Automatic Parallelisation in Mercury

Paul Bone pbone@csse.unimelb.edu.au

January 19, 2010

Qe

NICTA M

Mercury

» Mercury is a declarative, pure language.
» Purity makes programming more reliable.

» Purity also makes it easier for the compiler to optimise code,
including automatic parallel evaluation.

> Over 15 years old, and has been self-hosted for most of
this time.

» The compiler has 425,674 LoC, excluding the standard
library and runtime, yet our daily snapshots are usually
stable!

> Can compile to C, Java, Erlang and MS IL.

» Named after the Roman god of speed.
(Je

e m
NICTA MELBOURNE

The problem

Parallel programming is hard, but multicore systems are ubiquitous.

» Thread synchronisation is very hard, but purity makes this a
non-issue.

» Working out how to parallelise a program can be difficult.

» What if the program changes in the future? The programmer
may have to re-parallelise it.

This makes parallel programming time consuming and expensive.
Yet in a multicore era it is desirable to parallelise most programs.

@)

NICTA MELBOURNE

Automatically Parallelising a program

» Profile the program to find the expensive parts.

» Analyse the program to determine what can be run in parallel.

» Determine if it is profitable to introduce parallel evaluation.
This may involve trial and error.

» Repeat until the program runs fast enough or there is nothing
left to parallelise.

source

result

L feedback

(Je

e m
NICTA MELBOURNE

Benchmarks — ICFP 2000 Raytracer

» Heavy garbage collector
usage

» 6,199 LoC.

» Code was altered to make it
less stateful.

S
P=1 125
P=2 112
P=3 | 103

P = 4 I 5

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Elapsed time (seconds)
e

NICTA M

Benchmarks — Mandelbrot image generator

» Light garbage collector usage
» 280 LoC.
» Written for this test.

S 139
P=1 135
P=2 68
P=3 45
P/

0 20 40 60 80 100 120 140

Elapsed time (seconds)

Oe

NICTA M

Trickier cases — Divide and Conquer

quicksort([]1) = [J.
quicksort([P | Unsorted]) = Sorted :-
(Bigs, Littles) = partition(P, Unsorted),
(
SortedBigs = quicksort(Bigs) &
SortedLittles = quicksort(Littles)
),
Sorted = SortedLittles ++ [P | SortedBigs].

(e
NICTA e

Trickier cases — Divide and Conquer

On average, this creates O(N) small parallel tasks. This is far too
many since most systems have far fewer than N cores.

Task 1

P

Task 8
(e

NICTA MELBOURNE

Trickier cases — Divide and Conquer

It is much better to parallelise the first O(logaP) levels of the tree.

@ [

—p T
NICTA MELBOURNE

Tricker cases — Specialisation

foo_clo is expensive and we can parallelise 1ist.map to speed up
foo. But bar_clo is simple and fast, parallelising 1ist.map would

slow it down.

foo

bar

foo_clo

bar_clo

ol n
NICTA MELBOURNE

Tricker cases — Specialisation

Make a copy of list.map and parallelise that, re-write foo so it
calls the new copy of list.map.

Our profiler can collect the necessary information to make these

decisions.
foo bar
par_map list.map
foo_clo bar_clo
(Je

NICTA MELBOURNE

Conclusion

» Parallel garbage collection is an active research area.

» Many other optimisations are being developed to make
automatic parallelisation useful for a wider range of programs.

» Pure, declarative languages make parallelism easier.

» Automatic parallelisation will make it easy for developers to
take advantage of multicore systems.

THE UNIVERSITY OF

NICTA MELBOURNE

Questions?

Questions?

H o
NICTA MELBOURNE

	Mercury
	Motivation and Background
	Automatically Parallelising a program
	Benchmarks
	Trickier cases
	Solution
	Status
	Questions?

