Next: rational, Previous: random.system_rng, Up: Top [Contents]
%--------------------------------------------------% % vim: ft=mercury ts=4 sw=4 et %--------------------------------------------------% % Copyright (C) 2006-2009 The University of Melbourne. % Copyright (C) 2013-2016 Opturion Pty Ltd. % Copyright (C) 2017-2019, 2022-2025 The Mercury team. % This file is distributed under the terms specified in COPYING.LIB. %--------------------------------------------------% % % File: ranges.m. % Authors: Mark Brown. % Stability: medium. % % This module provides sets of integers represented using a range list. % Each contiguous block of integers in a set is stored as a range that % specifies the bounds of the block, and these ranges are kept in a list-like % structure. Elements of these sets must be in (min_int + 1) .. max_int % (inclusive). The value min_int cannot be included in any set. % Predicates and functions in this module that attempt to construct sets % containing min_int will throw an exception. % % This module provides predicates and functions that operate on either the % individual elements in a set or on the pairs of integers that define the % bounds of the blocks used in the representation. Predicates and functions % that do the latter have names containing "range" (e.g. range_foldr, % nondet_range_member). % %--------------------------------------------------% :- module ranges. :- interface. :- import_module list. :- import_module set. %--------------------------------------------------% :- type ranges. %--------------------------------------------------% % % Initial creation of sets. % % empty returns the empty set. % :- func empty = ranges. % universe returns the largest set that can be handled by this module. % This is the set of integers (min_int + 1) .. max_int (inclusive). % :- func universe = ranges. % range(Lo, Hi) is the set of all integers from Lo to Hi both inclusive. % :- func range(int, int) = ranges. % make_singleton_set(Elem) returns the set containing just the single % element Elem. % :- func make_singleton_set(int) = ranges. %--------------------------------------------------% % % Emptiness and other tests. % % is_empty(Set) is true iff Set is the empty set. % :- pred is_empty(ranges::in) is semidet. % is_non_empty(Set) is true iff Set is not the empty set. % :- pred is_non_empty(ranges::in) is semidet. % is_contiguous(Set, Lo, Hi) is true iff Set is the set of all integers % from Lo to Hi, both inclusive. % :- pred is_contiguous(ranges::in, int::out, int::out) is semidet. % is_singleton(Set, Elem) is true iff Set contains the single element Elem. % :- pred is_singleton(ranges::in, int::out) is semidet. %--------------------------------------------------% % % Membership tests. % % member(X, Set) is true iff X is a member of Set. % :- pred member(int::in, ranges::in) is semidet. % contains(Set, X) is true iff X is a member of Set. % :- pred contains(ranges::in, int::in) is semidet. % nondet_member(Set X): % % Nondeterministically produce each element in Set. % Each time this call succeeds, X will be bound to an element in Set. % :- pred nondet_member(ranges::in, int::out) is nondet. % nondet_range_member(Set, Lo, Hi): % % Nondeterministically produce each range in Set. % Each time this call succeeds, Lo and Hi will be bound to % the smallest and largest integers respectively in a range in Set. % :- pred nondet_range_member(ranges::in, int::out, int::out) is nondet. % Obsolete synonym for nondet_range_member/3. % :- pred range_member(int::out, int::out, ranges::in) is nondet. :- pragma obsolete(pred(range_member/3), [nondet_range_member/3]). %--------------------------------------------------% % % Insertions and deletions. % % insert(X, Set0, Set) is true iff Set is the union of Set0 and % the set containing only X. % Throws an exception if X = min_int. % :- func insert(int, ranges) = ranges. :- pred insert(int::in, ranges::in, ranges::out) is det. % insert_list(Xs, Set0, Set) is true iff Set is the union of Set0 and % the set containing only the members of Xs. % :- func insert_list(list(int), ranges) = ranges. :- pred insert_list(list(int)::in, ranges::in, ranges::out) is det. % delete(X, Set0, Set) is true iff Set is the relative complement % of Set0 and the set containing only X, i.e. if Set is the set % which contains all the elements of Set0 except X. % Throws an exception if X = min_int. % :- func delete(int, ranges) = ranges. :- pred delete(int::in, ranges::in, ranges::out) is det. % delete_list(Xs, Set0, Set) is true iff Set is the relative complement % of Set0 and the set containing only the members of Xs. % :- func delete_list(list(int), ranges) = ranges. :- pred delete_list(list(int)::in, ranges::in, ranges::out) is det. %--------------------------------------------------% % % Comparisons between sets. % % subset(SetA, SetB) is true iff every value in SetA is in SetB. % :- pred subset(ranges::in, ranges::in) is semidet. % disjoint(SetA, SetB) is true iff SetA and SetB have no values in common. % :- pred disjoint(ranges::in, ranges::in) is semidet. % Compare the sets of integers given by the two ranges using lexicographic % ordering on the sorted set form. % :- pred compare_lex(comparison_result::uo, ranges::in, ranges::in) is det. %--------------------------------------------------% % % Operations on two or more sets. % % union(SetA, SetB): return the set that contains all the integers in SetA % and SetB. % :- func union(ranges, ranges) = ranges. :- pred union(ranges::in, ranges::in, ranges::out) is det. % intersect(SetA, SetB): return the set that contains all the integers % in both SetA and SetB. % :- func intersect(ranges, ranges) = ranges. :- pred intersect(ranges::in, ranges::in, ranges::out) is det. % An obsolete synonym for intersect/2. % :- func intersection(ranges, ranges) = ranges. :- pragma obsolete(func(intersection/2), [intersect/2]). % difference(SetA, SetB): return the set that contains all of the integers % that are in SetA but not in SetB. % :- func difference(ranges, ranges) = ranges. :- pred difference(ranges::in, ranges::in, ranges::out) is det. %--------------------------------------------------% % % Operations that divide a set into two parts. % % split(Set, Lo, Hi, Rest) is true iff Lo..Hi is the first range % (i.e. the range containing the smallest integers) in Set, and % Rest is the set Set with this range removed. % % Fails if Set is empty. % :- pred split(ranges::in, int::out, int::out, ranges::out) is semidet. % prune_to_next_non_member(Set0, Set, X0, X): % % Bind X to the smallest integer greater than or equal to X0 % that is *not* in Set0, and bind Set to the set of integers in Set0 % that are greater than X. % :- pred prune_to_next_non_member(ranges::in, ranges::out, int::in, int::out) is det. % prune_to_prev_non_member(Set0, Set, X0, X): % % Bind X to the largest integer less than or equal to X0 % that is *not* in Set0, and bind Set to the set of integers in Set0 % that are less than X. % :- pred prune_to_prev_non_member(ranges::in, ranges::out, int::in, int::out) is det. %--------------------------------------------------% % % Converting lists and sets to ranges. % % Convert from a list of integers. % :- func list_to_ranges(list(int)) = ranges. :- pred list_to_ranges(list(int)::in, ranges::out) is det. % Synonym for list_to_ranges/1. % :- func from_list(list(int)) = ranges. % Convert from a set of integers. % :- func set_to_ranges(set(int)) = ranges. :- pred set_to_ranges(set(int)::in, ranges::out) is det. % Synonym for set_to_ranges/1. % :- func from_set(set(int)) = ranges. %--------------------------------------------------% % % Converting sets to lists. % % Convert to a sorted list of integers. % :- func to_sorted_list(ranges) = list(int). %--------------------------------------------------% % % Counting. % % Return the number of distinct integers that are in the set % (as opposed to the number of ranges). % :- func count(ranges) = int. % A synonym for count/1. % :- func size(ranges) = int. %--------------------------------------------------% % % Selecting individual elements from a set. % % Returns the median value of the set. In the case of a tie, % returns the smaller of the two integers in the middle of the set. % Throws an exception if the set is empty. % :- func median(ranges) = int. % least(Set, X) is true iff X is the smallest element of Set. % Fails if the set is empty. % :- pred least(ranges::in, int::out) is semidet. % greatest(Set, X) is true iff X is the greatest element of Set. % Fails if the set is empty. % :- pred greatest(ranges::in, int::out) is semidet. % next(Set, X0, X) is true iff X is the least element of Set % greater than X0. % :- pred next(ranges::in, int::in, int::out) is semidet. % search_range(X, Set, Lo, Hi): % % If X is in Set, then succeed, setting Lo and Hi to the endpoints % of the range in which it is contained. If X is not in Set, fail. % :- pred search_range(int::in, ranges::in, int::out, int::out) is semidet. %--------------------------------------------------% % % Filtering elements in a set. % % restrict_min(Min, Set): return the set that contains % all the integers in Set that are greater than or equal to Min. % :- func restrict_min(int, ranges) = ranges. :- pred restrict_min(int::in, ranges::in, ranges::out) is det. % restrict_max(Max, Set): return the set that contains % all the integers in Set that are less than or equal to Max. % :- func restrict_max(int, ranges) = ranges. :- pred restrict_max(int::in, ranges::in, ranges::out) is det. % restrict_range(Min, Max, Set): return the set that contains % all the integers X in Set that satisfy Min =< X =< Max. % :- func restrict_range(int, int, ranges) = ranges. :- pred restrict_range(int::in, int::in, ranges::in, ranges::out) is det. %--------------------------------------------------% % % Transformations of a set. % % Negate all numbers: X in Set <=> -X in negate(Set) % :- func negate(ranges) = ranges. % The sum of two ranges. % :- func plus(ranges, ranges) = ranges. % Shift a range by a constant C. % :- func shift(ranges, int) = ranges. % Dilate a range by a constant C. % :- func dilation(ranges, int) = ranges. % Contract a range by a constant C. % :- func contraction(ranges, int) = ranges. %--------------------------------------------------% % % Standard higher-order functions on elements in a set. % :- pred foldl(pred(int, A, A), ranges, A, A). :- mode foldl(in(pred(in, in, out) is det), in, in, out) is det. :- mode foldl(in(pred(in, mdi, muo) is det), in, mdi, muo) is det. :- mode foldl(in(pred(in, di, uo) is det), in, di, uo) is det. :- mode foldl(in(pred(in, in, out) is semidet), in, in, out) is semidet. :- mode foldl(in(pred(in, mdi, muo) is semidet), in, mdi, muo) is semidet. :- mode foldl(in(pred(in, di, uo) is semidet), in, di, uo) is semidet. :- pred foldl2(pred(int, A, A, B, B), ranges, A, A, B, B). :- mode foldl2(in(pred(in, in, out, in, out) is det), in, in, out, in, out) is det. :- mode foldl2(in(pred(in, in, out, mdi, muo) is det), in, in, out, mdi, muo) is det. :- mode foldl2(in(pred(in, in, out, di, uo) is det), in, in, out, di, uo) is det. :- mode foldl2(in(pred(in, in, out, in, out) is semidet), in, in, out, in, out) is semidet. :- mode foldl2(in(pred(in, in, out, mdi, muo) is semidet), in, in, out, mdi, muo) is semidet. :- mode foldl2(in(pred(in, in, out, di, uo) is semidet), in, in, out, di, uo) is semidet. :- pred foldl3(pred(int, A, A, B, B, C, C), ranges, A, A, B, B, C, C). :- mode foldl3(in(pred(in, in, out, in, out, in, out) is det), in, in, out, in, out, in, out) is det. :- mode foldl3(in(pred(in, in, out, in, out, mdi, muo) is det), in, in, out, in, out, mdi, muo) is det. :- mode foldl3(in(pred(in, in, out, in, out, di, uo) is det), in, in, out, in, out, di, uo) is det. :- mode foldl3(in(pred(in, in, out, in, out, di, uo) is semidet), in, in, out, in, out, di, uo) is semidet. :- pred foldr(pred(int, A, A), ranges, A, A). :- mode foldr(in(pred(in, in, out) is det), in, in, out) is det. :- mode foldr(in(pred(in, mdi, muo) is det), in, mdi, muo) is det. :- mode foldr(in(pred(in, di, uo) is det), in, di, uo) is det. :- mode foldr(in(pred(in, in, out) is semidet), in, in, out) is semidet. :- mode foldr(in(pred(in, mdi, muo) is semidet), in, mdi, muo) is semidet. :- mode foldr(in(pred(in, di, uo) is semidet), in, di, uo) is semidet. %--------------------------------------------------% % % Standard higher-order functions on range endpoint pairs in set. % % For each range, call the predicate, passing it the lower and % upper bound and threading through an accumulator. % :- pred range_foldl(pred(int, int, A, A), ranges, A, A). :- mode range_foldl(in(pred(in, in, in, out) is det), in, in, out) is det. :- mode range_foldl(in(pred(in, in, mdi, muo) is det), in, mdi, muo) is det. :- mode range_foldl(in(pred(in, in, di, uo) is det), in, di, uo) is det. :- mode range_foldl(in(pred(in, in, in, out) is semidet), in, in, out) is semidet. :- mode range_foldl(in(pred(in, in, mdi, muo) is semidet), in, mdi, muo) is semidet. :- mode range_foldl(in(pred(in, in, di, uo) is semidet), in, di, uo) is semidet. % As above, but with two accumulators. % :- pred range_foldl2(pred(int, int, A, A, B, B), ranges, A, A, B, B). :- mode range_foldl2(in(pred(in, in, in, out, in, out) is det), in, in, out, in, out) is det. :- mode range_foldl2(in(pred(in, in, in, out, mdi, muo) is det), in, in, out, mdi, muo) is det. :- mode range_foldl2(in(pred(in, in, in, out, di, uo) is det), in, in, out, di, uo) is det. :- mode range_foldl2(in(pred(in, in, in, out, in, out) is semidet), in, in, out, in, out) is semidet. :- mode range_foldl2(in(pred(in, in, in, out, mdi, muo) is semidet), in, in, out, mdi, muo) is semidet. :- mode range_foldl2(in(pred(in, in, in, out, di, uo) is semidet), in, in, out, di, uo) is semidet. :- pred range_foldr(pred(int, int, A, A), ranges, A, A). :- mode range_foldr(in(pred(in, in, in, out) is det), in, in, out) is det. :- mode range_foldr(in(pred(in, in, mdi, muo) is det), in, mdi, muo) is det. :- mode range_foldr(in(pred(in, in, di, uo) is det), in, di, uo) is det. :- mode range_foldr(in(pred(in, in, in, out) is semidet), in, in, out) is semidet. :- mode range_foldr(in(pred(in, in, mdi, muo) is semidet), in, mdi, muo) is semidet. :- mode range_foldr(in(pred(in, in, di, uo) is semidet), in, di, uo) is semidet. %--------------------------------------------------% % % C interface to ranges. % % This section describes the C interface to the ranges/0 type % that is exported by this module. % % In C the ranges/0 type is represented by the ML_Ranges type. % The following operations are exported and may be called from C or C++ code. % % ML_Ranges ML_ranges_empty(void) % Return the empty set. % % ML_Ranges ML_ranges_universe(void) % Return the set of integers from (min_int+1)..max_int. % % ML_Ranges ML_ranges_range(MR_Integer l, MR_Integer h) % Return the set of integers from `l' to `h' inclusive. % % int ML_ranges_is_empty(ML_Ranges r) % Return true iff `r` is the empty set. % % MR_Integer ML_ranges_count(ML_Ranges r) % Return the number of distinct integers in `r`. % % MR_Integer ML_ranges_size(ML_Ranges r) % Return the number of distinct integers in `r'. % (Synonym for ML_ranges_count). % % int ML_ranges_split(ML_Ranges d, MR_Integer *l, MR_Integer *h, % ML_Ranges *rest) % Return true if `d' is not the empty set, setting `l' and `h' to the % lower and upper bound of the first range in `d', and setting `rest' % to `d' with the first range removed. % Return false if `d' is the empty set. % % ML_Ranges ML_ranges_insert(MR_Integer i, ML_ranges r) % Return the ranges value that is the result of inserting % the integer `i' into the ranges value `r'. % %--------------------------------------------------% % % Java interface to ranges. % % This section describes the Java interface to the ranges/0 type that is % exported by this module. % % In Java the ranges/0 type is represented by the ranges.Ranges_0 class. % The following operations are exported as public static methods of the ranges % module and may be called from Java code. % % ranges.Ranges_0 empty() % Return the empty set. % % ranges.Ranges_0 universe() % Return the set of integers from (min_int+1)..max_int. % % ranges.Ranges_0 range(int l, int, h) % Return the set of integers from `l' to `h' inclusive. % % boolean is_empty(ranges.Ranges_0 r) % Return true iff `r' is the empty set. % % int count(ranges.Ranges_0 r) % Return the number of distinct integers in `r'. % % int size(ranges.Ranges_0 r) % Return the number of distinct integers in `r'. % (Synonym for count). % % boolean split(ranges.Ranges_0 d, % jmercury.runtime.Ref<Integer> l, % jmercury.runtime.Ref<Integer> h, % jmercury.runtime.Ref<ranges.Ranges_0> rest) % Return true if `d' is not the empty set, setting `l' and `h' to the % lower and upper bound of the first range in `d', and setting `rest' % to `d' with the first range removed. % Return false if `d' is the empty set. % % ranges.Ranges_0 insert(int i, ranges.Ranges_0 r) % Return the ranges value that is the result of inserting the integer % `i' into the ranges value `r'. % %--------------------------------------------------% %--------------------------------------------------%
Next: rational, Previous: random.system_rng, Up: Top [Contents]