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Abstract. Dividing the heap memory of programs into regions is the
starting point of region-based memory management. In our existing work
of enabling region-based memory management for Mercury, a program
analysis was used to distribute data over the regions. An important goal
of the analysis is to decide which program variables should end up in
the same region. For a popular class of programs, it covetously puts
program variables in the same region, while more memory could have
been reused if they had been kept in separate ones. In this paper we define
a new refined region analysis that is keen to keep program variables in
separate regions by taking into account the different execution paths of a
procedure. With the more precise, path-sensitive analysis we can reduce
the memory footprint for several programs.

1 Introduction

Logic programming languages have a long tradition of freeing programmers from
procedural chores such as manual memory management. A recent approach to
automated memory management apart from runtime reference-tracing garbage
collection is to rely on static analysis and program transformation that can
approximate lifetime of program data and instruct the program to reuse dead
memory at runtime. Region-based memory management (RBMM) follows this
approach. It is based on statically dividing the heap memory into different parts,
called regions, in which program terms are stored. Then the aim is to arrange
this in such a way that the memory occupied by dead terms can simply be
released by reclaiming their region as a whole. Recently region-based memory
management has been made available in several mainstream logic programming
systems, such as in Prolog [3] and in Mercury [4, 6].

In [4] and [6] we have developed an RBMM system for Mercury. The static re-
gion analysis and transformation was given in [4], which annotate programs with
region instructions that take care of the timely creation and removal of regions
and also of the adequate distribution of the terms over the regions. In [6] we de-
scribed the runtime support needed for RBMM that could also handle backward
execution. Although the system gave very promising results, in terms of memory
consumption as well as runtime speedup, for almost all of the benchmarks [6],
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the static region analysis in [4] sometimes too eagerly grouped variables into
regions without taking into account different execution paths, reducing reuse
opportunities.

Our contribution in this paper is the improvement of the region analysis and
transformation in [4]. By distinguishing execution paths we obtain a more precise
region allocation that ultimately leads to better memory reuse.

Section 2 motivates our new approach of dealing with different execution
paths. Section 3 describes how we use, just as in [5], type-based graphs to model
the regions of types. The concept of region points-to graphs and its extension
with same-edges to keep apart regions are in Section 4. The region points-to
analysis, Section 5, computes a safe region model and now is linked up with
region liveness analysis in Section 6 to ensure the safety of same-edges. This link
is described in Section 7. In Section 8 we show the impact of same-edges on the
program transformation. Section 9 discusses and concludes.

2 Motivation

We assume the reader is familiar with Mercury [7]. The explicit declarations
of types and modes in Mercury enables its compiler to convert all predicate
definitions into procedures in superhomogeneous form in which unifications are
specialized into <= for construction unifications, => for deconstruction unifica-
tions, == for equality tests, and := for assignments.

We will look at the relation between assignments and regions in particular.
Consider the assignment X := Y, which binds the free variable X to the value of
Y. For now we assume that the value of the variable Y is simply stored in one
region. (We come back to the issue of storage of variables later in Section 3). As
after the assignment X and Y are bound to the same value in a region, we can
say that the two variables are in the same region.

The code in Figure 1 is a part of a Mercury program that manipulates lists
of integers. We associate a program point with every literal (i.e., a specialized

% (in, in, out). % (in, out).
q(N, X, Z) :- produce(X, Y) :-
( if (

(1) N > 0 (1) X => [],
then (2) Y <= []

(2) Z := X ;
else (3) X => [Xe | Xs],

(3) produce(X, Y), (4) produce(Xs, Ys),

(4) Z := Y (5) Y <= [Xe + 1 | Ys]
). ).

Fig. 1: The running example in the compiler-internal superhomogeneous form.

unification or a procedure call) in the body of a procedure. An execution path

is a sequence of program points, such that at runtime the literals associated
with these program points are performed in sequence. The procedure q has
two execution paths: 〈(1), (2)〉 and 〈(3), (4)〉 in which different assignments for
Z occur. In the second execution path q invokes produce that can assumably
put its output argument Y in a region different from that of X. The code of
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produce in Figure 1 follows this pattern. If after a call to produce its input
is no longer needed, we can reclaim its memory by removing its corresponding
region, without affecting the output. The call to produce at (3) in q is such a
call. In q, after the assignment at (2) in the first execution path, that Z is bound
to the list bound to by X implies that these two variables are in the same region.
Similarly, at (4) in the second execution path we have that Z and Y are in the
same region. So, it seems reasonable and it is actually safe to put all X, Y and Z

in one region.
The region points-to analysis in [4] follows this “eager” approach. If the

program follows the second execution path of q, the eager approach prohibits
the reclamation of the memory of X, even when it is dead after the call to produce

(recall that we assume that X and Y are independent). The memory for X could
have been reclaimed if it had been kept apart in a different region from that of
Y and Z.

Let us explore the idea of keeping apart the regions for X, Y and Z in order
to be able to reclaim memory better. Thus we would like to keep X, Y and Z

in different regions. An assignment like Z := X could then involve the copying
of the value of X into the region of Z. Although this allows us to reclaim the
memory of X in the else branch, it incurs overhead due to the copying, which is
not desirable as it is linear to the size of the value. In this example, we can do
better by reusing the region of X as the region of Z at (2) and the region of Y as
the region of Z at (4), while the memory of X is reclaimed in produce as shown
in Figure 2. We can view this as the result of distinguishing execution paths of

q(N, X@R1, Z@R3) :- produce(X@R4, Y@R5) :-

( if (
(1) N > 0 (1) X => [],

then remove(R4),

(2) Z := X, create(R5),
reuse_for(R1, R3) (2) Y <= [] in R5

else ;
(3) produce(X@R1, Y@R2), (3) X => [Xe | Xs],
(4) Z := Y, (4) produce(Xs@R4, Ys@R5),

reuse_for(R2, R3) (5) Y <= [Xe + 1 | Ys] in R5
). ).

Fig. 2: Region-annotated version.

a procedure when dividing its variables into regions. In the first execution path,
X and Z are in the same region while in the second one, X is in a region different
from that of Y and Z.

In the annotated version, we use region variables R’s to refer to regions [6].
The region instruction create(R) creates a region and makes R bound to it while
remove(R) removes the region that R is bound to. reuse for(R1, R2) makes
R2 bound to the region bound to by R1, R1 is considered dead after that. We use
@R to illustrate the passing of regions as arguments and annotate construction
unifications with in R, the region into which the allocation happens. Then the
behaviour of the code is as follows. A caller of q prepares X in the region bound
to by R1 and expects Z in some region bound to by R3. If the first execution path
of q is taken R3 will be bound to the region R1. If the second path is, the call to
produce removes R1 and creates R2 in its base case, then R3 is bound to R2.
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3 Modelling the Regions based on Types

In this section we explain the relationship between types and the storage of
program variables in regions. The simplifications we make in the rest of this
paper can easily be overcome, more details can be found in [5].

We use the type of a variable, which determines its values, to distribute such
a value (i.e., the term bound to by the variable) over several regions. A list is
stored in two regions: one for the list-skeleton and one for the elements of the
list. A program, such as quicksort and naive reverse on lists, often creates several
temporary lists but the elements of the input list are needed through out. When
a temporary list is no longer needed, its list-skeleton as a whole can be freed by
one single action namely by removing its region.

The regions can be derived from the type declarations [5]. Consider the fol-
lowing types.
:- type elem ---> f; g(int); h(list_int, int).

:- type list_elem ---> []; [elem | list_elem].

The principal functors of list elem are []/0 and [|]/2. The memory needed to
represent the [|]/2 functor and its arguments is allocated into region r1 . In the
arguments we store pointers to the subterms. The first argument is a pointer to
a value of type elem. Because this is a different type, it is stored into a different
region r2 . The second argument is again of type list elem and we also store it
in the region r1 . In this way the list skeleton as a whole is in one region. The
type elem has three principal functors: f/0, g/1 and h/2. Suppose L has type
list elem and is bound to [f,g(1),h([1,2],2)]. To represent this list L, we
need three regions. In the first we to store the principal functors of list elem,
the so-called list skeleton. The elements of the list are stored the second region,
in particular the principal functors of the elem terms. Some arguments of the
principal functors of elem have type int that does not require extra memory, so
they are in the memory blocks of the g/1 and h/2 functors. The first argument
of h/2 is a list of int’s and needs one more region.

For each type we define a memory-storage scheme modelled by a type-based

region graph TG(N, E) with N a set of nodes and E a set of directed edges.
A node stands for a region variable. Just as program variables get bound to
ordinary Mercury terms during the execution of a program, region variables
will get bound to (physical) regions. A directed edge from one node to another
represents the fact that the region bound to by the region variable represented by
the former node contains references into (points-to) the region bound to by the
region variable represented by the latter one. The reference relation represented
by the edges is actually defined by the type.

The type-based region graph for the type list elem is shown in Figure 3.
The [|] principal functor is stored in Rlist elem . Actually we need a block of two
memory words. [|] has two arguments, the first having the type elem and the
second having the same type list elem. Thus we have two edges from Rlist elem ,
one pointing to Relem where the principal functors of elem (g/1 and h/2) are
stored and the other is a self-edge. The edge labelled (h,1) is due to the first
argument of the functor h/2.
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R
list_elem elem

([|],2)

([|],1) (h,1)

([|],2)

R
list_int

R

Fig. 3: The type-based region graph of the type list elem.

Consider the following type:
:- type t ---> ...; f(t1,..., ti,..., tn); ....

If Rt is represented by the node n, then we have for each type ti that needs
heap storage a node m representing Rti and exactly one edge (n, (f, i), m) with
the label (f, i). We refer to n as the principal node of TG t.

During the execution of the program, the regions used to allocate terms
belonging to a type t, will be an instance of the memory-storage scheme modelled
by TG t, the type-based region graph for t.

4 Region Points-to Graph

We use the notion of a region points-to graph to model the memory used by a
Mercury procedure. We use the set of type-based region graphs, each for each
variable of the procedure, to adequately model the memory locations of the pro-
cedure’s terms. However, we also need to model the sharing of (sub)terms among
the program variables, which is created during the execution of the procedure.
One of the contributions of this paper is the modelling of this sharing.

In Mercury, the instantiation of variables, therefore the sharing among them,
is caused by unifications. We divide the sharing into two groups. First, a con-
struction unification X <= f(..., Y, ...) allocates new memory for storing
the functor f (actually the block of memory words corresponding to f) and cre-
ates sharing between X and Y. Also in a deconstruction unification X => f(...,

Y, ...) Y is instantiated and Y shares with a subterm of X. The regions needed
to store the values of X are given by its type-based region graph in which the
edges point into the regions of subterms. In order to express this sharing be-
tween X and Y, we associate with a node n a set of program variables, vars(n),
whose principal functors are stored in the region that is bound to by the region
variable that is represented by n. The sharing between X and Y (with Y the ith

argument of X) is then represented by having a node nX with X ∈ vars(nX),
an edge (nX , (f, i), nY ) and Y ∈ vars(nY ). The vars set of a node can contain
either zero, one or more than one variable. In the case where constructions and
deconstructions involve variables of recursive types such as lists, e.g., L <= [E

| T] or L => [E | T], L and T are forced to end up in the same vars set. All
the program variables in the vars set of a node may be allocated in the same
region.

Second, an assignment unification X := Y binds X to Y and creates sharing
between X and Y. Previously in [4], we did put the two variables in the same
region, inspired by facilitating recursive types. In the new approach in this paper
we keep their regions apart and just remember that they are candidates for
reusing one for the other after this point. We represent this in a region points-to
graph by a new kind of edges, called same-edges. The sharing created by X :=
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Y is modelled by a directed edge s(nY , i, nX) with i the program point where X

:= Y is found. Note that normally the same-edge between nX and nY should
propagate to the regions of their corresponding subterms.

A region points-to graph for a set of variables V , G(N,E ,S ), consists
of a set of nodes, N , representing region variables, a set of directed edges, E ,
representing references between the regions bound to by these region variables
and a set of directed same-edges, S , to model candidates for reuse. The nodes are
annotated with vars sets: we have V =

⋃

n∈N
vars(n). The node nX denotes the

node such that X ∈ vars(nX). The function node(nX , (f, i)) returns the node
m if (nX , (f, i), m) ∈ E , otherwise it is undefined. The edges in S model regions
that are possible candidates for reuse. Whether the reuse can safely be done
depends on the liveness of the involved regions. This will become clear later.

The region points-to graphs of the procedures q and produce in our running
example are in Figure 4. With same-edges (the dashed arrows) we can keep the

eager approach

([|],2)

q:

X
(2) (4)

R2R1([|],2)

Y

produce:

([|],2) ([|],2)R4 R5

q: keeping apart

X,Y,Z Z Y X

([|],2) ([|],2)

R3

Fig. 4: Region points-to graphs of q and produce.

regions of X, Y, and Z separate (compare to the eager approach where we would
have only one node with these variables in its vars set) while still be able to
capture the fact that at some program points (i.e., at (2) and (4)) they are the
same. Note again that we assume no regions for the integer elements of the list
because they are stored right in the first word of a cons cell.

While locations are represented by the vars sets, all in all, sharing is rep-
resented in a region points-to graph in three ways. Firstly, the directed edges
in E represent sharing of subterms. Secondly, that a vars set of a node may
contain more than one variable represents the fact that these variables may be
bound to the same term. Finally, sharing due to assignments is represented by
the same-edges in S .

5 Region Points-to Analysis

The region points-to analysis computes a region model for a procedure and the
whole program by capturing the locations and the sharing among variables. To
capture sharing we use two operations: unify and same edge. The operation
unify is defined in Algorithm 1. Unifying n and m implies that the variables in
vars(n) and in vars(m) are stored in the same region. To ensure that there is
only one out-edge with a specific label from one node to another, the operation
is recursive, i.e., unifying two nodes may cause more nodes to be unified.

The novelty in this paper (compare to [4]) is the second way to record sharing
by using the same edge operation that is defined by Algorithm 2. When we record
a same-edge between two nodes we also need to recursively record same-edges
for the corresponding nodes reached from them through corresponding edges.
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Algorithm 1 unify(n, m)
Require: G(N,E , S), n, m ∈ N .
Ensure: G(N,E , S) with n representing the unified node.

N = N \ {m}
vars(n) = vars(n) ∪ vars(m)
for all (m, (f, i), k) ∈ E do

if (n, (f, i), k) ∈ E then

E = E \ {(m, (f, i), k)}
else

E = E \ {(m, (f, i), k)} ∪ {(n, (f, i), k)}
end if

end for

for all (k, (f, i), m) ∈ E do

if (k, (f, i), n) ∈ E then

E = E \ {(k, (f, i), m)}
else

E = E \ {(k, (f, i), m)} ∪ {(k, (f, i), n)}
end if

end for

for all s(m, i, k) ∈ S do

if s(n, i, k) ∈ S then

S = S \ {s(m, i, k)}
else

S = S \ {s(m, i, k)} ∪ {s(n, i, k)}
end if

end for

for all s(k, i, m) ∈ S do

if s(k, i, n) ∈ S then

S = S \ {s(k, i, m)}
else

S = S \ {s(k, i, m)} ∪ {s(k, i, n)}
end if

end for

for all l, l′ ∈ N do

if (n, (g, j), l) ∈ E ∧ (n, (g, j), l′) ∈ E ∧ l 6= l′ then

unify(l, l′)
end if

end for

Algorithm 2 same edge(n, m, i)
Require: G(N,E , S), n, m ∈ N .
Ensure: G(N,E , S) with same-edges between n and m and between any two corresponding nodes

reachable from them.
S = S ∪ {s(n, i, m)}
for all (n, (f, i), k) ∈ E ∧ (m, (f, i), k′) ∈ E do

if k 6= k′ ∧ s(k, i, k′) 6∈ S then

same edge(k, k′, i)
end if

end for
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5.1 Intraprocedural Analysis of a Procedure

The intraprocedural analysis initializes Gp and then captures the sharing created
by the explicit unifications. Its definition is in Algorithm 3. The function pp(l)
returns the program point associated to the literal l.
Algorithm 3 intraproc(p): intraprocedural analysis of a procedure p

Require: p is in superhomogeneous form.
Ensure: Sharing created by explicit unifications is represented in Gp.

Gp = (∅, ∅, ∅)
for all variable X in the procedure p do

Gp = Gp ⊎ init rptg(X)
end for

for all unif ∈ p do

if unif ≡ (X := Y ) then

same edge(nY , nX , pp(unif ))
else if unif ≡ (X => f(Y1, . . . , Yn) or X <= f(Y1, . . . , Yn)) then

for i = 1 to n do

unify(node(nX , (f, i)), nYi
)

end for

end if

end for

As we know the type of each variable in p, we initialize Gp by using the TG

graphs of the variables. In Algorithm 3, we use the function init rptg(X) that
generates a region points-to graph for X from the type-based region graph of the
type of X , TG type(X), by maintaining all the nodes and edges, but initializing
the vars set of the node corresponding to the principal node in TG type(X) with
{X} and those of the other nodes with an empty set, generating a fresh region
variable for each node in the region points-to graph, and setting the set of same-
edges to empty.

The intraprocedural analysis adds all the sharing created by the unifications
in the procedure to Gp. We ignore test unifications because they do not create
any sharing. For construction and deconstruction unifications we unify the nodes
corresponding with the sharing created by them. For an assignment we say that
at its program point the two variables are bound to the same term by adding a
same-edge from the node of the left-hand side variable to the node of the right-
hand side one. This leaves the possibility that in other execution paths they are
not necessarily bound to the same term, therefore they do not necessarily have
to be in the same region either.

5.2 Interprocedural Analysis

The interprocedural analysis, Algorithm 4, updates Gp by integrating the rele-

vant sharing information from the region points-to graphs of the called proce-
dures into Gp.

For a call q(Y1, . . . , Yn), the head of the defining procedure is assumed to
be q(X1, . . . , Xn). The sharing among Xi’s in Gq may not have been present
in Gp as sharing among Yi’s. The interprocedural analysis makes sure that this
will be the case. Firstly, it builds the function α : Nq → Np that maps the
nodes of the formal arguments (Xi’s) to the nodes of the corresponding actual
arguments (Yi’s). Then these nodes are the starting points for the integration
of the remaining sharing. This is done by following the relevant edges in Gq to
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Algorithm 4 interproc(p): interprocedural analysis of a procedure p

Require: p is in superhomogeneous form.
Ensure: The sharing created by procedure calls is represented in Gp(Np, Ep, Sp).

repeat

for all call site in p, at the program point ip do

Assume that the call is q(Y1, . . . , Yn), with X1, . . . , Xn as corresponding formal argu-
ments, and that Gq is available.

% Build an α relation.
for k = 1 to n do

α(nXk
) = nYk

end for

% Ensure α is a function.
for all Xi, Xj do

if α(nXi
) = nYi

∧ α(nXj
) = nYj

∧ nXi
= nXj

∧ nYi
6= nYj

then

unify(nYi
, nYj

)

end if

end for

% Integrate sharing in Gq into Gp.
In the graph Gq , start from each nXi

, follow each edge once and apply the rules P1
and P2 in Figure 5 when applicable.
for all s(nq, , mq) ∈ Sq do

if α(nq) = np ∧ α(mq) = mp ∧ np 6= mp then

same edge(np, mp, ip)
end if

end for

end for

until There is neither change in Gp nor in any of the α functions.

extend the α function to all the relevant nodes in Gq (rule P2) and to unify the
relevant nodes in Gp (rule P1). Then we export the same-edges by relying on the
α function at the call site. The program point of the same-edges is the program
point of the call.

(nq, (f, i), mq) ∈ Eq

α(nq) = np

(np, (f, i), m
′

p) ∈ Ep

α(mq) = mp 6= m
′

p

unify(mp, m
′

p)
(P1)

(nq, (f, i), mq) ∈ Eq

α(nq) = np

(np, (f, i), mp) ∈ Ep

α(mq) undefined

α(mq) = mp

(P2)

Fig. 5: Interprocedural analysis rules.

For a whole program, we can first do the intraprocedural analysis for every
procedure. Then given the fact that in the interprocedural analysis the analysis
information is only propagated from graphs of callees to those of callers, we can
do the interprocedural analysis for a program efficiently by decomposing the call-
dependency graph into a tree of strongly connected components, and analysing
the components in bottom-up order.

6 Region Liveness Analysis

After the region points-to analysis we know the region variables of each procedure
and how the program variables are distributed over the regions to which these
region variables are bound. As regions may need to exist through a sequence
of procedure calls, e.g., a call may allocate memory into an existing region,
we do pass region variables as arguments of procedures. We use the existing
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region liveness analysis [4, 5] to decide which region variables are live at each
program point and which region arguments become live or stop to be live in
each procedure. In this section we summarize the relevant notions. Within the
scope of a procedure we determine the local liveness of (program) variables and
region variables in Section 6.1. The global liveness is discussed in Section 6.2.

6.1 Live Variables and Live Region Variables

We use the notions before and after a program point. Before a program point
means right before the associated literal is going to be executed; while after a
program point means its literal has just been completed. A program variable
is live before a program point if it has been instantiated before the point and
may be used in the future. A program variable is live after a program point if
it has been instantiated before or at the point and may be used in the future.
The live variable analysis computes for each program point i the set of variables
that are live before i, LV before(i), and the set of variables that are live after i,
LV after (i) . The LV before of the first program point(s) in a procedure p is defined
to be the set of input arguments of p, in args(p), while the LV after of the last
program point(s) in a procedure p is defined to be the set of output arguments
of p, out args(p).

A region variable being live means that it should be bound to a region and
that it is possibly used in future (forward) execution. A region variable is live
before (after) a program point if its node is reachable from a variable that is live
before (after) the program point.

The set of nodes that are reachable from a variable is defined as follows.
Reach(X) = {nX} ∪ {m | ∃(nX , m) ∈ E∗(X)},

in which E∗(X) is defined:
E∗(X) = {(nX , ni) | ∃(nX , label0, n1), . . . , (ni−1, label i−1, ni) ∈ E}.

The live region variables sets before and after a program point i are defined:
LRbefore(i) =

S

(Reach(X)) ∀X ∈ LV before (i).

LRafter (i) =
S

(Reach(X)) ∀X ∈ LV after (i).

6.2 Lifetime of Regions across Procedure Boundary

Region arguments are used to pass regions among procedure calls in order to
achieve better memory reuse by keeping the lifetime of regions short. Therefore,
the global liveness analysis part derives which region variables become live or
cease to be live inside a procedure.

Consider a procedure q that is called by some procedure p, we define:

– bornR(q) is the set of region variables of q that are mapped (by the α function
at the call site) to region variables of p that definitely become live inside q,
i.e., in q or in one of the procedures it calls.

– deadR(q) is the set of region variables of q that are mapped to region variables
of p that definitely cease to be live (or become dead) inside q.
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– outlivedR(q) is the set of region variables of q that are mapped to region
variables of p that outlive the call to q. They are live before the call and still
live after the call.

The motivation is that, in the region-annotated program, the region variables of
p that are mapped to by those in bornR(q) will get bound to a region during q

and are still bound after q, the ones mapped to by those in deadR(q) are bound
before the call to q and are safely removed during q, and the ones mapped to
by those in outlivedR(q) are bound before the call and maintain their bindings
throughout the call.

We call the set of the region variables that are local to p (not reachable
from input or output variables), localR(p). The calling contexts of a procedure
influence what a procedure can do to its non-local region variables. Therefore
when analysing a procedure p, region variables that need to be live after the call
to q in p are not allowed in deadR(q) but are put in outlivedR(q): the regions
should not be reclaimed during the call. Similarly, regions already live before
the call to q should not be in bornR(q) but in outlivedR(q): the regions already
exist before the call. Also region alias has its impact. A typical case is when a
procedure, e.g., q(X1, X2), with RX1

6= RX2
is called as q(Y1, Y2), with RY1

≡
RY2

. Then RX1
and RX2

are neither in deadR(q) nor in bornR(q).
A procedure has exactly one bornR set and one deadR set suited for the most

restrictive context. If the procedure is called in a less restrictive context, it will
be the case that creation and removal will happen outside the call.

7 Good Same-Edges

The same-edges in our new region points-to graphs indicate regions that are
candidates for reuse. For a procedure q, we keep a same-edge s(R1 , i,R2 ) with
the intention that after the program point i we should reuse the region bound
to by R1 for R2, i.e., we make R2 bound to the region currently bound to by
R1 and R1 is considered unbound after that. However, it is only safe to do that
if R2 is not yet bound before i, if R1 is not live after i, and if q is allowed to
manipulate them. This implies the following safeness conditions for a same-edge
s(R1 , i,R2 ): R1 ∈ LRbefore(i)\LRafter (i)∧R2 ∈ LRafter (i)\LRbefore(i)∧R1 ∈
deadR(q) ∪ localR(q) ∧ R2 ∈ bornR(q) ∪ localR(q). The first two conditions can
be seen as the local liveness requirements, while the global liveness requirements
are in the last two. We call the same-edges that satisfy the conditions the good

ones. Otherwise there is no point keeping them and their regions can be unified.
In Figure 6, we extend the running example with two calling contexts of

q to show the effect of good and bad same-edges. In the first context, X is no
longer used after the call to q. This program can be annotated as in Figure 7. Its
behaviour is that the region of X, namely R6, is removed in the call to q. This is
safe because X is no longer live after the call. R7 is bound either to the region R6

or to a new region created by the call to produce in q depending on which path
is taken in q. But this does not matter because in main we can assume that R6
is dead and R7 becomes live. And we only need to reclaim R7 afterwards.
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% (in, in, out). % (in, out). % Calling context 1. % Calling context 2.
q(N, X, Z) :- produce(X, Y) :- main(!IO) :- main(!IO) :-
( if ( (1) X <= [1], (1) X <= [1],

(1) N > 0 (1) X => [], (2) q(2, X, Z), (2) q(2, X, Z),
then (2) Y <= [] (3) L <= [Z], (3) L <= [X, Z],

(2) Z := X ; (4) write(L, !IO). (4) write(L, !IO).
else (3) X => [Xe | Xs],

(3) produce(X, Y), (4) produce(Xs, Ys),

(4) Z := Y (5) Y <= [Xe + 1 | Ys]
). ).

Fig. 6: The running example extended with calling contexts of q.

q(N, X@R1, Z@R3) :- produce(X@R4, Y@R5) :- main(!IO) :-
( if ( create(R6),
(1) N > 0 (1) X => [], (1) X <= [1] in R6,

then remove(R4), (2) q(2, X@R6, Z@R7),
(2) Z := X, create(R5), create(R8),

reuse_for(R1, R3) (2) Y <= [] in R5 (3) L <= [Z] in R8,
else ; (4) write(L, !IO),

(3) produce(X@R1, Y@R2), (3) X => [Xe | Xs], remove(R7),
(4) Z := Y, (4) produce(Xs@R4, Ys@R5), remove(R8).

reuse_for(R2, R3) (5) Y <= [Xe + 1 | Ys] in R5

). ).

Fig. 7: Reuse region-annotated version for calling context 1.

In the second calling context, because X is still live after the call to q, the
call is no longer allowed to remove R6. This means that R1 is eliminated from
deadR(q) and therefore R4 is excluded from deadR(produce). The annotated
version now is in Figure 8. In produce there is no remove(R4) after (1) and in

q(N, X@R1, Z@R3) :- produce(X@R4, Y@R5) :- main(!IO) :-
((1) if N > 0 ( create(R6),

then (1) X => [], (1) X <= [1] in R6,
(2) Z := X, create(R5), (2) q(0, X@R6, Z@R7),

reuse_for(R1, R3) (2) Y <= [] in R5 create(R8),
else ; (3) L <= [X, Z] in R8,

(3) produce(X@R1, Y@R2), (3) X => [Xe | Xs], (4) write(L, !IO),

(4) Z := Y, (4) produce(Xs@R4, Ys@R5), remove(R6),
reuse_for(R2, R3) (5) Y <= [Xe + 1 | Ys] in R5 remove(R7),

). ). remove(R8).

Fig. 8: Wrong reuse region-annotated version for calling context 2.

main remove(R6) is added after (4). If the program follows the first execution
path in q, R6 and R7 are bound to the same region. Therefore that region will be
wrongly removed twice in main. In general, we cannot guarantee which execution
path is taken at runtime. Therefore in this case it is not safe to make use of the
(bad) same-edges.

A safe way to handle this situation is to force X, Y, and Z in q into the same
region as in the eager approach in [4]. The annotated program is in Figure 9. If
we used the eager version for the first calling context, we would miss the chance
to reuse the memory of X whenever the second execution path of q is taken.

So after the region liveness analysis we will re-examine the region points-to
graphs to eliminate the bad same-edges based on the above safeness conditions.
If some same-edges are excluded from the region points-to graph of a procedure,
we need to re-run the interprocedural analysis for the SCC that contains the
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q(N, X@R1, Z@R1) :- produce(X@R4, Y@R4) :- main(!IO) :-
( if ( create(R6),
(1) N > 0 (1) X => [], (1) X <= [1] in R6,

then (2) Y <= [] in R4 (2) q(0, X@R6, Z@R6),
(2) Z := X, ; create(R8),

else (3) X => [Xe | Xs], (3) L <= [Z] in R8,
(3) produce(X@R1, Y@R1), (4) produce(Xs@R4, Ys@R4), (4) write(L, !IO),
(4) Z := Y (5) Y <= [Xe + 1 | Ys] in R4 remove(R6),

). ). remove(R8).

Fig. 9: Region-annotated version with the eager approach.

procedure and for the SCCs that depend on it. The live variable analysis does
not need to be run again. But the live region variable analysis and the analysis
that computes bornR and deadR sets of the affected procedures needs to be re-
executed. We can loop through these analyses until no same-edge is removed. At
that time, all the remaining same-edges imply that reuses can safely happen.

8 Transformation

A region-annotated program is finally generated by a program transformation of
the original program taking into account the information derived by the region
points-to analysis and the liveness analysis.

The transformations for adding extra arguments for region arguments, for
annotating construction unifications with region variables, and for introducing
the create and remove instructions are exactly the same as presented in [5].
Here we focus on the introduction of the reuse for instructions.

Because all the remaining same-edges are good ones, if the literal at the
program point i of the same-edge s(R1 , i,R2) is an assignment, we just add
reuse for(R1, R2) after i. If the literal is a procedure call it means that the
reuse happens inside the call and we do not need to make any change.

We can see the effect of same-edges at procedure calls when changing the code
of q by replacing the assignment at (4) with a recursive call as in Figure 10. No
reuse for needs to be added after (4).

q(N, X@R1, Z@R3) :- produce(X@R4, Y@R5) :- main(!IO) :-
( if ( create(R6),

(1) N > 0 (1) X => [], (1) X <= [1] in R6,
then remove(R4), (2) q(2, X@R6, Z@R7),

(2) Z := X, create(R5), create(R8),
reuse_for(R1, R3) (2) Y <= [] in R5 (3) L <= [Z] in R8,

else ; (4) write(L, !IO),
(3) produce(X@R1, Y@R2), (3) X => [Xe | Xs], remove(R7),
(4) q(N - 1, Y@R2, Z@R3) (4) produce(Xs@R4, Ys@R5), remove(R8).

). (5) Y <= [Xe + 1 | Ys] in R5
).

Fig. 10: No reuse for after procedure calls.

9 Discussion and Concluding Remarks

In the paper we have presented an improvement for the region analysis and
transformation in [4] that results in better memory reuse for a certain class of
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programs. By making the region points-to analysis path-sensitive we achieve
a more precise region model of memory use. This information then is verified
against the liveness information to ensure that the transformation is sound. We
formulate the local and global liveness safeness conditions for this purpose.

Implementing the improvement presented in this paper is part of future work.
It should likely not require much extra runtime support from [6].

The class of programs that potentially benefit from this novel extension in-
cludes state transition programs in which a sequence of states are computed
iteratively and typically we are only interested in the last state. A typical exam-
ple is the program Game of Life in which a new generation is generated from a
previous one based on a set of production rules. Its code follows the pattern of
q and produce in Figure 10 in which produce implements the production rules
and q is the loop for computing next generations. As reported in [6], without
region reuse, the program needs maximally 8208 words to run. A closer look into
the program reveals that the skeletons of all the generations, which are lists of
live cells, are stored in one region with a size of 6486 words. This region is the
biggest region of the program. The cells are stored in another region. Because
they are actually shared among the generations, region reuse cannot help to sep-
arate them into different regions. However, region reuse can help with splitting
the skeletons and then reclaiming them. We mimic region reuse for this program
by replacing the assignment between two generations (like the one at (2) in q)
with a call to a procedure that copies the list skeleton: the skeletons of the two
lists are in two different regions. By evaluating the region reuse-mimicking pro-
gram we measure that the maximal number of words used is reduced by 77% to
1856 words due to the fact that the garbage consisting of the skeletons of the
old generations and of temporary data created during the process of generating
a new one is now timely reclaimed.

Birkedal et al. [1] present Storage Mode Analysis that targets the same class
of programs in functional programming. Being an extra phase after the region
inference in [8] that puts all such states into the same region, the analysis then
aims to reset the region before each iteration if it is safe to do so. The decision
is also based on liveness information. However for Game of Life, it requires
manually rewriting the program with a copying function so that the resetting is
possible [2]. Henglein et al. [2] develop an expressive region type system that can
accept several region-annotated versions for a program. Their region inference
based on that type system also can produce an annotated version with the same
region behaviour for Game of Live as ours, without requiring rewriting. One
interesting open problem with their region type system is to have a strong region
inference that, among a number of accepted annotated programs, can choose to
generate an optimal one. We start from an analysis algorithm that performs
well generally and extend it to obtain better results in a popular pattern of
code, which is well known to be difficult for RBMM.

The attentive reader might get worried about programs such as qsort in Fig-
ure 11. In the approach in [4] all the variables involved with the accumulating
parameter and the result are put in the same region. This is perfect because the
accumulator is gradually built up to become the final result. Our new approach
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% Original procedure. % Region-annotated version.
qsort(L, A, S) :- qsort(L@R1, A@R2, S@R3) :-
( (1) L => [], ( (1) L => [],

(2) S := A (2) S := A
; reuse_for(R2, R3)

(3) L => [Le | Ls], ;
(4) split(Le, Ls, L1, L2), (3) L => [Le | Ls],
(5) qsort(L2, A, S2), (4) split(Le, Ls@R1, L1@R4, L2@R5),

(6) A1 <= [Le | S2], (5) qsort(L2@R5, A@R2, S2@R6),
(7) qsort(L1, A1, S) (6) A1 <= [Le | S2] in R6,

). (7) qsort(L1@R4, A1@R6, S@R3)
).

Fig. 11: A chance for optimization.

seems to be spoiling this. First notice that A1 and S2 are in the same region R6

due to the construction. In the first execution path we have a same-edge at (2)
from the region R2 of A to the region R3 of S. In the second execution path we
have a same-edge at (5) from R2 to R6 and a same-edge at (7) from R6 to R3. All
same-edges are “safe”. The resulting region-annotated program has a reuse for

instruction at (2). Actually, this instruction is an overhead. It would be removed
by the following optimization step. For qsort in all execution paths we have a
same-edge path from the region R2 of A to the region R3 of S. Thus, we could
put all the involved variables again in one region. Note that the optimization
condition does not hold for e.g., q in Figure 10. More benchmark programs will
have to be studied in order to know the relevance and the impact of the above
optimization step.
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