Controlling Loops in Parallel Mercury Code

Paul Bong Zoltan Somogyi

Department of Computing and Information Systems
University of Melbourne, Australia
and NICTA Victoria Laboratory, Australia
pbone@student.unimelb.edu.au and
zs@unimelb.edu.au

Abstract

Recently we built a system that uses profiling data to autemat
cally parallelize Mercury programs by finding conjunctiongh
expensive conjuncts that can run in parallel with minimalcyro-
nization delays. This worked very well in many cases, butises

of tail recursion, we got much lower speedups than we exgecte
due to excessive memory usage. In this paper, we presented nov
program transformation that eliminates this problem, dsd al-
lows recursive calls inside parallel conjunctions to takleamtage

of tail recursion optimization. Our benchmark results sthioat our
new transformation greatly increases the speedups we téoge
parallel Mercury programs; in one case, it changes no sjpeietiu
almost perfect speedup on four cores.

Categories and Subject Descriptors D.3.2 [Programming lan-
guages]: Language classifications(Constraint and logic langepge

General Terms Languages, Performance

1. Introduction

A few years ago, the dominant form of progress in CPU design
changed. Since then, clock speeds have stagnated, butetragav
number of cores per CPU chip has continued to climb. Evengchea
PCs now sport dual-core CPUs, and high-end server CPUs are mo
ing to eight cores and more. This trend is forecast to coatfouthe
foreseeable future. Therefore if applications are to bectaster
or more powerful, it must be through taking advantage of ipialt
cores. Yet designing algorithms to effectively exploit tiple cores
is notoriously difficult, and even among computation-irsiea pro-
grams, few have been adapted to do so. If compilers were able t
automatically parallelize programs, this could lead togmigicant
improvement in the utilization of available computing powe

One impediment to this goal is the control of tr@nularity of
the computations to be carried out in parallel. Setting updean-
ing up after a parallel computation has a significant cost,sning
small tasks in parallel actually slows the computation. dmlier
work [2], we presented our approach for using feedback froma p
gram profiling to select large-grained parts of a computatiat
can be run in parallel with minimal synchronization. For osorts

* Paul's work is supported by an Australian Postgraduate évward a
NICTA top-up scholarship.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

DAMP’12, January 28, 2012, Philadelphia, PA, USA.
Copyright© 2012 ACM 978-1-4503-1117-5/12/01. .. $10.00

Peter Schachte

Department of Computing and Information Systems
University of Melbourne, Australia

schachte@unimelb.edu.au

map_foldl(M, F, L, AccO, Acc) :-

L =10,
Acc = AccO
L=1[H]T],
(
M(H, MappedH),
F(MappedH, AccO, Accl)
&
map_foldl(M, F, T, Accl, Acc)
)

Figurel. Parallelmap_foldl

of computation, this is able to automatically introducegtiatism
to achieve close to optimal speedups. In this paper, we brot
set of programs this technique works well for by controllimgm-
ory use for some patterns of parallel computations.

When a tail recursive parallel computation begins, it firsates
aspark (a record of a task to be executed) for the recursive call, and
then executes the rest of the computation directly. Whenld iSP
available to carry out a computation, it allocates stackesad be-
gins to execute the recursive call in parallel, which likesvereates
a spark and begins to execute the other goals in the recuuases
and so on. When each of these computations finish, however, it
must wait for the result from its recursive call before it ganduce
its own result. Thus all these computations, each with its stack,
must be preserved until the base case is reached, whereugzsm t
stacks can start to be reclaimed. A tail recursive sequertia-
putation, which runs in constant stack space, has thus baes-t
formed into a parallel computation that allocates a conspbthick
for each recursive call. This would quickly exhaust memsoywe
have to place a limit on the number of stacks allocated. Whisn t
limit is reached, Mercury effectively reverts to sequdrgi@cution
for the remainder of the tail recursive computation.

In this paper, we propose a transformation for tail recersiv
and nearly tail recursive parallel procedures to limit thenber of
stacks allocated for their execution. The transformatigplieitly
limits the number of stacks allocated to recursive calls sonall
multiple of the number of available cores in the system. Tiaiss-
formation can also be asked to remove the dependency of bgbara
loop iteration on the parent stack frame from which it wassped,
allowing the parent frame to be reclaimed before the conupietf
the recursive call. This allows parallel tail recursive qarations
to run in constant stack space. The transformation is appaife
ter the automatic parallelization transformation, so itéfés both
manually and automatically parallelized Mercury code.

Our benchmark results are very encouraging. Limiting thenu
ber of stacks not only permits deep tail recursions to takamtage

of multiple cores, but it also significantly improves perfance.
For most of our benchmarks, we get near-optimal speedups.
The structure of the remainder of this paper is as follows- Se
tion 2 gives the background needed for the rest of the paper. S
tion 3 describes in more detail the problem that previoualysed

parallel Mercury programs with loops to use much more mem-

ory than one would expect. Section 4 describes the programs-tr
formation we have developed to control memory consumptipn b

loops. Section 5 evaluates how our system works in practice o

some benchmarks, and section 6 concludes with some relaréd w

2. Background
The abstract syntax of the part of Mercury relevant to thizepas:

predP : p(z1,...,2n) < G predicates

goalG :z=yl|xz=f(y1, ..., yn) unifications
p(z1, ..., Tn first order calls
zo(Z1, --.y Tn) higher order calls
(G1, ..., Gp) sequential conjunctions
(G1 & ... &Gp) parallel conjunctions
(G1;...;Gn) disjunctions
switchz (...; fi : Gi;...) switches
(if Gc then Gy else Ge) if-then-elses
not G negations
some [z1,...,2n] G quantifications

The atomic constructs of Mercury are unifications (whichabm-
piler breaks down until they contain at most one function lsgin
each), plain first-order calls, and higher-order calls. €bmpos-
ite constructs include sequential and parallel conjunstidisjunc-
tions, if-then-elses, negations and existential quaatifios. These
should all be self-explanatory. A switch is a disjunctionwhich
each disjunct unifies the same bound variable with a diftdterc-
tion symbol.

Mercury has a strong mode system. The mode system clas-

sifies each argument of each predicate as either input ouutp
there are exceptions, but they are not relevant to this pHpeput,
the caller must pass a ground term as the argument. If outpmut,
caller must pass a distinct free variable, which the predigall
instantiate to a ground term. It is possible for a predicathave
more than one mode; we call each mode of a predicgimee-

dure. The compiler generates separate code for each procedure of

a predicate. The mode checking pass of the compiler is reggen
for reordering conjuncts (in both sequential and paralteljenc-
tions) as necessary to ensure that for each variable shategdn
conjuncts, the goal that generates the value of the var{tisgro-
ducer) comes before all goals that use this value @besumers).
This means that for each variable in each procedure, the immp
knows exactly where that variable gets grounded.

map_foldl(M, F, L, AccO, Acc) :-

L =11,
Acc = AccO

L=1[H]T],
new_future (FutureAccl),

(
M(H, MappedH),
F(MappedH, AccO, Accl),
signal_future(FutureAccl, Accl)
map_foldl_par(M, F, T, FutureAccl, Acc)
).

map_foldl_par(M, F, L, FutureAccO, Acc) :-
(

L=1,
wait_future (FutureAccO, AccO),
Acc = AccO
L=1[[H]T],
new_future (FutureAccl),
(
M(H, MappedH),
wait_future (FutureAccO, AccO),
F(MappedH, AccO, Accl),
signal_future(FutureAccl, Accl)
&
map_foldl_par(M, F, T, FutureAccl, Acc)
)

Figure 2. map_foldl with synchronization

est in this paper is the det stack, whose behavior is veryaiita
the behavior of stacks in imperative languages. FollowifigWe
economize on memory by usiisgarks to represent goals that have
been spawned off but whose execution has not yet been started
The only parallel construct in Mercury is parallel conjtiont
which is denotedG1 & ... & Gy). All the conjuncts must be
det, that is, they must all have exactly one solution. Thidrie-
tion greatly simplifies the implementation, since it guaeas that
there can never be any need to exeddte & ... & G,) multiple
times, just becausé&’; has succeeded multiple times. (Any local
backtracking insideé=; will not be visible to the other conjuncts;
bindings made by det code are never retracted.) Howevar,ghi

Each procedure and goal has a determinism, which may put not a significant limitation. Since the design of Mercuryostly
upper and lower bounds on the number of its possible solition encourages det code, in our experience, about 75 to 85%l\déall
(in the absence of infinite loops and exceptiordgx procedures cury procedures are det, and most programs spend an eveargrea
succeed exactly oncesemidet procedures succeed at most once; fraction of their time in det code. Existing algorithms foteeut-
multi procedures succeed at least once; aoadet procedures may ing nondet code in parallel have large overheads, gengrsltinv-
succeed any number of times. downs by integer factors. Thus we have given priority to jpaliz-

The Mercury runtime system has a construct called a Mercury ing det code, which we can do withuch lower overhead.
engine that represents a virtual CPU. Each engine is independently ~ The Mercury compiler implementss; & G2 & ... & Gr) by
schedulable by the OS, usually as a POSIX thread. The numbercreating a data structure representing a barrier, and {hemrsng
of engines that a parallel Mercury program will allocate tartsip off (G2 & ... & Gy) asaspark. Sincg72 & ... & G,) isitself
is configurable by the user, but it defaults to the actual remalh a conjunction, it is handled the same way: the context ekegitt
CPUs. Another construct in the Mercury runtime system ésra first spawns off(Gs & ... & G.) as a spark that points to the
text, which represents a computation in progress. An engine may b barrier created earlier, and then execugsitself. Eventually, the
idle, or it may be executing a context; a context can be rughom spawned-off remainder of the conjunction consists onleffinal
an engine, or it may be suspended. When a context finishes-exec conjunct,G,, and the context just executes it. The code of each
tion, its storage is put back into a pool of free contexts. Bi& of conjunct synchronizes on the barrier once it has complésgab.
this storage consists of the two stacks used by the Mercatyaait When all conjuncts have done so, the original context wititce
machine: the det stack and the nondet stack. Proceduresahat execution after the parallel conjunction.
succeed more than once store their frames on the nondet athck Mercury’s mode system allows a parallel conjunct to consume
other procedures use the det stack. The only stack that igef i variables that are produced by conjuncts to its left, buttadts

right. This guarantees the absence of circular dependeracid
hence the absence of deadlocks between the conjuncts,dmgst

allow a conjunct to depend on data that is yet to be computead by

conjunct running in parallel. We handle these dependetitiesgh
a source-to-source transformation [8]. The compiler knawgch
variables are produced by one parallel conjunct and congioye
another. For each of these shared variables, it creates atlact-

ture called duture [5]. When the producer has finished computing

the value of the variable, it puts the value in the future agdads
its availability. When a consumer needs the value of theatei it
waits for this signal, and then retrieves the value from thark.

To minimize waiting, the compiler pushes signal operations
as far to the left into the producer conjunct as possible, iand

pushes wait operations as far to the right into each of thewoer
conjuncts as possible. This means not only pushing themntleto
body of the predicate called by the conjunct, but also inedithdies
of the predicates they call, with the intention being thathesignal
is put immediately after the primitive goal that produces value
of the variable, and each wait is put immediately beforeéffteriost
primitive goal that consumes the value of the variable. &ithe
compiler has complete information about which goals predard
consume which variables, the only things that can stop tekipg
process from placing the wait immediately before the vafu®i
be used and the signal immediately after it is produced ayleehi
order calls and module boundaries: the compiler cannot gugdkit
or signal operation into code it cannot identify or cannatess.

Given themap_foldl predicate in Figure 1, this synchroniza-

tion transformation generates the code in Figure 2.

3. Themain problem
As Mercury is a declarative programming language, Mercuoy p

grams make heavy use of recursion. Like the compilers fort mos

declarative languages, the Mercury compiler optimizesrésiur-
sive procedures into code that can run in constant staclespatwe
this generally makes tail recursive computations moreieffi¢han
code using other forms of recursion, typical Mercury codéesa
heavy use of tail recursion in particular.

Unfortunately, tail recursive computations are not ndlyirean-
dled well by Mercury’s implementation of parallel conjuiocts.

Consider thenap_foldl predicate in Figure 1. This code applies
the map predicat# to each element of an input list, and then uses
the fold predicat& to accumulate (in a left-to-right order) all the

results produced by. The best parallelization afap_foldl exe-

cutesM andF in parallel with the recursive call. The programmer

(or an automatic tool) can make this happen in the origingliee-

tial version ofmap_foldl by replacing the comma before the re-

cursive call with the parallel conjunction operator
The problem is that the execution of a calltap_foldl_par

and therefore this is the context whose stacks contain #ie ef
the computation outside the parallel conjunction. If wewa#d this
context to be reused, then all this state would be lost.

This means that until the base case of the recursion is rdache
every recursive call must have its own complete execution context
Since each context contains two stacks, it can occupy arrathe
large amount of memory, so it is not practical to simultarsipu
preserve an execution context for each and every recural/éoc
a tail-recursive predicate. Originally, programs whichriped into
this problem often ran themselves and the operating systerofo
memory rather quickly, because the default size of evernstatk
was several megabytes. To reduce the scope of the problem, we
made stacks dynamically expandable, which allowed us toced
their initial size, but programs with the problem can stiihrout of
memory, it just takes more iterations to do so. Our runtinmstem
prevents such crashes by imposing a global limit on the namibe
contexts that can be running or suspended at any point: ifiieeb
is needed to execute a spark and allocating the context would
breach this limit, then the spark will not be executed. Euvalty,
the context that created the spark will execute it on its otanls
but this limits the remainder of the recursive computatioruse
only that context, so parallelism is curtailed at that point

A much better solution is to swap the order of the conjuncts in
the parallel conjunction so that the conjunct containirg riécur-
sive call is executed first. This means that we will spawn lo t
nonrecursive conjuncts, whose contegt®m be freed when their
execution is complete. However, since the Mercury modeeayst
requires that the producer of a variable precede all itsuoess,
this is possible only if the conjuncts are independent. Tig@ach
we have taken in this paper is to spawn off the nonrecursive co
juncts, and continue execution of the recursive call withswap-
ping the order of the conjuncts. We also directly limit thenier
of contexts that are used in a loop to a small multiple of theanu
ber of available CPUs. Finally, we can arrange for the inpuis
outputs of the nonrecursive conjuncts to be stored outhielstack
frame of a tail recursive procedure, which allows such piaces
to run in fixed stack space even when executed in parallehdn t
next section, we explain all of these improvements.

4. Theloop control transformation

The main aim of loop control is to set an upper bound on the
number of contexts that a loop may use, regardless of how many
iterations of the loop may be executed, without limiting #meount

of parallelism available. The loops we are concerned abreit a
predicates that we call right recursive: predicates in thice
recursive execution path ends in a parallel conjunctiommsgHast
conjunct contains the recursive calMost parallel conjunctions
that occur in recursive predicates occur in such predichtsause

has bad memory behavior. When a context begins execution of aprogrammers have long tended to write loops in this way ireord

call to map_foldl, it begins by creating a spark for the second

conjunct (which contains the recursive call), and exectitedirst
conjunct (which starts with the call ¥). If another Mercury engine
is available at that time, it will pick up and execute the &gdar the
recursive call, itself creating a spark for another remersiall and
executing thenext call to M. This will continue until all Mercury

engines are in use and the newest spark for a recursive catl mu

wait for an engine. When an engine completes executiahafd
F, it posts the value ofcc1 into FutureAccl. Any computations

waiting for Acc1 will then be woken up; these will be the calls that
wait for AccO in the next iteration. In this case, the woken code will

resume execution immediately before the calf tm the recursive
invocation ofmap_foldl_par.

One might hope that after a spark for the recursive call hes be

created, and oncé andF had completed execution andc1 has
been signalled, the context used to execute the first confautd
be released. Unfortunately, it cannot because this coigéx¢ one
that was running when execution entered the parallel catipm

to benefit from tail recursion. Such predicates also tenduffers
the most from the problem we described in the previous sectio

To guarantee the imposition of an upper bound on the number of
contexts created during one of these loops, we associdtecaith
loop a data structure that has a fixed number of slots, andreequ
each iteration of the loop that would spawn off a goal to reser
a slot for the context of each spawned-off computation. Flos
is marked as in-use until that spawned-off computation Hizds at
which time it becomes available for use by another iteration

This scheme requires us to use two separate predicates:sthe fi
sets up the data structure (which we call bap control structure)
and the second actually performs the loop. The rest of thgrano
knows only about the first predicate; the second predicatalis
ever called from the first predicate and from itself. Figurgh8ws

1A right recursive procedure may be tail recursive, or it may he:
the recursive call could be followed by other code eithehinitthe last
conjunct, or after the whole parallel conjunction.

map_foldl_par(M, F, L, FutureAccO, Acc) :-
lc_create_loop_control(LC),
map_foldl_par_1c(LC, M, F, L, FutureAccO, Acc).

map_foldl_par_1c(LC, M, F, L, FutureAccO, Acc) :-

L a,

% The base case.

wait_future (FutureAccO, AccO),
Acc = AccO,

lc_finish(LC)

L=1[H]T],

new_future (FutureAccl),

lc_wait_free_slot(LC, LCslot),

lc_spawn_off (LC, LCslot, (
M(H, MappedH),
wait_future(FutureAccO, AccO),
F(MappedH, AccO, Accl),
signal_future(FutureAccl, Accl),
lc_join_and_terminate(LCslot, LC)

»,

map_foldl_par_1lc(LC, M, F, T,
FutureAccl, Acc)

Figure 3. map_foldl after the loop control transformation

what these predicates look like. In section 4.1, we desthiéoop
control structure and the operations on it; in section 4. give
the algorithm that does the transformation; while in secti8, we
discuss its interaction with tail recursion optimization.

4.1 Loop control structures
The loop control structure contains the following fields:

e An array of slots, each of which contains a boolean and a
pointer. The boolean says whether the slot is free, and it i
not, the pointer points to the context that is currently @yiug
it. When the occupying context finishes, the slot is marked as
free again, but the pointer remains in the slot to make itegasi
(and faster) for the next computation that uses that slohtbdi
free context to reuse.

¢ The number of slots in the array.
¢ A count of the number of slots that are currently in use.

¢ A boolean flag that says whether the loop has finished or not.
It is initialized to false, and is set to true as the first stéthe
lc_finish operation.

¢ A possibly null pointer to thenaster context, the context that
created this structure, and the context that will spawn bf al
of the iterations. This slot will point to the master context
whenever it is sleeping, and will be null at all other times.

e A mutex that allows different engines to synchronize thei a
cesses to the structure.

The finished flag is not strictly needed for the correctnesthef
following operations, but it does help the runtime systenkena
better scheduling decisions. In our description of thesgatjpns,

LC is a reference to the whole of a loop control structure, while
LCslot is an index into the array of slots stored withi@.

LC = lc_create_loop_control() This operation creates a new
loop control structure, and initializes its fields. The nenbf
slots in the array in the structure will be a small multiplettod
number of cores in the system. The multiplier is configurable
by setting an environment variable when the program is run.

LCslot = lc_wait_free_slot(LC) This operation tests whe-
therLC has any free slots. If it does not, the operation suspends
until a slot becomes available. When some slots are avajlabl
either immediately or after a wait, the operation chooses on
of the free slots, marks it in use, fills in its context poinded
returns its index. It can get the context to point to from st |
previous user of the slot, from a global list of free contefits
both cases it gets contexts which have been used previoysly b
computations that have terminated earlier), or by allocpt
new context (which typically happens only soon after stgrtu

_spawn_off (LC, LCslot, CodeLabel) This operation sets
up the context in the loop control slot, and then puts it on a
queue of ready contexts, where any engine looking for work
can find it.

_join_and terminate(LC, LCslot) This operation marks
the slot named b¥.Cslot in LC as available again. It then ter-
minates the context executing it, allowing the engine thas w
running it to look for other work.

lc_finish(LC) This operation is executed by the master context
when we know that this loop will not spawn off any more work
packages. It suspends its executing context until all thes sl
in LC become free. This will happen only when all the goals
spawned off by the loop have terminated. This is necessary
to ensure that all variables produced by the recursive katl t
arenot signalled via futures have in fact had values generated
for them. A variable generated by a parallel conjunct that is
consumed by a later parallel conjunct will be signalled via a
future, but if the variable is consumed only by code after the
parallel conjunction, then it is made available by writing i
value directly in its stack slot. Therefore such variables c
exist only if the original predicate had code after the patal
conjunction. This barrier is the only barrier in the loop and
it is executed just once; in comparison, the normal parallel
conjunction execution mechanism executes one barrierdn ea
iteration of the loop.

1lc

1lc

See Figure 3 for an example of how we use these operations. Not
in particular that in this transformed version wép_foldl, the
spawned-off computation contains the callsMt@andF, with the
main thread of execution making the recursive call. Thifésfirst
step in preserving tail recursion optimization.

4.2 Theloop control transformation

Our algorithm for transforming procedures to use loop adng
shown in Figures 4, 5 and 6.

Figure 4 shows the top level of the algorithm, which is mainly
concerned with testing whether the loop control transfdionais
applicable to a given procedure, and creating the intenfsoee-
dureifitis.

We impose conditions (1) and (2) because we need to ensure
that every loop we start f@IrigProc is finished exactly once, by
the call tolc_finish we insert into its base casesOlfigProc is
mutually recursive with some other procedure, then thersion
may terminate in a base case of the other procedure, whichl-our
gorithm does not transform. And @krigProc has some execution
path on which it calls itself twice, then the second call magtsiue
executing loop iterations after a base case reached thtbedirst
call has finished the loop.

We impose conditions (3) and (4) because the Mercury imple-
mentation does not support the parallel execution of codeith
not deterministic. We do not want a recursive call to be detiiéce
because some code between the entry poiiragProc and the
recursive call succeeded twice, and we do not want a reeucsiv
to be backtracked into because some code between the wecursi
call and the exit point ofirigProc has failed. These conditions
prevent both of those situations.

loop_control_transform(OrigProc) returns NewProcs:
let OrigGoal be OrigProc’s body
let RecParConjs be the set of parallel conjunctions
in OrigGoal that contain recursive calls
if
(1) OrigProc is directly but not mutually recursive
(2) OrigGoal has at most one recursive call
on all possible execution paths,
(3) OrigGoal has determinism ’det’,
(4) no recursive call is within a disjunction,
a scope that changes the determinism of a goal,
a negation, or the condition of a if-then-else,
(5) no member of RecParConjs is within
another parallel conjunction,
(6) every recursive call is inside
the last conjunct of a member of RecParConjs,
(7) every execution path through
one of these last conjuncts
makes exactly one recursive call
then:
let LC be a new variable
let LCGoal be the call
<lc_create_loop_control(LC)>
let LoopProcName be a unique new predicate name
let OrigArgs be OrigProc’s argument list
LoopArgs := [LC] ++ OrigArgs
let CallLoopGoal be the call
<LoopProcName (LoopArgs)>
let OrigProc’ be OrigProc with its body replaced
by the conjunction <LCGoal, CallLoopGoal>

LoopGoal := create_loop_goal(OrigGoal,
OrigProcName, LoopProcName, RecParConjs, LC),
let LoopProc be a new procedure
with name LoopProcName, arguments LoopArgs
and body LoopGoal

NewProcs := [OrigProc’, LoopProc]
else:
NewProcs := [OrigProc]
Figure4. The top level of the transformation algorithm

We impose condition (5) because we do not want another in-

stance of loop control, or an instance of the normal paratbel-
junction execution mechanism, to interfere with this ins& of
loop control.

We impose condition (6) for two reasons. First, the striectfr
our transformation requires right recursive code: we cowltter-
minate the loop in base case code if the call that lead to tide c
was followed by any part of an earlier loop iteration. Seca@tidw-
ing recursion to sometimes occur outside the parallel carijans
we are trying to optimize would unnecessarily complicatedlyo-
rithm. (We do believe that it should possible to extend ogoathm
to handle recursive calls made outside of parallel conjanst)

We impose condition (7) to ensure that our algorithm forgran

forming base cases (in Figure 6) does not have to process goal

that have already been processed by our algorithm for wamgfig
recursive calls (in Figure 5).

If the transformation is applicable, we apply it. The tramsfed
original procedure has only one purpose: to initialize tbepl
control structure. Once that is done, it passes a referendeat
structure td.oopProc, the procedure that does the actual work.

The argument list of.oopProc is the argument list obrig-
Proc plus theLC variable that holds the reference to the loop
control structure. The code @bopProc is derived from the code
of OrigProc. Some execution paths in this code include a recursive
call; some do not. The execution paths that contain a reaucsill
are transformed by the algorithm in Figure 5; the executiath®
that do not are transformed by the algorithm in Figure 6.

We start with the code in Figure 5. Due to condition (6), every
recursive call irdrigGoal will be inside the last conjunct a parallel
conjunction, and the main task efeate_loop_goal is to iterate

create_loop_goal (OrigGoal, OrigProcName, LoopProcName,
RecParConjs, LC) returns LoopGoal:
LoopGoal := OrigGoal
for RecParConj in RecParConjs do:
let RecParConj be <Conjunct_1 & ...
for i := 1 to n-1:
let LCSlot_i be a new variable
let WaitGoal_i be the call
<lc_wait_free_slot(LC, LCSlot_i)>
let JoinGoal_i be the call
<lc_join_and_terminate(LC, LCSlot_i)>
let SpawnGoal_i be a goal
that spawns off the sequential conjunction
<Conjunct_i, JoinGoal_i> as a work package
let Conjunct_i’ be the sequential conjunction
<WaitGoal_i, SpawnGoal_i>
Conjunct_n’ := Conjunct_n
for each recursive call RecCall in Conjunct_n’:
RecCall has the form
<OrigProcName (Args)>
let RecCall’ be the call
<LoopProcName ([LC] ++ Args)>
replace RecCall with RecCall’ in Conjunct_n’
let Replacement be the flattened form
of the sequential conjunction
<Conjunct_1’, ., Conjunct_n’>
replace RecParConj in LoopGoal with Replacement
LoopGoal := put_barriers_in_base_cases(LoopGoal,
RecParConjs, LoopProcName, LC)

& Conjunct_n>

Figure5. Algorithm for transforming the recursive cases

over and transform these parallel conjunctions. (It is fbsghat
some parallel conjunctions do not contain recursive cellsate-
_loop_goal will leave these untouched.)

The main aim of the loop control transformation is to limieth
number of work packages spawned off by the loop at any one time
in order to limit memory consumption. The goals we want torspa
off as work packages that other cores can pick up and exeoeite a
all the conjuncts before the final recursive conjunct. (\Withioop
control, we would spawn off all thiater disjuncts.) The first half of
the main loop ircreate_loop_goal therefore generates code that
creates and makes available each work package only aftetains
a slotfor itin the loop control structure, waiting for a slotbecome
available if necessary. We make the spawned-off computéter
that slot when it finishes.

To implement the spawning off process, we extended the-inter
nal representation of Mercury goals with a new kind of scdpe
only one shown in the abstract syntax in section 2 was the exis
tential quantification scope, but the Mercury implementathad
several other kinds of scopes already, though none of theseh
evant for this paper. We call the new kind of scope the spafivn-o
scope, and we mak&pawnGoal_i be a scope goal of this kind.
When the code generator processes such scopes, it

* generates code for the goal inside the scope (which will end
with a call tolc_join_and_terminate),

e allocates a new label,
* puts the new label in front of that code,

e puts this labelled code aside so that later it can be adddukto t
end of the current procedure’s code, and

e inserts into the instruction stream a calllte_spawn_off that
specifies that the spawned-off computation should stadiexe
tion at the label of the set-aside code. The other arguménts o
lc_spawn_off come from the scope kind.

Since we allocate a loop slafCS1lot just before we spawn off
this computation, waiting for a slot to become availabledgéded,
and free the slot once this computation has finished exegtie
number of computations that have been spawned-off by tbis lo

put_barriers_in_base_cases(LoopGoal,
RecParConjs, LoopProcName, LC) returns LoopGoal’:
if LoopGoal is a parallel conjunction in RecParConjs:
case 1
LoopGoal’ := LoopGoal
else if there no call to LoopProcName in LoopGoal:
case 2
let FinishGoal be the call <lc_finish(LC)>
let LoopGoal’ be the sequential conjunction
<LoopGoal, FinishGoal>
else:
case 3
switch on LoopGoal’s goal type:
case LoopGoal is an if-then-else:
let LoopGoal be <ite(C, T, E)>
T’ := put_barriers_in_base_cases(T,
RecParConjs, LoopProcName, LC)
:= put_barriers_in_base_cases(E,
RecParConjs, LoopProcName, LC)
let LoopGoal’ be <ite(C, T’, E’)>
case LoopGoal is a switch:
let LoopGoal be
<switch(V, [Case_1,
for i 1 to N:
let Case_i be <case(FunctionSymbol_i, Goal_i>
Goal_i’ := put_barriers_in_base_cases(Goal_i,
RecParConjs, LoopProcName, LC)
let Case_i’ be <case(FunctionSymbol_i, Goal_i’>
let LoopGoal’ be
<switch(V, [Case_1’, ., Case_N’])>
case LoopGoal is a sequential conjunction:
let LoopGoal be <Conj_1, . Conj_N>
i 1
while Conj_i does not contain a call
to LoopProcName:
i=1i+1
Conj_i’ := put_barriers_in_base_cases(Conj_i,
RecParConjs, LoopProcName, LC)
let LoopGoal’ be LoopGoal with
Conj_i replaced with Conj_i’
case LoopGoal is a quantification:
let LoopGoal be <some(Vars, SubGoal)>
SubGoal’ := put_barriers_in_base_cases(SubGoal,
RecParConjs, LoopProcName, LC)
let LoopGoal’ be <some(Vars, SubGoal’)>

E’

.., Case_N])>

Figure6. Algorithm for transforming the base cases

and which have not yet been terminated cannot exceed theatumb
of slots in the loop control structure.

The second half of the main loop éreate_loop_goal trans-
forms the last conjunct in the parallel conjunction by laeg&ll the
recursive calls inside it and modifying them in two ways. Tinst
change is to make the call actually call the loop procedurethe
original procedure, which after the transformation is meoudrsive;
the second is to make the list of actual parameters matctote |
procedure’s formal parameters by adding the variable niefgto
the loop control structure to the argument list. Due to ctonli
(6), there can be no recursive callinigGoal that is left untrans-
formed when the main loop @freate_loop_goal finishes.

In some cases, the last conjunct may simmha recursive call.
In some other cases, the last conjunct may be a sequential con
junction consisting of some unifications and/or some nanHigve
calls as well as a recursive call, with the unifications andree
cursive calls usually constructing and computing some eftigu-
ments of the recursive call. And in yet other cases, the agtioct
may be an if-then-else or a switch, possibly with other drtfelses
and/or switches nested inside them. In all these casespdwadi-
tion (7), the last parallel conjunct will execute exactlyearcursive
call on all its possible execution paths.

The last task otreate_loop_goal is to invoke theput_bar-
riiers_in base_cases function that is shown in Figure 6 to

transform the base cases of the goal that will later becombadly
of LoopProc. This function recurses on the structurd.ebpGoal,
as updated by the main loop in Figure 5.

When put_barriiers_in_base_cases is called, its caller
knows thatLoopGoal may contain the already processed parallel
conjunctions (those containing recursive calls), it maytam base
cases, or it may contain both. The main if-then-elsgifn_bar-
riiers_in base_cases handles each of these situations in turn.

If LoopGoal is a parallel conjunction that is RecParConjs,
then the main loop otreate_loop_goal has already processed
it, and due to condition (7), this function does not need tmkoit.
Our objective in imposing condition (7) was to make this jigss

If, on the other handi.oopGoal contains no call td.oopProc,
then it did not have any recursive calls in the first placegein
(due to condition (6)) they would all have been turned inttisca
to LoopProc by the main loop okreate_loop_goal. Therefore
this goal eitheiis a base case dfoopProc, or it is part of a base
case. In either case, we add a calltofinish (LC) afterit. Inthe
middle of the correctness argument below, we will discusg thits
is the right thing to do.

If both those conditions fail, thehoopGoal definitely contains
some execution paths that execute a recursive call, and ray a
contain some execution paths that do not. What we do in tisa ca
(case 3) depends on what kind of goabpGoal is.

If LoopGoal is an if-then-else, then we know from condition
(4) that any recursive calls in it must be in the then part erdlse
part, and by definition the last part of any base case codeeiif-th
then-else must be in one of those two places as well. We tiveref
recursively process both the then part and the else pagwlise, if
LoopGoal is a switch (a disjunction in which each disjunct unifies
a variable known to be ground with a different function symbo
so we know that at most one disjunct may succeed), some arms of
the switch may execute a recursive call and some may not, and w
therefore recursively process all the arms. For both ifitbises
and switches, if the possible execution paths inside thematio
involve conjunctions, then the recursive invocationgpef_bar-
riiers_in_base_cases Will add a call tolc_finish at the end
of each execution path that does not make recursive calls.

What if those execution paths do involve conjunctions? If
LoopGoal is a conjunction, then we recursively transform the first
conjunct that makes recursive calls, and leave the corgunath
before and after it (if any) untouched. There is guarantedabtat
least one conjunct that makes a recursive call, becauserd there
not, the second condition would have succeeded, and we would
never get to the switch on the goal type. We also know at mast on
conjunct makes a recursive call. If more than one did, theneth
would be an execution path through those conjuncts thatdvoul
make more than one recursive call, condition (2) would hailed,
and the loop control transformation would not be applicable

Correctness argument. One can view the procedure body, or in-
deed any goal, as a set of execution paths that diverge fram ea
other in if-then-elses and switches (on entry to the thenlse e
parts and the switch arms respectively) and then converga ag
(when execution continues after the if-then-else or syitGur al-
gorithm inserts calls tac_finish into the procedure body at all
the places needed to ensure that every nonrecursive exeqatih
executes such a call exactly once, and does so after thedakt g
in the nonrecursive execution path that is not shared witcarr
sive execution path. These places are the ends of nonneetingin
parts whose corresponding else parts are recursive, tiseoéndn-
recursive else parts whose corresponding then parts aneshes,
and the ends of nonrecursive switch arms where at least bee ot
switch arm is recursive. Condition (4) tests for recursigksdn the
conditions of if-then-elses (which are rare in any casegifipally
to make this correctness argument possible.

Note that for most kinds of goals, execution cannot reach
case 3. Unifications are not parallel conjunctions and cacoo-
tain calls, so ifLoopGoal is a unification, we will execute case 2.

If LoopGoal is a first order call, we will also execute case 2, be-
cause due to condition (6), all recursive calls are insidealfs
conjunctions; since case 1 does not recurse, we never gebge t
recursive callsLoopGoal cannot be a higher order call, since if the
body of0rigGoal contains a higher order call, we cannot rule out
the original procedure being mutually recursive with aeotpbro-
cedure through that call, and condition (1) would failL&fopGoal

is a parallel conjunction, then it is eitheriecParConj, in which
case we execute case 1, or (due to condition (5)) it does mtdico
any recursive calls, in which case we execute case 2. Cond#)
also guarantees that we will execute case RofpGoal is a dis-
junction, negation, or a quantification that changes therdghism

of a goal by cutting away (indistinguishable) solutionseTdnly
other goal type for which execution may get to case 3 are gitant
cation scopes that have no effect on the subgoal they wrapsevh
handling is trivial.

We can view the execution of a procedure body that satisfies
condition (2) and therefore has at most one recursive cadveny
execution path as a descent from a top level invocation frootheer
procedure to a base case, followed by ascent back to the twimgd
the descent, each invocation of the procedure executesadtte p
of a recursive execution path up to the recursive call; dutire
ascent, after each return we execute the part of the chosersie
execution path after the recursive call. At the bottom, weceke
exactly one of the nonrecursive execution paths.

In our case, conditions (5) and (6) guarantee that all thésgoa
we spawn off will be spawned off during the descent phase.\Whe
we get to the bottom and commit to a nonrecursive executitim pa
through the procedure body, we know that we will not spawn off
any more goals, which is why we can invoke_finish at that
point. We can callc_finish at any point ifL.oopGoal that is after
the point where we have committed to a nonrecursive exatutio
path, and before the point where that nonrecursive exatptith
joins back up with some recursive execution paths.

The code at case 2 puts the callta finish at the last allowed
point, not the first, or a point somewhere in the middle. Weseho
to do this because after the code executingpProc has spawned

else or switch must be det: if it were semidieippProc would be
too, and if it were nondet or multi, then its extra solutiomsilcl
be thrown away only by an existential quantification thatrgifies
away all the output variables of the goal inside it. But by dien
tion (4), the part of the recursive execution path that dgatishes
it from a nonrecursive path, the recursive call itself, arappear
inside such scopes. This guarantees that the middle pdr¢ ofan-
recursive execution path, which is not part of either a prefia
suffix shared with some recursive paths, must also be dealbver
though it may have nondeterminism inside it. Any code putraft
the second of these three parts of the execution path (sheetix,
middle, shared suffix), all three of which are det, is guaradtto
be executed exactly once.

4.3 Loop control and tail recursion

When a parallel conjunction spawns off a conjunct as a wockpa
age that other cores can pick up, the code that executesotfijahct
has to know where it should pick up its inputs, where it shquit
its outputs, and where it should store its local variablel.tife
inputs come from the stack frame of the procedure that egscut
the parallel conjunction, and all the outputs go there ag, wel
the simplest solution, and the one used by the Mercury system
for the spawned-off conjunct to do all its work in the exaansa
stack frame. Normally, Mercury code accesses stack slatsff4
sets from the standard stack pointer. Spawned-off codessese
stack slots using a special Mercury abstract machine eggiatled
the parent stack pointer, which the code that spawns offsggrts
up to point to the stack frame of the procedure doing the spawn
ing. That same spawning-off code sets up the normal stackegoi
to point to the start of the stack in the context executingvibek
package, so any calls made by the spawned-off goal will aléoc
their stack frames in that stack, but the spawned-off carjuiill
use the original frame in the stack of the parent context.

This approach works, and is simple to implement: the code
generator generates code for spawned-off conjuncts niyrraald
then just substitutes the base pointer in all referencemuk slots.
However, it does have an obvious drawback: until the spavafied

off one or more goals one level above the base case, we expectomputation finishes execution, it may make referencestettck
that other cores will be busy executing those spawned offsgoa frame of the parallel conjunction, whose space therefoneagbe

for rather longer than it takes this core to execute the base.c
By making this core do as much useful work as possible before
must suspend to wait for the spawned-off goals to finish, vpeeix

to reduce the amount of work remaining to be done after the cal
to 1c_finish by a small but possibly useful amount_finish
returnsafter all the spawned-off goals have finished, so any code
placed after it (such as ifc_finish were placed at the first valid
point) would be executed sequentially after the loop; whiere
would definitely add to the overall runtime. Therefore, wefpr to
placelc_finish as late as possible, so that this code occurs before
lc_finish and is executed in parallel with the rest of the loop,
where it may have no effect on the overall runtime of the paogr

it will just put to good use what would otherwise be dead time.

reused until then. This means that even if a recursive cathén
last conjunct of the parallel conjunction happens to bela#d it
cannot have the usual tail call optimization applied to it.

Before this work, this did not matter, because the barrier sy
chronization needed at the end of the parallel conjunctidrich
had to be executed at every level of recursion except thedzsse
prevented tail recursion optimization anyway. Howevee fbop
control transformation eliminates that barrier, replgdirwith the
single call tolc_finish in the base case. So now this limitation
does matter in cases where all of the recursive calls in the last co
junct of a parallel conjunction are tail recursive.

If at least one call is not tail recursive, then it prevente th
reuse of the original stack frame, so our system will stilide the

We must of course be sure that every loop, and therefore every scheme described above. However, if they all are, then iesy

execution of any base caselofopGoal, will call 1c_finish ex-
actly once: no more, no less. (It should be clear that ousfoema-
tion never puts that call on an execution path that includear-
sive call.) Now any nonrecursive execution path throLgépGoal
will share a (possibly empty) initial part and a (possiblypgy fi-
nal part with some recursive execution paths. On any nonsaeu
execution pathput_barriiers_in base_cases will put the call
lc_finish just before the first point where that path rejoins a re-
cursive execution path. Siné®@opProc is det (condition (3)), all
recursive execution paths must consist entirely of detgyaatl the
conditions of if-then-elses, and (due to condition (4)) rezngo
through disjunctions. The difference between a nonreeeirske-
cution path and the recursive path it rejoins must be eitherdne
takes the then part of an if-then-else and the other takesl#iee
part, or that they take different arms of a switch. Such ahéfa-

can now be asked to follow a different approach. The code that
spawns off a conjunct will allocate a frame at the start oftiaek in

the child context, and will copy the input variables of thawped-

off conjunct into it. The local variables of the spawnedgdal will

also be stored in this stack frame. The question of whereutisud
variables are stored is moot: there canbetany output variables
whose stack slots would need to be assigned to.

The reason this is true has to do with the way the Mercury
compiler handles synchronization between parallel catgiAny
variable whose value is generated by one parallel conjundt a
consumed by one or more other conjuncts in that conjunctitin w
have a future created for it. The generating conjunct, ohtas
computed the value of the variable, will executeignal _future
on the variable’s future to wake up any consumers that may be
waiting for the value of this variable. Those consumers gét

the value of the original variable from the future, and widire that
value in a variable that is local to each consumer. Sincadstare
always stored on the heap, the communication of bindings troe
parallel conjunct to another doest go through the stack frame.

A variable whose value is generated by a parallel conjuntigan
consumed by code after the parallel conjunction does nekdvi®
its value put into its stack slot, so that the code after thalfm
conjunction can find it. However, if all the recursive calfsthe
last conjunct are in fact tail calls, then by definition thess be
no code after the parallel conjunction. Since neither cadierin
the parallel conjunction, nor codafter the parallel conjunction,
requires the values of variables generated by a conjunet stdsed
in the original stack frame, storing it in the spawned-offpchild
stack frame is good enough.

In our current system, the stack frame used by the spawned-

off goal has exactly the same layout as its parent. This mists
in general, both the parent and child stack frames will harmes
unused slots, slots used only in tbier stack frame. This is triv-

second and third numbers (the ones in parentheses) shoacresp
tively the speedup this time represents over the sequestiaion

of the benchmark (the first row), and over the base parallsime
(the second row). Some of the numbers are affected by rogndin

In both tables, the first row compiles the program withoungsi
any parallelism at all, asking the compiler to automaticetinvert
all parallel conjunctions into sequential conjunctionsviously,
the resulting program will execute on one core.

The second row compiles the program in a way that prepares it
for parallel execution, but it still asks the compiler to@mtgtically
convert all parallel conjunctions into sequential confiorwts. The
resulting executables will differ from the versions in thestfirow
in two main ways. First, they will incur some overheads that t
versions in the first row do not, overheads that are needegpfmst
the possibility of parallel execution. The most importahttese
overheads is that potentially-parallel code needs a waytess
thread-specific data, and therefore when a program is cethpil
for parallel execution, the Mercury compiler has to resesme

ial to implement, and we have not found the wasted space to be machine register to hold a pointer to this data, making treathine

a problem. This may be because we have mostly been working
with automatically parallelized programs, and our autaenpér-
allelization tools put much effort into granularity conitf@]: the
rarer spawning-off a goal is, the less the effect of any wbspace.

5. Performanceevaluation

We ran all our benchmarks on a Dell Optiplex 980 desktop PC
with a 2.8 GHz Intel i7 860 CPU (four cores, each with two
hyperthreads) running Linux 2.6.35 in 64-bit mode. Eachues
run ten times with both Speedstep and TurboBoost disabled; w
discarded the highest and lowest times, and averaged the res

We have benchmarked our system with four different programs

mandelbrot generates a mandelbrot image. It renders the rows of
the image in parallel usingap_foldl from Figure 1.

raytracer is a raytracer written for the ICFP programming com-
petition in 2000. Like mandelbrot, it renders the rows of the
generated image in parallel, but it does not nsp_foldl.

matrixmult multiplies two large matrices. It computes the rows of
the result in parallel.

spectralnorm computes the eigenvalue of a large matrix using the
power method. It has two parallel loops, both of which are
executed multiple timeg.

All these benchmarks have dependent AND-parallelism, but f
two of the benchmarks, matrixmult and spectralnorm, we have
created versions that use independent AND-parallelism el w
The difference between the dependent and independenbnsrsi
is just the location of a unification that constructs a cetinir
the results of two parallel conjuncts: the unification isside the
parallel conjunction in the independent versions, whilis ih the

last parallel conjunct in the dependent versions.

Tables 1 and 2 presents our memory consumption and timing
results respectively. In both tables, the columns list tlechmark
programs, while the rows show the different ways the progream
be compiled and executed. Due to space limits, each tablessho
only a subset of the rows, those with the most interestingltes
These subsets are different for the two tables.

In Table 1, each box has two numbers. The first reports the max-
imum number of contexts alive at the same time, while thersg:co
reports the maximum number of megabytes ever used to stere th
stacks of these contexts. In Table 2, each box has three msmbe
The firstis the execution time of that benchmark in second=vith
is compiled and executed in the manner prescribed by theTrogy.

23pectralnorm was donated by Chris King, &e¢ep://adventuresin-
mercury.blogspot.com/search/label/parallelization. We have
modified Chris’ code slightly.

register unavailable to the rest of the Mercury abstracthimac
Given the dearth of callee-save machine registers on the6486
(we are not set up to use caller-save registers), this cdrtdegery
significant slowdowns: for our benchmarks, as much as 30%. Th
second difference is that, the garbage collector and theoféke
runtime system must be thread safe, and this incurs a ruriiste
that leads to slowdowns in most cases, even when using asingl
core for user code. (The garbage collector uses one coreoioalr
tests). However, the mandelbrot program speeds up wheadhre
safety is enabled; it does not do very much memory allocatiah

is therefore affected less by the overheads of thread safate
garbage collector. Its slight speedup may be due to itsrdiffecode
and data layouts interacting with the cache system diffgren

All the later rows compile the program for parallel execnfio
and leave the parallel conjunctions in the program intatieyT
execute the program on 1 to 4 cores (1c to 4c). The versions
that execute on the same number of cores differ from each othe
mainly in how they handle loops. The rows marked nolc are the
controls. They do not use the loop control mechanism destriip
this paper; instead, they rely on our system'’s overall liomitthe
number of contexts that may be created, as we described enthe
of Section 3. The actual limit is the number of engines mlié
by a specified parameter, which we have setto 128 in c128 notvs a
to 512 in ¢512 rows. Our code checks this limitin a non-threafd
manner, which means that in the presence of races, the mibe
exceeded by one or two contexts. Since different contexthiase
different sized stacks, the limit is only an approximatetoairover
memory consumption anyway, so this is an acceptable pripayo
for reduced synchronization overhead.

The rows marked IcN do use our loop control mechanism, with
the value of N indicating the value of another parameter veeip
when the program is run. When the_create_loop_control
instruction creates a loop control structure, it computesiumber
of slots to create in it, by multiplying the configured numlodr
Mercury engines (each of which can execute on its own coré) wi
this parameter. We have memory consumption results for 12=1,
and 4. We have timing results for all of these too, but showy te
results for N=2, since the timing results for N=1 and N=4 meoest
identical to these. It seems that as long as we put a reagosrabll
limit on the number of stacks a loop control structure can sigeed
is not much affected by the precise value of the limit.

The rows marked IcN,tr are like the corresponding IcN rows, b
they also switch on tail recursion preservation in the twodbe
marks (mandelbrot and raytracer) whose parallel loops ate-n
rally tail recursive. The implementation of parallelisnthgut loop
control destroys this tail recursion, and so does loop cbnin-
less we ask it to preserve it. That means that mandelbrotanrd r
tracer use tail recursion in all the test setups except foptrallel,
non-loop control ones, and loop control ones without tadure

mandelbr ot mmult-depi mmult-indep raytracer spectral-dep spectral-indep
seq 1 0.62 1 0.62 1 0.62 1 0.62 1 0.62 1 0.62
par, no & 1 0.62 1 0.62 1 0.62 1 0.62 1 0.62 1 0.62
par, &, 1c, nolc, c128 1 0.62 1 0.62 1 0.62 1 0.62 1 1.12 1 1.12
par, &, 1c, nolc, c512 1 0.62 1 0.62 1 0.62 1 0.62 1 1.12 1 1.12
par, &, 1c, Icl 2 1.25 2 1.25 | n/a n/a 2 1.25 2 1.75 | nla n/a
par, &, 1c, Ic2 3 1.88 3 1.88 | n/a n/a 3 1.88 3 2.38 | n/a n/a
par, &, 1c, Ic4 5 3.12 5 3.12 | n/a n/a 5 3.12 5 3.62 | n/a n/a
par, &, 2c,nalc,c128 | 257 160.62| 257 160.62| 2 125 257 160.62| 257 161.12] 2 1.75
par, &, 2c, nolc, c512 | 601 375.62| 1025 640.62| 2 1.25| 1025 640.62| 1025 641.12| 2 1.75
par, &, 2¢, Icl 4 2.50 3 1.88 | n/a n/a 4 2.50 3 2.38 | n/a n/a
par, &, 2¢, Ic2 6 3.75 5 3.12 | n/a n/a 6 3.75 5 3.62 | n/a n/a
par, &, 2¢c, Ic4 10 6.25 9 5.62 | n/a n/a 10 6.25 9 6.12 | n/a n/a
par, &, 3c,nolc,cI28 | 385 240.62| 385 240.62| 3 1.88| 385 240.62| 385 24112 3 2.38
par, &, 3c, nolc, c512 | 601 375.62| 1200 750.00f 3 1.88| 1201 750.62| 1537 961.12| 3 2.38
par, &, 3c, Icl 5 3.12 4 2.50 | n/a n/a 5 3.12 4 3.00 | n/a n/a
par, &, 3c, Ic2 8 5.00 7 4.38 | n/a n/a 8 5.00 7 4.88 | nla n/a
par, &, 3c, Ic4 14 8.75 13 8.12 | n/a n/a 14 8.75 13 8.62 | n/a n/a
par, &, 4c, nolc,c128 | 513 320.62| 513 320.62| 4 250 513 320.62| 513 321.121 4 3.00
par, &, 4c, nolc, c512 | 601 375.62| 1201 750.62| 4 2,50 | 1201 750.62| 2049 1281.12| 4 3.00
par, &, 4c, Icl 6 3.75 5 3.12 | n/a n/a 6 3.75 5 3.62 | n/a n/a
par, &, 4c, Ic2 10 6.25 9 5.62 | n/a n/a 10 6.25 9 6.12 | n/a n/a
par, &, 4c, Ic4 18 11.25 17 10.62 | n/a n/a 18 11.25 17 11.12 | n/a n/a

Table 1. Peak number of contexts used, and peak memory usage fosstaeksured in megabytes

mandelbrot mmult-dep mmult-indep raytracer spectral-dep spectral-indep
seq 19.37 (1.00, 0.97)] 7.69 (1.00,1.42)] 7.69(1.00, 1.42)] 19.50 (1.00, 1.21)] 16.07 (1.00, 1.19)] 16.06 (1.00, 1.19)
par, no & 18.75 (1.03, 1.00)| 10.93 (0.70, 1.00)| 10.93 (0.70, 1.00)| 23.55 (0.83, 1.00)| 19.07 (0.84, 1.00)| 19.07 (0.84, 1.00)
par, &, 1c, nolc, 128 | 18.74 (1.03, 1.00)] 10.94 (0.70, 1.00)| 10.93(0.70, 1.00)| 23.46 (0.83,1.00)| 19.30 (0.83,0.99)[19.12 (0.84, 1.00)
par, &, 1c, nolc, c512 | 18.74 (1.03, 1.00)| 10.94 (0.70, 1.00)| 10.93 (0.70, 1.00)| 23.43 (0.83, 1.00)| 19.30 (0.83, 0.99)| 19.12 (0.84, 1.00)
par, &, 1c, Ic2 18.74 (1.03, 1.00)| 10.93 (0.70, 1.00) n/a | 23.54(0.83,1.00)| 19.30 (0.83, 0.99) n/a
par, &, 1c, Ic2, tr 18.74 (1.03, 1.00) n/a n/a | 23.79 (0.82, 0.99) n/a n/a
par, &, 2c, nolc, c128 | 17.82 (1.09, 1.05) 9.82 (0.78, 1.11)| 5.49 (1.40, 1.99)| 25.68 (0.76, 0.92)| 19.25 (0.83, 0.99)] 9.56 (1.68, 2.00)
par, &, 2c, nolc, c512 9.60 (2.02, 1.95)| 6.63(1.16,1.65)| 5.49(1.40, 1.99)| 20.34 (0.96, 1.16)| 18.54 (0.87, 1.03)| 9.56 (1.68, 2.00)
par, &, 2c, Ic2 9.69 (2.00, 1.94)| 5.48(1.40,1.99) n/a | 14.14(1.38,1.67)] 9.96 (1.61,1.91) n/a
par, &, 2¢c, Ic2, tr 9.78 (1.98, 1.92) n/a n/a | 14.04 (1.39, 1.68) n/a n/a
par, &, 3¢, nolc, c128 | 13.69 (1.42, 1.37)] 8.70(0.88, 1.26)| 3.72 (2.07, 2.94)| 26.58 (0.73, 0.89)| 19.32 (0.83, 0.99)| 6.44 (2.50, 2.96)
par, &, 3c, nolc, 512 | 6.39 (3.03,2.93)| 4.06 (1.89, 2.69)| 3.72(2.07, 2.94)| 15.40 (1.27, 1.53)| 17.57 (0.91, 1.09)| 6.41 (2.50, 2.97)
par, &, 3c, Ic2 6.29 (3.08, 2.98)| 3.68(2.09, 2.97) n/a | 10.72(1.82,2.20)| 6.62(2.43,2.88) n/a
par, &, 3c, Ic2, tr 6.31 (3.07, 2.97) n/a n/a | 10.80 (1.81, 2.18) n/a n/a
par, &, 4c, nolc, c128 | 8.35 (2.32, 2.25)| 7.55 (1.02, 1.45)| 2.82 (2.73, 3.88)| 26.93 (0.72, 0.87)| 18.91 (0.85, 1.01)| 4.85 (3.31, 3.93)
par, &, 4c, nolc, 512 | 4.84(4.01, 3.88)| 3.15(2.44,3.48)| 2.82(2.73, 3.88)| 14.12 (1.38, 1.67)| 16.83 (0.95, 1.13)| 4.85 (3.31, 3.93)
par, &, 4c, Ic2 4.74 (4.09, 3.96)| 2.79 (2.75, 3.92) nfa| 9.35(2.09,2.52)| 4.98(3.23,3.83) n/a
par, &, 4c, Ic2, tr 4.76 (4.07, 3.94) n/a n/a 9.41 (2.07, 2.50) n/a n/a

Table 2. Execution times measured in seconds, and speedups

sion. Since the other benchmarks are not naturally tailrebeey
they won't be tail recursive however they are compiled. Eteme

This avoids the overhead of converting a spark to a contexivbe
can do it only because we know we won't create too many casitext
no such rows in Table 1 since the results in each IcN,tr rowlevou When executing on two or more cores, mandelbrot and raytrace
be identical to the corresponding IcN row. use one more context that one would expect. Before the cempil
There are several things to note in Table 1. The most importan applies the loop control transformation, it adds the syocization
is that when the programs are run on more than one core, switch operations needed by dependent parallel conjunctionshéwrs
ing on loop control yields a dramatic reduction in the maximu by Figure 2, this duplicates the original procedure. Onby itmer
number of contexts used at any one time, and therefore akb@in procedure is recursive, so the compiler performs the loayrob
maximum amount of memory used by stacks. (The total amount transformation only on it. The extra context is the conjlgpawned
of memory used by these benchmarks is approximately the max- off by the parallel conjunction in the outer procedure.
imum of this number and the configured initial size of the hpap There are several things to note in Table 2 as well. The first
This shows that we have achieved our main objective. Witlomyt is that in the absence of loop control, increasing the pgiren
control, the execution of three of our four dependent berarhm context limit from 128 to 512 yields significant speedupstfoee
(mandelbrot, matrixmult and raytracer) require the siam#ious out of four the dependent benchmarks. Nevertheless, trstonsr
existence of a context for every parallel task that the @ogcan with loop control significantly outperform the versions kaotit,
spawn off. For example, mandelbot generates an image wilth 60 even c512, for all these benchmarks except mandelbrot. On ma
rows, so the original context can never spawn off more thah 60 delbrot, c512 already gets a near-perfect speedup, yetcioaipol
other contexts. still gets a small improvement. Thus on all our dependentiven
On one core, the nolc versions spawn off sparks, but since the marks, switching on loop control yields a speedup while tyea
is no other engine to pick them up, the one engine eventually reducing memory consumption.
picks them up itself, and executes them in the original cdniy Overall, the versions with loop control get excellent spged
contrast, the Ic versions directly spawn off new contextssparks. on three of the benchmarks: speedups of 3.94, 3.92 and 3/881n
CPUs for mandelbrot, matrixmult and spectralnorm respelsti

The one apparent exception, raytracer, is very memoryatiion-
intensive, because it does lots of floating point arithmette
Mercury backend we use always boxes floating point numbers, s
each floating point operation adds a new cell to the heap.Beca
of this, memory bandwidth may also be an issue for it, butiggér
problem is garbage collection; for another paper, we hawesored

it taking 40% of the runtime when run on four CPUs. Therefbie t
best speedup we can hope fof4s< 0.6+ 0.4) /(0.6 +0.4) = 2.8,

and we do come close to that.

Second, loop control is crucial for getting this kind of spese,
unless you are willing to waste lots of memory. On four colesp
control raises the speedup compared to ¢128 from 2.25 tof8:96
mandelbrot, from 1.45 to 3.92 for matrixmult, from 0.87 t62for
raytracer, and from 1.01 to 3.83 for spectralnorm. Thos@eaty
impressive improvements.

Third, for the benchmarks that have versions using indepen-
dent parallelism, the independent versions are faster ttiamle-
pendent versions without loop control, while there is nangig
cant difference between the speeds of the independenbrsrand
the dependent loop control versions. For matrix multigiara the
loop control dependent version is faster, while for spéatoam,
the independent version is faster, but in both cases therelifte
is small. This shows that on these benchmarks, loop conbral ¢
pletely avoids the problems described in Section 3.

Fourth, preserving tail recursion has a mixed effect on dpee
of the six relevant cases (mandelbrot and raytracer on 2d3an
cores), one case gets a slight speedup, while the otherdiget s
slowdowns. Due to the extra copying required, this tilt todea
slowdowns is to be expected. However, the effect is very lsmal
always within 1%, and usually in the noise. (For examplecspé
indep on three cores does everything exactly the same with as
with ¢128, so the difference between 6.44s and 6.41s is qisén
The possibility of such slight slowdowns is an acceptableepto
pay for allowing parallel code to recurse arbitrarily dgeplhile
using constant stack space.

6. Conclusion

Ever since the first parallel implementations of declaeatizn-
guages in the 1980s, researchers have known that gettirggpaor
allelism out of a program than the hardware could use can beea m
jor problem, because the excess parallelism brings no berafily
overhead, and these overheads could swamp the speedups-the s
tem would otherwise have gotten. Accordingly, they have s/
systems to throttle parallelism, keeping it at a reasoniabkd.

However, most throttling mechanisms we know of have been
general in nature, such as granularity control systemsTbgse
have similar objectives, but use totally different metha@strict-
ing the set of places in a prograwhere they choose to exploit
parallelism, not changingow they choose to exploit it.

We know of one system that tries to preserve tail recursiem ev
when the tail comes from a parallel conjunction. The ACE sys-
tem [4] normally generates one parcall frame for each pelredin-
junction, but it will flatten two or more nested parcall frasnato
one if runtime determinacy tests indicate it is safe to do/ghile
these tests usually succeed for loops, they can also sufaresttier
code, and (unlike our system) the ACE compiler does not iffent
in advance the places where the optimization may apply. Tiero
main difference from our system is the motivation: the mai m
tivation of this mechanism in the ACE system is neither tttiraj
nor the ability to handle unbounded input in constant staelce,
but reducing the overheads of backtracking. This is totatile-
vant for us, since our restrictions prevent any interachetween
AND-parallel code and code that can backtrack.

The only work on specially loop-oriented parallelism inilog
languages that we are aware of is Reform Prolog [1]. Thisesyst
was not designed for throttling either, but it is more gehéran
ours in one sense (it can handle recursion in the middle cfzsel)

and less general in other senses (it cannot handle pasailéti
any form other than loops, and it cannot execute one patabel
inside another). It also has significantly higher overhahda our
system: it traverses the whole spine of the data structuirgybe
iterated over (typically a listpefore starting parallel execution;
in some cases it synchronizes computations by busy waiind;
it requires variables stored on the heap to have a timestamp.
avoid even higher overheads, it imposes the same restriat®
do: it parallelizes only deterministic code (though the migtin of
“deterministic” it uses is a bit different).

The only work on loop-oriented parallelism in functionahda
guages we know of is Sisal [3]. It shares two of Reform Praog’
limits: no parallelism anywhere except loops, and no ngsifrpar-
allel computations inside one another. Since it was dedidae
number crunching on supercomputers, it had to have lower ove
heads than Reform Prolog, but it achieved those low oveshead
primarily by limiting the use of parallelism to loops whodert
ations areindependent of each other, which makes the problem
much easier. Similarly, while ACE Prolog supports both ANDéd
OR-parallelism, the only form of AND-parallelism it supp®iis
independent.

Our system is designed to throttle loops with dependena-iter
tions, and it seems to be quite effective. By placing a hanshtdo
on the number of contexts that may be needed to handle a single
loop, our transformation allows parallel Mercury progratosio
their work in a reasonable amount of memory, and since it does
so without adding significant overhead, permits them to lipeto
their full potential. For one of our benchmarks, loop cohtnakes
a huge difference: on four cores, it turns a speedup of 1.t3an
speedup of 3.83. It significantly improves speedups on twerot
benchmarks, and it even helps the fourth and last benchreagk,
though that was already close to the maximum possible speedu

The other main advantage of our system is that it allows pro-
cedures to keep exploiting tail recursion optimizationTRO is
applicable to the sequential version of a procedure, themillit
stay applicable to its parallel version. Many programs caiman-
dle large inputs without TRO, so they cannot be parallelizedll
without this capability. The previous advantage may be ifipego
systems that resemble the Mercury implementation, bustiosild
apply to the implementation of every eager declarativeuage.

We would like to thank Chris King for allowing us to use his
spectralnorm benchmark.

References

[1] Johan Bevemyr, Thomas Lindgren, and Hkan Millroth. Refdrolog:
the language and its implementation. Iim Proc. of the 10th Int'l
Conference on Logic Programming, pages 283—-298. MIT Press, 1993.

[2] Paul Bone, Zoltan Somogyi, and Peter Schachte. Estimétie overlap
between dependent computations for automatic parallielizaTheory
and Practice of Logic Programming, 11(4-5):575-591, 2011.

[3] John T. Feo, David C. Cann, and Rodney R. Oldehoeeft. Antem the
Sisal language projectlournal of Parallel and Disributed Computing,
10:349-366, 1990.

[4] Gopal Gupta and p Enrico Pontelli. Optimization scherfraigparallel
implementation of non-deterministic languages and syst&nftware:
Practice and Experience, 31(12):1143-1181, 2001.

[5] Robert H Halstead. Implementation of Multilisp: Lisp amultiproces-
sor. InProceedings of the 1984 ACM Symposium on List and Functional
Programming, pages 9-17, Austin, Texas, 1984.

[6] P. Lopez, M. Hermenegildo, and S. Debray. A methodology f
granularity-based control of parallelism in logic progsandournal of
Symbolic Computation, 22(4):715-734, 1996.

[7] Simon Marlow, Simon Peyton Jones, and Satnam Singh. iRent
support for multicore HaskellSSGPLAN Notices, 44(9):65-78, 2009.

[8] Peter Wang and Zoltan Somogyi. Minimizing the overheafidepen-
dent AND-parallelism. IrProceedings of the 27th International Con-
ference on Logic Programming, Lexington, Kentucky, 2011.

