
:- mode foldr2(in(pred(in, in, out, mdi, muo) is semidet), in, in, out,
    mdi, muo) is semidet.
:- mode foldr2(in(pred(in, in, out, di, uo) is semidet), in, in, out,
    di, uo) is semidet.

    % foldr3(P, C, !AccA, !AccB,! AccC):
    %
    % Equivalent to list.foldr3(P, list(C), !AccA, !AccB, !AccC), but faster.
    %
:- pred foldr3(pred(T, A, A, B, B, C, C), cord(T), A, A, B, B, C, C).
:- mode foldr3(in(pred(in, in, out, in, out, in, out) is det), in,
    in, out, in, out, in, out) is det.
:- mode foldr3(in(pred(in, in, out, in, out, mdi, muo) is det), in,
    in, out, in, out, mdi, muo) is det.
:- mode foldr3(in(pred(in, in, out, in, out, di, uo) is det), in,
    in, out, in, out, di, uo) is det.
:- mode foldr3(in(pred(in, in, out, in, out, in, out) is semidet), in,
    in, out, in, out, in, out) is semidet.
:- mode foldr3(in(pred(in, in, out, in, out, mdi, muo) is semidet), in,
    in, out, in, out, mdi, muo) is semidet.
:- mode foldr3(in(pred(in, in, out, in, out, di, uo) is semidet), in,
    in, out, in, out, di, uo) is semidet.

%--------------------------------------------------%
%
% Map_foldl operations.
%

    % map_foldl(P, CA, CB, !Acc):
    %
    % This predicate calls P on each element of the input cord, working
    % left to right. Each call to P transforms an element of the input cord
    % to the corresponding element of the output cord, and updates the
    % accumulator.
    %
:- pred map_foldl(pred(T1, T2, A, A), cord(T1), cord(T2), A, A).
:- mode map_foldl(in(pred(in, out, in, out) is det), in, out, in, out)
    is det.
:- mode map_foldl(in(pred(in, out, mdi, muo) is det), in, out, mdi, muo)
    is det.
:- mode map_foldl(in(pred(in, out, di, uo) is det), in, out, di, uo)
    is det.
:- mode map_foldl(in(pred(in, out, in, out) is semidet), in, out, in, out)
    is semidet.
:- mode map_foldl(in(pred(in, out, mdi, muo) is semidet), in, out, mdi, muo)
    is semidet.
:- mode map_foldl(in(pred(in, out, di, uo) is semidet), in, out, di, uo)
    is semidet.

    % As above, but with two accumulators.
    %
:- pred map_foldl2(pred(T1, T2, A, A, B, B)::
    in(pred(in, out, in, out, in, out) is det),
    cord(T1)::in, cord(T2)::out, A::in, A::out, B::in, B::out) is det.

    % As above, but with three accumulators.
    %
:- pred map_foldl3(pred(T1, T2, A, A, B, B, C, C)::
    in(pred(in, out, in, out, in, out, in, out) is det),
    cord(T1)::in, cord(T2)::out, A::in, A::out, B::in, B::out, C::in, C::out)
    is det.

%--------------------------------------------------%
%--------------------------------------------------%


Next: , Previous: , Up: Top   [Contents]