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About my eye sight

About my eye sight

I have roughly 1/8 of normal vision, so I probably won’t see any raised
hands.

If you have a question:

During the presentation Speak up / call out.

After the presentation Raise your hand, a facilitator will help me select
questions.
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Motivation and background

The problem

Multicore systems are ubiquitous, but parallel programming is hard.

Thread synchronisation is very hard to do correctly.

Critical sections are not composable.

Working out how to parallelise a program is usually difficult.

If the program changes in the future, the programmer may have to
re-parallelise it.

This makes parallel programming time consuming and expensive. Yet
programmers have to use parallelism to achieve optimal performance on
modern computer systems.
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Motivation and background

Side effects

int main(int argc, char *argv[]) {

printf("Hello ");

printf("world!\n");

return 0;

}

printf has the effect of writing to standard output. Because this effect is
implicit (not reflected in the arguments), we call this a side effect.

When you are looking at unfamiliar code, it is often impossible to tell
whether a call has a side effect without looking at its entire call tree.

Making all effects visible and therefore easier to understand would make
both parallelization and debugging much easier.
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Motivation and background

Mercury and Effects

In Mercury, all effects are explicit, which helps programmers as well as the
compiler.

main(IO0, IO) :-

write_string("Hello ", IO0, IO1),

write_string("world!\n", IO1, IO).

The I/O state represents the state of the world outside of this process.
Mercury ensures that only one version is alive at any given time.

This program has three versions of that state:

IO0 represents the state before the program is run

IO1 represents the state after printing Hello

IO represents the state after printing world!\n.
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Motivation and background

Effect Dependencies

qsort([]) = [].

qsort([Pivot | Tail]) = Sorted :-

(Bigs0, Smalls0) = partition(Pivot, Tail), %1

Bigs = qsort(Bigs0), %2

Smalls = qsort(Smalls0), %3

Sorted = Smalls ++ [Pivot | Bigs]. %4

1

2 3

4

Bigs0 Smalls0

Bigs Smalls

Steps 2 and 3 are independent.

This is easy to prove because
there are never any side effects.

The compiler may execute them
in parallel.
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Explicit parallelism

Explicit parallelism

qsort([]) = [].

qsort([Pivot | Tail]) = Sorted :-

(Bigs0, Smalls0) = partition(Pivot, Tail),

(

Bigs = qsort(Bigs0)

&

Smalls = qsort(Smalls0)

),

Sorted = Smalls ++ [Pivot | Bigs].

The comma separates goals within a conjunction. The ampersand has the
same semantics, except that the conjuncts are executed in parallel.
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Explicit parallelism

Parallelism overlap

qsort1 qsort1 qsort2 qsort2

qsort1 qsort2

qsort2 qsort2

qsort2

Quicksort can be parallelised easily and reasonably effectively. However,
most code is much harder to parallelise, due to dependencies.
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Parallel overlap

map foldl

map_foldl(_, _, [], Acc, Acc).

map_foldl(M, F, [X | Xs], Acc0, Acc) :-

M(X, Y),

F(Y, Acc0, Acc1),

map_foldl(M, F, Xs, Acc1, Acc).

During parallel execution, a task will block if a variable it needs is not
available when it needs it.

F needs Y from M, and the recursive call needs Acc1 from F.

Can map foldl be parallelised despite these dependencies,
and if yes, how?
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Parallel overlap

Parallelisation of map foldl

Y is produced at the very end of M and consumed at the very start of F, so
the execution of these two calls cannot overlap.

Acc1 is produced at the end of F, but it is not consumed at the start of
the recursive call, so some overlap is possible.

map_foldl(_, _, [], Acc, Acc).

map_foldl(M, F, [X | Xs], Acc0, Acc) :-

(

M(X, Y),

F(Y, Acc0, Acc1)

&

map_foldl(M, F, Xs, Acc1, Acc)

).
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Parallel overlap

map foldl overlap

M F

Acc1

M F

Acc1’Acc1

M F

Acc1’

The recursive call needs Acc1 only when it calls F. The calls
to M can be executed in parallel.
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Parallel overlap

map foldl overlap

M F

Acc1

M F

Acc1’Acc1

M F

Acc1’

The more expensive M is relative to F, the bigger the
speedup.
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Parallel overlap

Profiler feedback

We need to know:

the costs of calls through each call site, and

the times at which variables are produced and consumed.

We extended the Mercury profiler to give us this information, to allow
programs to be automatically parallelised like this:

source compile profile analyse feedback

compile
final

executable
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Parallel overlap

Overlap with more than one dependency

We calculate the execution time of q by iterating over the variables it
consumes in the order that it consumes them.

p pB + pC + pR qB + qC + qR q

B C

pB pC pR

B C

qB qC qR

q qB + qC qR

B C

qB qC qR
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Parallel overlap

Overlap with more than one dependency

The order of consumption may differ from the order of production.

p pC + pB + pR qB + qC + qR q

BC

pC pB pR

B C

qB qC qR

q qB qC + qR

B C

qB qC qR
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Parallel overlap

Overlap of more than two tasks

A task that consumes a variable must be after the task that generates its
value. Therefore, we build the overlap information from left to right.

p pA+ pR

A

pA pR

q qA qB + qR

A

qA qB qR

B

r rB rR

B

rB rR
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Parallel overlap

Overlap of more than two tasks

In this example, the rightmost task consumes a variable produced by the
leftmost task.

p pA+ pR

A

pA pR

q qA qR

A

qA qR

r rA rR

A

rB rR
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Parallel overlap

How to parallelise

g1, g2, g3

(g1 & g2), g3

g1, (g2 & g3)

g1 & g2 & g3

Each of these is a sequential conjunction of parallel conjunctions, with
some of the conjunctions having only one conjunct.

If there is a g4, you can (a) execute it after all the previous sequential
conjuncts, or (b) put it as a new goal into the last parallel conjunction.

There are thus 2N−1 ways to parallelise a conjunction of N goals.

If you allow goals to be reordered, the search space would
become larger still.
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Parallel overlap

How to parallelise

X = (-B + sqrt(pow(B, 2) - 4*A*C)) / 2 * A

Flattening the above expression gives 12 small goals, each executing one
primitive operation:

V1 = 0 V5 = 4 V9 = sqrt(V8)

V2 = V1 - B V6 = V5 * A V10 = V2 + V9

V3 = 2 V7 = V6 * C V11 = V3 * A

V4 = pow(B, V3) V8 = V4 - V7 X = V9 / V11

Primitive goals are not worth spawning off. Nonetheless, they can appear
between goals that should be parallelised against one another, greatly
increasing the value of N.
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Parallel overlap

How to parallelise

Currently we do two things to reduce the size of the search space from
2N−1:

Remove whole subtrees of the search tree that are worse than the
current best solution (a variant of “branch and bound”)

If the search is still taking to long, then switch to a greedy search
that is approximately linear.
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Parallel overlap

Where to parallelise

We should only explore the parts of the program that might contain
profitable parallelism.

We therefore start at the entry point of the program, and do a depth-first
search of the call graph until either:

the current node’s execution time is too small to contain profitable
parallelism, or

we have already identified enough parallelism along this branch to
keep all the CPUs busy.
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Benchmarks

Benchmarks — Mandelbrot image generator

dependant parallelism using
map foldl.

280 LoC.

Automatically parallelised.

Light garbage collector usage.

0 5 10 15 20 25 30 35
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P = 1
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P = 3

P = 4
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17

14

12

Elapsed time (seconds)
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Benchmarks

Benchmarks — Mandelbrot image generator

Modified so that independant
parallelism is used.

Automatically parallelised.
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Benchmarks

Benchmarks — ICFP 2000 raytracer

6,200 LoC.

Automatically parallelised.

Heavy garbage collector usage.

Code was altered to make it less
stateful.

0 10 20 30 40 50 60 70 80 90 100 110 120 130
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Benchmarks

Benchmarks — ICFP 2000 raytracer

Increasing the initial heap size for the
Boehm GC reduces the number of
“stop the world” events.

Increasing the size of the thead-local
free lists reduces the contention on
global locks.
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Conclusion

Conclusion

Progress to date:

Can analyse program profiles, and find places where parallelism is
probably profitable.

Can explore a large search space of possible parallelisations efficiently.

Auto-parallelisation already yields speedups for some small programs.

Future work:

Build an advice system that informs programmers why something
cannot be parallelised.

Handle loops and divide-and-conquer code more intelligently.

Test alternative ways of exploring the program’s call graph.

Account for barriers to effective parallelism, including
garbage collection and memory bandwidth limits.
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Conclusion

Questions?

Mercury http://www.mercury.csse.unimelb.edu.au
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Backup slides

State variable notation

main(!IO) :-

write_string("Hello ", !IO),

write_string("world!\n", !IO).

!VarName is syntactic sugar for a pair of variables. The compiler will
create as many variables as their are versions of the state they represent,
and thread them through calls where !VarName appears.

This is not limited to the I/O state.
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Backup slides

Divide and conquer

On average, this creates O(N) small parallel tasks. This is far too many
since most systems have far fewer than N cores.

Task 1

Task 2

Task 3 Task 4

Task 5 Task 6 Task 7 Task 8
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Backup slides

Divide and conquer

It is much better to parallelise the first O(log2P) levels of the tree.

Task 1

Task 2
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