%--------------------------------------------------% % vim: ts=4 sw=4 et ft=mercury %--------------------------------------------------% % Copyright (C) 2000-2007, 2011-2012 The University of Melbourne. % Copyright (C) 2014-2024 The Mercury team. % This file is distributed under the terms specified in COPYING.LIB. %--------------------------------------------------% % % File: sparse_bitset.m. % Author: stayl. % Stability: medium. % % This module provides an abstract data type for storing sets of items % that can each be represented by non-negative integers. % If the integers being stored are closely grouped, a sparse_bitset % will be much more compact than either the list-of-elements representations % provided by set.m, set_ordlist.m, and set_unordlist.m, or the % tree-of-elements representations provided by set_bbbtree.m, set_tree234. % or set_ctree234.m. % % A sparse bitset is represented as a sorted list, with each element % of this list containing two unsigned integers: Offset and Bits. % Offset will always be a multiple of uint.ubits_per_uint, and % the bits of Bits describe which of the elements of the range % Offset .. (Offset + ubits_per_uint - 1) are in the set. % The value of Bits must not be zero; any operation that would clear % all the bits in Bits must also delete the whole list element. % As one goes from the head towards the tail of the list, the offsets of % the list elements must strictly increase. % % The values of Offset in the list need not be *contiguous* multiples % of ubits_per_uint, hence the name *sparse* bitset. % % A sparse_bitset is suitable for storing sets of integers which % can be represented using only a few Offset/Bits pairs. % In the worst case, where the integers stored are not closely grouped, % a sparse_bitset will take more memory than an ordinary set, but % the operations should not be too much slower. % % In the asymptotic complexities of the operations below, % `rep_size(Set)' is the number of Offset/Bits pairs needed to represent Set, % and `card(Set)' is the cardinality of Set (i.e. its number of elements). % %--------------------------------------------------% % % There are three other modules in the Mercury standard library that % represent sets using similar data structures. They are % % - the tree_bitset module, % - the fat_sparse_bitset module, and % - the fatter_sparse_bitset module. % % The comment at the top of tree_bitset.m explains % % - how its data structure differ from the data structure described above, % which is the base on top of which they each impose their own variations, % and % % - what objective those differences are intended to achieve. % % The comment at the top of fatter_sparse_bitset.m does the same % for the representations used in fat_sparse_bitset.m as well as % fatter_sparse_bitset.m. % %--------------------------------------------------% :- module sparse_bitset. :- interface. :- import_module enum. :- import_module list. :- import_module term. :- use_module set. %--------------------------------------------------% :- type sparse_bitset(T). % <= uenum(T). %--------------------------------------------------% % % Initial creation of sets. % % Return an empty set. % :- func init = sparse_bitset(T). :- pred init(sparse_bitset(T)::out) is det. % Note: set.m contains the reverse mode of this predicate, but it is % difficult to implement both modes using the representation in this % module. % :- pred singleton_set(sparse_bitset(T)::out, T::in) is det <= uenum(T). % make_singleton_set(Item) returns a set containing just the single Item. % :- func make_singleton_set(T) = sparse_bitset(T) <= uenum(T). %--------------------------------------------------% % % Emptiness and singleton-ness tests. % :- pred is_empty(sparse_bitset(T)::in) is semidet. :- pred is_non_empty(sparse_bitset(T)::in) is semidet. % Is the given set a singleton, and if yes, what is the element? % :- pred is_singleton(sparse_bitset(T)::in, T::out) is semidet <= uenum(T). %--------------------------------------------------% % % Membership tests. % % member(Item, Set) is true iff Item is a member of Set. % Takes O(rep_size(Set)) time. % :- pred member(T, sparse_bitset(T)) <= uenum(T). :- mode member(in, in) is semidet. :- mode member(out, in) is nondet. % contains(Set, Item) is true iff Item is a member of Set. % Takes O(rep_size(Set)) time. % :- pred contains(sparse_bitset(T)::in, T::in) is semidet <= uenum(T). %--------------------------------------------------% % % Insertions and deletions. % % insert(Set, Item) returns the union of Set and the set containing % only Item. Takes O(rep_size(Set)) time and space. % :- func insert(sparse_bitset(T), T) = sparse_bitset(T) <= uenum(T). :- pred insert(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det <= uenum(T). % insert_new(Item, Set0, Set) returns the union of Set0 and the set % containing only Item if Set0 does not already contain Item; if it does, % it fails. Takes O(rep_size(Set)) time and space. % :- pred insert_new(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is semidet <= uenum(T). % insert_list(Set, Item) returns the union of Set and the set containing % only the members of Item. Same as `union(Set, list_to_set(Item))', % but may be more efficient. % :- func insert_list(sparse_bitset(T), list(T)) = sparse_bitset(T) <= uenum(T). :- pred insert_list(list(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det <= uenum(T). %--------------------------------------------------% % delete(Set, Item) returns the difference of Set and the set containing % only Item. Takes O(rep_size(Set)) time and space. % :- func delete(sparse_bitset(T), T) = sparse_bitset(T) <= uenum(T). :- pred delete(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det <= uenum(T). % delete_list(Set, Item) returns the difference of Set and the set % containing only the members of Item. Same as % `difference(Set, list_to_set(Item))', but may be more efficient. % :- func delete_list(sparse_bitset(T), list(T)) = sparse_bitset(T) <= uenum(T). :- pred delete_list(list(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det <= uenum(T). % remove(Item, Set0, Set) returns in Set the difference of Set0 % and the set containing only Item, failing if Set0 does not contain Item. % Takes O(rep_size(Set)) time and space. % :- pred remove(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is semidet <= uenum(T). % remove_list(Item, Set0, Set) returns in Set the difference of Set0 % and the set containing all the elements of Item, failing if any element % of Item is not in Set0. Same as `subset(list_to_set(Item), Set0), % difference(Set0, list_to_set(Item), Set)', but may be more efficient. % :- pred remove_list(list(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is semidet <= uenum(T). % remove_leq(Set, Item) returns Set with all elements less than or equal % to Item removed. In other words, it returns the set containing all the % elements of Set whose enum forms are greater than the enum form of Item. % :- func remove_leq(sparse_bitset(T), T) = sparse_bitset(T) <= uenum(T). :- pred remove_leq(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det <= uenum(T). % remove_gt(Set, Item) returns Set with all elements greater than Item % removed. In other words, it returns the set containing all the elements % of Set whose enum forms are less than or equal to the enum form of Item. % :- func remove_gt(sparse_bitset(T), T) = sparse_bitset(T) <= uenum(T). :- pred remove_gt(T::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det <= uenum(T). % remove_least(Set0, Item, Set) is true iff Item is the element % whose enum form is the smallest in Set0, and Set is the set % which contains all the elements of Set0 except Item. Takes O(1) time % and space. % :- pred remove_least(T::out, sparse_bitset(T)::in, sparse_bitset(T)::out) is semidet <= uenum(T). %--------------------------------------------------% % % Comparisons between sets. % % equal(SetA, SetB) is true iff SetA and SetB contain the same elements. % Takes O(min(rep_size(SetA), rep_size(SetB))) time. % :- pred equal(sparse_bitset(T)::in, sparse_bitset(T)::in) is semidet. % subset(Subset, Set) is true iff Subset is a subset of Set. % Same as `intersect(Set, Subset, Subset)', but may be more efficient. % :- pred subset(sparse_bitset(T)::in, sparse_bitset(T)::in) is semidet. % superset(Superset, Set) is true iff Superset is a superset of Set. % Same as `intersect(Superset, Set, Set)', but may be more efficient. % :- pred superset(sparse_bitset(T)::in, sparse_bitset(T)::in) is semidet. %--------------------------------------------------% % % Operations on two or more sets. % % union(SetA, SetB) returns the union of SetA and SetB. % The efficiency of the union operation is not sensitive to the argument % ordering. Takes O(rep_size(SetA) + rep_size(SetB)) time and space. % :- func union(sparse_bitset(T), sparse_bitset(T)) = sparse_bitset(T). :- pred union(sparse_bitset(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det. % union_list(Sets, Set) returns the union of all the sets in Sets. % :- func union_list(list(sparse_bitset(T))) = sparse_bitset(T). :- pred union_list(list(sparse_bitset(T))::in, sparse_bitset(T)::out) is det. % intersect(SetA, SetB) returns the intersection of SetA and SetB. % The efficiency of the intersection operation is not sensitive to the % argument ordering. Takes O(rep_size(SetA) + rep_size(SetB)) time and % O(min(rep_size(SetA)), rep_size(SetB)) space. % :- func intersect(sparse_bitset(T), sparse_bitset(T)) = sparse_bitset(T). :- pred intersect(sparse_bitset(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det. % intersect_list(Sets, Set) returns the intersection of all the sets % in Sets. % :- func intersect_list(list(sparse_bitset(T))) = sparse_bitset(T). :- pred intersect_list(list(sparse_bitset(T))::in, sparse_bitset(T)::out) is det. % difference(SetA, SetB) returns the set containing all the elements % of SetA except those that occur in SetB. Takes % O(rep_size(SetA) + rep_size(SetB)) time and O(rep_size(SetA)) space. % :- func difference(sparse_bitset(T), sparse_bitset(T)) = sparse_bitset(T). :- pred difference(sparse_bitset(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out) is det. %--------------------------------------------------% % % Operations that divide a set into two parts. % % divide(Pred, Set, InPart, OutPart): % InPart consists of those elements of Set for which Pred succeeds; % OutPart consists of those elements of Set for which Pred fails. % :- pred divide(pred(T)::in(pred(in) is semidet), sparse_bitset(T)::in, sparse_bitset(T)::out, sparse_bitset(T)::out) is det <= uenum(T). % divide_by_set(DivideBySet, Set, InPart, OutPart): % InPart consists of those elements of Set which are also in DivideBySet; % OutPart consists of those elements of Set which are not in DivideBySet. % :- pred divide_by_set(sparse_bitset(T)::in, sparse_bitset(T)::in, sparse_bitset(T)::out, sparse_bitset(T)::out) is det <= uenum(T). %--------------------------------------------------% % % Converting lists to sets. % % list_to_set(List) returns a set containing only the members of List. % In the worst case, this will take O(length(List)^2) time and space. % If the elements of the list are closely grouped, it will be closer % to O(length(List)). % :- func list_to_set(list(T)) = sparse_bitset(T) <= uenum(T). :- pred list_to_set(list(T)::in, sparse_bitset(T)::out) is det <= uenum(T). % sorted_list_to_set(List) returns a set containing only the members % of List. List must be sorted *on the enum values of the items*. % If the to_uint method of uenum(T) preserves order, then this is % equivalent to requiring that List be sorted according to type T's % comparison operation. % % This operation takes O(length(List)) time and space. % :- func sorted_list_to_set(list(T)) = sparse_bitset(T) <= uenum(T). :- pred sorted_list_to_set(list(T)::in, sparse_bitset(T)::out) is det <= uenum(T). %--------------------------------------------------% % % Converting sets to lists. % % to_sorted_list(Set) returns a list containing all the members of Set, % in sorted order. Takes O(card(Set)) time and space. % :- func to_sorted_list(sparse_bitset(T)) = list(T) <= uenum(T). :- pred to_sorted_list(sparse_bitset(T)::in, list(T)::out) is det <= uenum(T). %--------------------------------------------------% % % Converting between different kinds of sets. % % from_set(Set) returns a bitset containing only the members of Set. % Takes O(card(Set)) time and space. % :- func from_set(set.set(T)) = sparse_bitset(T) <= uenum(T). % to_set(Set) returns a set.set containing all the members of Set. % Takes O(card(Set)) time and space. % :- func to_set(sparse_bitset(T)) = set.set(T) <= uenum(T). %--------------------------------------------------% % % Counting. % % count(Set) returns the number of elements in Set. % Takes O(card(Set)) time. % :- func count(sparse_bitset(T)) = int <= uenum(T). %--------------------------------------------------% % % Standard higher order functions on collections. % % all_true(Pred, Set) succeeds iff Pred(Element) succeeds % for all the elements of Set. % :- pred all_true(pred(T)::in(pred(in) is semidet), sparse_bitset(T)::in) is semidet <= uenum(T). % filter(Pred, Set) returns the elements of Set for which Pred succeeds. % :- func filter(pred(T), sparse_bitset(T)) = sparse_bitset(T) <= uenum(T). :- mode filter(in(pred(in) is semidet), in) = out is det. % filter(Pred, Set, TrueSet, FalseSet) returns the elements of Set % for which Pred succeeds, and those for which it fails. % :- pred filter(pred(T), sparse_bitset(T), sparse_bitset(T), sparse_bitset(T)) <= uenum(T). :- mode filter(in(pred(in) is semidet), in, out, out) is det. % foldl(Func, Set, Start) calls Func with each element of Set % (in sorted order) and an accumulator (with the initial value of Start), % and returns the final value. Takes O(card(Set)) time. % :- func foldl(func(T, U) = U, sparse_bitset(T), U) = U <= uenum(T). :- pred foldl(pred(T, U, U), sparse_bitset(T), U, U) <= uenum(T). :- mode foldl(in(pred(in, in, out) is det), in, in, out) is det. :- mode foldl(in(pred(in, mdi, muo) is det), in, mdi, muo) is det. :- mode foldl(in(pred(in, di, uo) is det), in, di, uo) is det. :- mode foldl(in(pred(in, in, out) is semidet), in, in, out) is semidet. :- mode foldl(in(pred(in, mdi, muo) is semidet), in, mdi, muo) is semidet. :- mode foldl(in(pred(in, di, uo) is semidet), in, di, uo) is semidet. :- mode foldl(in(pred(in, in, out) is nondet), in, in, out) is nondet. :- mode foldl(in(pred(in, in, out) is cc_multi), in, in, out) is cc_multi. :- mode foldl(in(pred(in, di, uo) is cc_multi), in, di, uo) is cc_multi. :- pred foldl2(pred(T, U, U, V, V), sparse_bitset(T), U, U, V, V) <= uenum(T). :- mode foldl2(in(pred(in, in, out, in, out) is det), in, in, out, in, out) is det. :- mode foldl2(in(pred(in, in, out, mdi, muo) is det), in, in, out, mdi, muo) is det. :- mode foldl2(in(pred(in, in, out, di, uo) is det), in, in, out, di, uo) is det. :- mode foldl2(in(pred(in, di, uo, di, uo) is det), in, di, uo, di, uo) is det. :- mode foldl2(in(pred(in, in, out, in, out) is semidet), in, in, out, in, out) is semidet. :- mode foldl2(in(pred(in, in, out, mdi, muo) is semidet), in, in, out, mdi, muo) is semidet. :- mode foldl2(in(pred(in, in, out, di, uo) is semidet), in, in, out, di, uo) is semidet. :- mode foldl2(in(pred(in, in, out, in, out) is nondet), in, in, out, in, out) is nondet. :- mode foldl2(in(pred(in, in, out, in, out) is cc_multi), in, in, out, in, out) is cc_multi. :- mode foldl2(in(pred(in, in, out, di, uo) is cc_multi), in, in, out, di, uo) is cc_multi. :- mode foldl2(in(pred(in, di, uo, di, uo) is cc_multi), in, di, uo, di, uo) is cc_multi. % foldr(Func, Set, Start) calls Func with each element of Set % (in reverse sorted order) and an accumulator (with the initial value % of Start), and returns the final value. Takes O(card(Set)) time. % :- func foldr(func(T, U) = U, sparse_bitset(T), U) = U <= uenum(T). :- pred foldr(pred(T, U, U), sparse_bitset(T), U, U) <= uenum(T). :- mode foldr(in(pred(in, in, out) is det), in, in, out) is det. :- mode foldr(in(pred(in, mdi, muo) is det), in, mdi, muo) is det. :- mode foldr(in(pred(in, di, uo) is det), in, di, uo) is det. :- mode foldr(in(pred(in, in, out) is semidet), in, in, out) is semidet. :- mode foldr(in(pred(in, mdi, muo) is semidet), in, mdi, muo) is semidet. :- mode foldr(in(pred(in, di, uo) is semidet), in, di, uo) is semidet. :- mode foldr(in(pred(in, in, out) is nondet), in, in, out) is nondet. :- mode foldr(in(pred(in, in, out) is cc_multi), in, in, out) is cc_multi. :- mode foldr(in(pred(in, di, uo) is cc_multi), in, di, uo) is cc_multi. :- pred foldr2(pred(T, U, U, V, V), sparse_bitset(T), U, U, V, V) <= uenum(T). :- mode foldr2(in(pred(in, in, out, in, out) is det), in, in, out, in, out) is det. :- mode foldr2(in(pred(in, in, out, mdi, muo) is det), in, in, out, mdi, muo) is det. :- mode foldr2(in(pred(in, in, out, di, uo) is det), in, in, out, di, uo) is det. :- mode foldr2(in(pred(in, di, uo, di, uo) is det), in, di, uo, di, uo) is det. :- mode foldr2(in(pred(in, in, out, in, out) is semidet), in, in, out, in, out) is semidet. :- mode foldr2(in(pred(in, in, out, mdi, muo) is semidet), in, in, out, mdi, muo) is semidet. :- mode foldr2(in(pred(in, in, out, di, uo) is semidet), in, in, out, di, uo) is semidet. :- mode foldr2(in(pred(in, in, out, in, out) is nondet), in, in, out, in, out) is nondet. :- mode foldr2(in(pred(in, di, uo, di, uo) is cc_multi), in, di, uo, di, uo) is cc_multi. :- mode foldr2(in(pred(in, in, out, di, uo) is cc_multi), in, in, out, di, uo) is cc_multi. :- mode foldr2(in(pred(in, in, out, in, out) is cc_multi), in, in, out, in, out) is cc_multi. %--------------------------------------------------% %--------------------------------------------------%