
Submitted to:
The 21st Workshop on Logic-based methods in Programming
Environments

c� Paul Bone and Zoltan Somogyi
This work is licensed under the Creative Commons
Attribution-No Derivative Works License.

Profiling parallel Mercury programs
with ThreadScope

Paul Bone∗and Zoltan Somogyi
Department of Computer Science and Software Engineering

University of Melbourne, and
National ICT Australia (NICTA)

{pbone,zs}@csse.unimelb.edu.au

The behavior of parallel programs is even harder to understand than the behavior of sequential pro-
grams. Parallel programs may suffer from any of the performance problems afflicting sequential pro-
grams, as well as from several problems unique to parallel systems. Many of these problems are quite
hard (or even practically impossible) to diagnose without help from specialized tools. We present a
proposal for a tool for profiling the parallel execution of Mercury programs, a proposal whose im-
plementation we have already started. This tool is an adaptation and extension of the ThreadScope
profiler that was first built to help programmers visualize the execution of parallel Haskell programs.

1 Introduction

When programmers need to improve the performance of their program, they must first understand it.
The standard way to do this is to use a profiler. Profilers record performance data from executions of the
program, and give this data to programmers to help them understand how their program behaves. This
enhanced understanding then makes it easier for programmers to speed up the program.

Profilers are needed because the actual behavior of a program often differs from the behavior imag-
ined by the programmer. This is true even for sequential programs. For parallel programs, the gulf
between human estimates and machine realities is usually even wider. This is because every cause that
can cause such differences for sequential programs is present in parallel programs as well, while parallel
programs also have several causes unique to them.

Consider a program containing a loop with many iterations in which the iterations do not depend
on one another and can thus be done in parallel. Actually executing every iteration in parallel may
generate an overwhelming number of parallel tasks. It may be that the average amount of computation
done by one of these tasks is less than the amount of work it takes to spawn one of them off. In that
case, executing all the iterations in parallel will increase overheads to the point of actually slowing the
program down, perhaps quite substantially. The usual way to correct this is to use granularity control
to make each spawned-off task execute not one but several iterations of the loop, thus making fewer but
larger parallel tasks. However, if this is done too aggressively, performance may once again suffer. For
example, there may be fewer tasks created than the computer has processors, causing some processors to
be idle when they could be used. More commonly, the iterations of the loop and thus the tasks may each
need a different amount of CPU time. If there are eight processors and eight unevenly sized tasks, then
some processors will finish their work early, and be idle while waiting for the others.

All these problems can arise in programs with independent parallelism: programs in which paral-
lel tasks do not need to communicate. Communication between tasks makes this situation even more

∗Paul’s work was supported by an Australian Postgraduate Award and a NICTA top-up scholarship.

32



2 Profiling parallel Mercury programs with ThreadScope

complicated, especially when a task may block waiting for information from another task. A task that
blocks may in turn further delay other tasks that depend on data it produces. Chains of tasks that produce
and consume values from one another are common, Programmers need tools to help them identify and
understand performance problems, whether they result from such dependencies or other causes.

Profiling tools that can help application programmers can also be very useful for the implementors of
runtime systems. While optimizing Mercury’s parallel runtime system, we have needed to measure the
costs of certain operations and the frequency of certain behaviors. Some examples are: when a piece of
work is made available, how quickly can a sleeping worker-thread respond to this request? When a task
is made runnable after being blocked, how often will it be executed on the same CPU that was previously
executing it, so that its cache has a chance to be warm? Such information from profiles of typical parallel
programs can be used to improve the runtime system, which can help improve the performance of all
parallel programs.

A third category of people who can use profiling tools for parallel programs is researchers working
on automatic parallelization tools. Doing a good job of automatically parallelizing a program requires
a cost-benefit analysis for each parallelism opportunity, which requires estimates of both the cost and
the benefit of each opportunity. Profiling tools can help researchers calibrate the algorithms they use to
generate estimates of both costs and benefits.

As researchers working on the parallel implementation of Mercury [13], a pure logic programming
language designed for the creation of large, reliable and efficient application programs, we fall into all
three of the above categories. We have long needed a tool to help us understand the behavior of parallel
Mercury programs, of the parallel Mercury runtime system and of our autoparallelization tool [4], but
the cost of building such a tool seemed daunting. We therefore looked around for alternative approaches.
The one we selected was to adapt to Mercury an existing profiler for another parallel system.

The profiler we chose was ThreadScope [9], a profiler built by the team behind the Glasgow Haskell
Compiler (GHC) for their parallel implementation of Haskell. We chose ThreadScope because the run-
time system it was designed to record information from has substantial similarities to the Mercury run-
time system, because it was designed to be extensible, and, like many visualization tools, it is extremely
useful for finding subtle issues that cause significant problems.

The structure of the paper is as follows. Section 2 gives the background needed for the rest of the
paper: it introduces Mercury, the machinery involved in the parallel execution of Mercury programs, and
the ThreadScope profiler. Section 3 describes how we extended the ThreadScope system to collect the
kinds of data needed to describe the parallel execution of Mercury programs, while section 4 describes
how one can analyze that data to yield insights that can be useful to our three audiences: application
programmers, runtime system implementors, and the implementors of autoparallelization tools. Section 5
concludes with a discussion of related work.

2 Background

2.1 Mercury

Mercury is a pure logic programming language. The atomic constructs of Mercury are unifications, plain
first-order calls, and higher-order calls. Its composite constructs are sequential and parallel conjunctions,
disjunctions, switches, if-then-elses, negations and existential quantifications. A switch is a disjunction
in which each disjunct unifies the same bound variable with a different function symbol; the others should
all be self-explanatory.

33



Paul Bone and Zoltan Somogyi 3

Mercury has a strong mode system. The mode system classifies each argument of each predicate as
either input or output; there are exceptions, but they are not relevant to this paper. If input, the caller
must pass a ground term as the argument. If output, the caller must pass a distinct free variable, which
the predicate will instantiate to a ground term. It is possible for a predicate to have more than one mode;
we call each mode of a predicate a procedure. The compiler generates separate code for each procedure
of a predicate. The mode checking pass of the compiler is responsible for reordering conjuncts (in
both sequential and parallel conjunctions) as necessary to ensure that for each variable shared between
conjuncts, the goal that generates the value of the variable (the producer) comes before all goals that
use this value (the consumers). This means that for each variable in each procedure, the compiler knows
exactly where that variable is bound to a ground term.

Each procedure and goal has a determinism, which may put upper and lower bounds on the number
of its possible solutions (in the absence of infinite loops and exceptions). A determinism may impose an
upper bound of one solution, and it may impose a lower bound of one solution. det procedures succeed
exactly once; semidet procedures succeed at most once; multi procedures succeed at least once; nondet
procedures may succeed any number of times.

2.2 Parallelism in Mercury

The Mercury runtime system has a construct called a Mercury engine that represents a virtual CPU. Each
engine is independently schedulable by the OS, usually as a POSIX thread. The number of engines that
a parallel Mercury program will allocate on startup is configurable by the user, but it defaults to the
actual number of CPUs. Another construct in the Mercury runtime system is a context, which represents
a computation in progress. An engine may be idle, or it may be executing a context; a context can be
running on an engine, or it may be suspended. When a context finishes execution, its storage is put back
into a pool of free contexts for later reuse. Following [11], we use sparks to represent goals that have
been spawned off but whose execution has not yet been started.

The only parallel construct in Mercury is parallel conjunction: (G1 & . . . & Gn). All the conjuncts
must be deterministic, that is, they must all have exactly one solution. This restriction greatly simplifies
the implementation, since it guarantees that there can never be any need to execute (G2 & . . . & Gn)
multiple times, just because G1 has succeeded multiple times. (Any local backtracking inside G1 will
not be visible to the other conjuncts; bindings made by det code are never retracted.) In practice, we have
not found this to be a significant limitation.

The Mercury compiler implements (G1 & G2 & . . . & Gn) by creating a data structure representing
a barrier, and then spawning off (G2 & . . . & Gn) as a spark. Since (G2 & . . . & Gn) is itself a parallel
conjunction, it is handled the same way: the context executing it first spawns off (G3 & . . . & Gn) as
a spark, and then executes G2 itself. Eventually, the spawned-off remainder of the conjunction consists
only of the final conjunct, Gn, and the context just executes it. The code of each conjunct synchronizes
on the barrier once it has completed its job. When all conjuncts have done so, the original context will
continue execution after the parallel conjunction.

Mercury’s mode system allows a parallel conjunct to consume variables that are produced by con-
juncts to its left, but not to its right. This guarantees the absence of circular dependencies and hence the
absence of deadlocks between the conjuncts, but it does allow a conjunct to depend on data that is yet
to be computed by a conjunct running in parallel. We handle these dependencies through a source-to-
source transform [15]. The compiler knows which variables are produced by one parallel conjunct and
consumed by another. For each of these shared variables, it creates a data structure called a future [8].
When the producer has finished computing the value of the variable, it puts the value in the future and

34



4 Profiling parallel Mercury programs with ThreadScope

signals its availability. When a consumer needs the value of the variable, it waits for this signal (if it has
not yet happened), and then retrieves the value from the future.

To minimize waiting, the compiler pushes signal operations on each future as far to the left into its
producer conjunct as possible, and it pushes wait operations as far to the right into each of its consumer
conjuncts as possible. This means not only pushing them into the body of the predicate called by the
conjunct, but also into the bodies of the predicates they call, with the intention being that each signal
is put immediately after the primitive goal that produces the value of the variable, and each wait is put
immediately before the leftmost primitive goal that consumes the value of the variable.

2.3 ThreadScope

ThreadScope was originally built to help programmers visualize the parallel execution of Haskell pro-
grams compiled with the dominant implementation of Haskell, the Glasgow Haskell Compiler or GHC.
The idea is that during the execution of a parallel Haskell program, the Haskell runtime system writes
time-stamped reports about significant events to a log file. The ThreadScope tool later reads this log file,
and shows the user graphically what each CPU was doing over time. The diagrams it displays reveal to
the programmer the places where the program is getting the expected amount of parallelism, as well as
the places where it isn’t.

We could adapt the ThreadScope system to Mercury for two main reasons. The first is that the par-
allel implementations of Haskell and Mercury in GHC and mmc (the Melbourne Mercury compiler) are
quite similar in several important respects, even though they use different terms for (slightly different im-
plementations of) the same concepts. For example, what Mercury calls an engine GHC calls a capability,
and what Mercury calls a context GHC calls a thread. (We will use Mercury terminology in the rest of
the paper.) The second reason is that the ThreadScope log file format was designed to be extensible.
Each log file starts with a description of each kind of event that may occur in it. This description lists the
arguments of the event and their total size, which may be variable. This description is precise enough
that tools can skip events, and even of events, that they do not understand, and process the rest.

Mercury is able to make use of a number of event types already supported by ThreadScope and
GHC, in other cases we are able to add support for Mercury-specific event types to ThreadScope. Here
we introduce the events in the first category, The next section describes those in the second category.
Events of all types have a timestamp that records the time of their occurrence, measured in nanoseconds.
This unit illustrates the level of precision ThreadScope aims for, although of course there is no guarantee
that the system clock is capable of achieving it.

Most events in the log file are associated with an engine. To avoid having to include an engine id
with every event in the log file, the log file format groups sequences of events that are all from the same
engine into a block, and writes out the engine id just once, in a block header pseudo-event. Since tools
reading the log file can trivially remember the engine id in the last block header they have read, this
makes the current engine id (the id of the engine in whose block an event appears) an implicit parameter
of most event types.

The event types supported by the original version of ThreadScope that are relevant to our work are
the following.

STARTUP: Marks the beginning of the execution of the program, and records the number of engines
that the program will use.

SHUTDOWN: Marks the end of the execution of the program.
CREATE THREAD: Records the act of the current engine creating a context, and gives the id of the

context being created. (What Mercury calls a context Haskell calls a thread; the name of the event uses

35



Paul Bone and Zoltan Somogyi 5

Haskell terminology.) Context ids are allocated sequentially, but the parameter cannot be omitted, since
the runtime system can and will reuse the storage of a context after the termination of the computation
that has previously used it.

RUN THREAD: Records the scheduling event of the current engine switching to execute a context,
and gives the id of the context being switched to.

STOP THREAD: Records the scheduling event of the current engine switching away from executing
a context. Gives the id of the context being switched from, as well as the reason for the switch. The
possible reasons include: (a) the heap is full, and so the engine must invoke the garbage collector; (b) the
context has blocked, and (c) the context has finished.

THREAD RUNNABLE: Records that the current engine has made a blocked context runnable, and
gives the id of the newly-runnable context.

RUN SPARK: Records that the current engine is starting to run a spark that it retrieved from its own
local spark queue. Gives the id of the context that will execute the spark, although this can be inferred
by context.

STEAL SPARK: Records that the current engine will run a spark that it stole from the spark queue
of another engine. Gives the id of the context that will execute the spark, although again, this can be
inferred by context. Also gives the id of the engine that the spark was stolen from.

CREATE SPARK THREAD: Records the creation of a new context or the reuse of an old context in
order to execute a spark. Gives the id of the context. Does not say whether the context is new or reused.
In most cases, that information is simply not needed, but if it is, it can be inferred from context.

GC START: The current engine has initiated garbage collection; control of the engine has been taken
away from the mutator.

GC END: Garbage collection has finished on the current engine; control of the engine has been
returned to the mutator.
The longer a parallel program being profiled runs, the more events it will generate. Long running pro-
grams can generate enormous log files. To keep the sizes of log files down as much as possible, events
include only the information they have to. If some information about an event can be inferred from
information recorded for other events, then the design principles of ThreadScope say that information
should be inferred at analysis time rather than recorded at profiling runtime. (The presence of context
ids in RUN SPARK and STEAL SPARK events violates this principle, since they are guaranteed to be
the same as the id of the context already running on that engine or the context id in the following CRE-
ATE SPARK THREAD event. but their removal is prevented by backwards compatibility concerns.) In
most cases, the required inference algorithm is quite simple. For example, answering the question of
whether the context mentioned by a CREATE SPARK THREAD event is new or reused merely requires
searching the part of the log up to that event looking for mentions of the same context id. And we have
already seen how the engine id parameter missing from most of the above events can be deduced from
block headers.

3 New events

In order to support the profiling of parallel Mercury programs, we had to add new arguments to two
of the existing ThreadScope events. Originally, the RUN SPARK and STEAL SPARK events did not
specify the identity of the spark being run or stolen. This is not a problem for the Haskell version of
ThreadScope, since it does not care about sparks’ identities. However, we do, since sparks correspond to
conjuncts in parallel conjunctions, and we want to give to the user not just general information about the

36



6 Profiling parallel Mercury programs with ThreadScope

behavior of the program as a whole, but also about the behavior of individual parallel conjunctions, and of
the conjuncts in them. We have therefore added an id that uniquely identifies each spark as an additional
argument of the RUN SPARK and STEAL SPARK events. Note that CREATE SPARK THREAD does
not need a spark id, since the only two ways it can get the spark it converts into a context is by getting
it from its own queue or from the queue of another engine. A CREATE SPARK THREAD event will
therefore always be preceded by either a RUN SPARK event or a STEAL SPARK event, and the id of
the spark in that event will be the id of the spark being converted.

We have extended the set of ThreadScope event types to include several new types of events. Most of
these record information about constructs that do not exist in Haskell: parallel conjunctions, conjuncts in
those conjunctions, and futures. Some provide information about the behavior of Mercury engines that
ThreadScope for Haskell does not need, either because that information is of no interest, or because the
information is of interest but it can be deduced from other events. Even though the Haskell and Mercury
runtime systems generate many of the same events, the stream of these common events they generate do
not necessarily obey the same invariants.

However, most of the work we have done towards adapting ThreadScope to Mercury has been in the
modification of the parallel Mercury runtime system to generate all of the existing, modified and new
events when called for.

In the rest of this section, we report the event types we have added to ThreadScope. In the next
section, section 4, we will show how the old and new events can be used together to infer interesting and
useful information about the behavior of parallel Mercury programs.

START PAR CONJUNCTION: records the fact that the current engine is about to start executing a
parallel conjunction. It identifies the parallel conjunction in two different ways. The static id identifies
the location of the conjunction in the source code of the program. The dynamic id is the address of the
barrier structure that all the conjuncts in the conjunction will synchronize on when they finish. Note that
barrier structures may be garbage collected, and their storage reused for other barriers used by later code,
so these dynamic ids are not unique across time, but they do uniquely identify a parallel conjunction at
any given moment in time. See the end of this section for a discussion of why we chose this design.

END PAR CONJUNCTION: records the end of a parallel conjunction. It gives the dynamic id of
the finishing conjunction. Its static id can be looked up in the matching START PAR CONJUNCTION
event.

CREATE SPARK: records the creation of a spark for a parallel conjunct by the current engine. Gives
the id of the spark itself, and the dynamic id of the parallel conjunction the conjunct is from. To keep the
log file small, it does not give the position of the conjunct in the conjunction. However, since in every
parallel conjunction the spark for conjunct n+1 will be created by the context executing conjunct n, and
unless n= 1, that context will itself have been created from the spark for conjunct n. (The first conjunct
of a parallel conjunction is always executed directly, without ever being represented by a spark.) This
means that the sparks for the non-first conjuncts will always be created in order, which makes it quite
easy to determine which spark represents which conjunct.

The id of a spark is an integer consisting of two parts. The first part is the number of the engine that
created the spark, and the second is an engine-specific sequence number, so that in successive sparks
created by the same engine, the second part will be 1, 2, 3 etc. This design allows the runtime system to
allocate globally unique spark ids without synchronization.

END PAR CONJUNCT: records that the current engine has finished the execution of a conjunct in
a parallel conjunction. Gives the dynamic id of the parallel conjunction. Note that there is no START -
PAR CONJUNCT event to mark the start of execution of any conjunct. For the first conjunct, its execu-
tion will start as soon as the engine has finished recording the START PAR CONJUNCTION event. The

37



Paul Bone and Zoltan Somogyi 7

first thing the conjunct will do is create a spark representing the second and later conjuncts (which above
we informally referred to as the spark for the second conjunct). The CREATE SPARK event records the
id of the spark, then, either the RUN SPARK or STEAL SPARK event records which engine and con-
text executes the spark, If the engine doesn’t yet have a context a CREATE SPARK THREAD event is
posted that identifies the newly created context. RUN THREAD and STOP THREAD events also tell us
when that context is executing, and on which engine. The first thing the second conjunct does is spawn
off a spark representing the third and later conjuncts. By following these links, a single forward traversal
of the log file can find out, for each engine, which conjunct of which dynamic parallel conjunction it is
running at any given time (if in fact it is running any; an engine can be idle, or it may be running code
that is outside of any parallel conjunction). When an engine records an END PAR CONJUNCT event,
it can only be for the conjunct it is currently executing.

FUTURE CREATE: records the creation of a future by the current engine. Gives the name of the
variable the future is for, as well as the dynamic id of the future. It does not give the dynamic id of
the parallel conjunction whose conjuncts the future is intended to synchronize, but that can be found
out quite easily: just scan forward for the next START PAR CONJUNCTION event. The reason why
this inference works is that the code that creates futures is only ever put into programs by the Mercury
compiler, and mmc never puts that code anywhere except just before the start of a parallel conjunction.
If a parallel conjunction uses n futures, then every one of its START PAR CONJUNCTION events will
be preceded by n FUTURE CREATE events, one for each future.

The dynamic id of the future is its address in memory. This has the same issues with reuse as the
dynamic ids of parallel conjunctions.

FUTURE SIGNAL: records that code running on the current engine has signalled the availability of
the value of the variable protected by a given future. Gives the id of the future. If another conjunct is
already waiting for the value stored in this future, this event will unblock its context.

FUTURE WAIT NO SUSPEND: records that the current engine retrieved the value of the future
without blocking. Gives the id of the future. The future’s value was already available when the engine
tried to wait for the value of the future, so the context running on the current engine was not blocked.

FUTURE WAIT SUSPEND: records that the current engine tried to retrieve the value of a future,
but was blocked. Gives the id of the future. Since the future’s value was not already available, the current
context has been be suspended until it is.

We have added a group of four event types that record the actions of engines that cannot continue
to work on what they were working before, either because the conjunct they were executing finished, or
because it suspended.

TRY GET RUNNABLE CONTEXT: This engine is checking the global run queue for a context to
execute.

TRY GET LOCAL SPARK: This engine is attempting to get a spark from its own stack.
TRY STEAL SPARK: This engine is attempting to steal a spark from another engine.
ENGINE WILL SLEEP: The engine is about to sleep. The next event from this engine will be from

when it is next awake.
The idea is that an idle engine can look for work in three different places: (a) the global runnable

context queue, (b) its own local spark queue, and (c) another engine’s spark queue. An idle engine
will try these in some order, the actual order depending on the scheduling algorithm. The engine will
post the try event for a queue before it actually looks for work in that queue. If one of the tests is
successful, the engine will post a START THREAD event, a RUN SPARK event or a STEAL SPARK
event respectively. If one of the tests fails, the engine will go on the next. If it does not find work in any
of the queues, it will go to sleep after posing the ENGINE WILL SLEEP event.

38



8 Profiling parallel Mercury programs with ThreadScope

This design uses two events to record the successful search for work in a queue: TRY GET -
RUNNABLE CONTEXT and START THREAD, TRY GET LOCAL SPARK and RUN SPARK, or
TRY STEAL SPARK and STEAL SPARK. This may seem wasteful compared to using one event, but
this design enables us to measure several interesting things:

• how quickly a sleeping engine can wake up and try to find work when work is made available by
a CREATE SPARK and or CONTEXT RUNNABLE event;

• how often an engine is successful at finding work;
• when it is successful, how long it takes an engine to find work and begin its execution;
• when it is unsuccessful, how long it takes to try to find work from other sources, fail, and then to
go to sleep.

As we mentioned above, using the address of the barrier structure as the dynamic id of the parallel
conjunction whose end the barrier represents and using the address of the future structure as the dynamic
id of the future are both design choices. The obvious alternative would be to give them both sequence
numbers using either global or engine-specific counters. However, this would require adding a field
to both structures to hold the id, which costs memory, and filling in the field, which costs time. Both
these costs would be incurred by the program execution whose performance we are trying to measure,
interfering with the measurement itself. While such interference cannot be avoided (writing events out
to the log file also takes time), we nevertheless want to minimize it if at all possible. In this case, it is
possible: the addresses of the structures are trivially available, and require no extra time or space during
the profiled run. The tradeoff is that we now need a pre-pass over the log file that consistently renames
apart the different incarnations of the same id for a parallel conjunction or future.

4 Deriving metrics from events
ThreadScope is primarily used to visualize the execution of parallel programs. However, we can also
use it, along with our new events, to calculate and to present to the user a number of different metrics
about the execution of parallel Mercury programs. Some of the metrics are of interest only to application
programmers, or only to runtime system implementors, or only to autoparallelization tool implementors,
but several are useful to two or even all three of those audiences. Also, some of these metrics say
something about the whole program; some say something about individual parallel conjunctions, and
some say something about individual conjuncts inside those conjunctions. We discuss our proposed
metrics in that order; we then discuss how we intend to present them to users.

4.1 Whole program metrics

CPUS OVER TIME: The number of CPUs being used by the program at any given time. It is trivial
to scan all the events in the trace, keeping track of the number of engines currently being used, each
of which corresponds to a CPU. The resulting curve tells programmers which parts of their program’s
execution is already sufficiently parallelized, which parts are parallelized but not yet enough to use all
available CPUs, and which parts still have no parallelism at all. They can then focus their efforts on the
latter. The visualization of this curve has been implemented, and is described by [9].

GC STATS: The number of garbage collections, and the average, minimum, maximum and variance
of the elapsed time taken by each collection. Mercury uses the Boehm-Demers-Weiser garbage collec-
tor [3]. This collector supports parallel marking using GC-specific helper threads rather than the OS
threads that run Mercury engines. Therefore, even when parallel marking is used, we can only calculate

39



Paul Bone and Zoltan Somogyi 9

the elapsed time used by garbage collection, and not the cpu time used by garbage collection. The elapsed
time of each garbage collection is the interval between pairs of GC START and GC END events.

MUTATOR VS GC TIME: The fraction of the program’s runtime used by the garbage collector. We
calculate this by summing the times between pairs of GC START and GC END events, and dividing the
result by the program’s total runtime. (Both sides of the division refer to elapsed time, not CPU time.)
Due to Amdahl’s law [1], this fraction limits the best possible speedup we can get for the program as
a whole by parallelizing the mutator. For example, if the program spends one third of its time doing
GC (which unfortunately actually happens for some parallel programs), then no parallelization of the
program can yield a speedup of more than three, regardless of the number of CPUs available.

NANOSECS PER CALL: The average number of nanoseconds between successive procedure calls.
The Mercury profiler for sequential programs [5] (which has nothing to do with ThreadScope) measures
time in call sequence counts (CSCs); the call sequence counter is incremented at every procedure call.
It does this because there is no portable, or even semi-portable way to access any realtime clocks that
may exist on the machine, and even the non-portable method on x86 machines (the RDTSC instruction)
is too expensive for it. (The Mercury sequential profiler needs to look up the time at every call, which
in typical programs will happen every couple of dozen instructions or so. The Mercury parallel profiler
needs to look up the time only at each event, which occur much more rarely.)

The final value of the call sequence counter at the end of a sequential execution of a program gives
its length in CSCs; say n CSCs. When a parallelized version of the same program is executed on the
same data under ThreadScope, we can compute the total amount of user time taken by the program on
all CPUs; say m nanoseconds. The ratio n/m gives the average number of nanoseconds in the parallel
execution of the program per CSC in its sequential execution. This is useful information, because our
automatic parallelization system uses CSCs, as measured by the Mercury sequential profiler, as its unit
of measurement of the execution time of both program components and system overheads. Using this
scale, we can convert predictions about time made by the tool from being expressed in CSCs to being
expressed in nanoseconds, which is an essential first step in comparing them to reality.

4.2 Conjunction specific metrics

PARCONJ TIME: The time taken by a given parallel conjunction. For each dynamic parallel conjunction
id that occurs in the trace, it is easy to compute the difference between the times at which that parallel
conjunction starts and ends, and it is just as trivial to associate these time intervals with the conjunction’s
static id. From this, we can compute, for each parallel conjunction in the program that was actually
executed, both the average time its execution took, and the variance in that time. This information can
then be compared, either by programmers or by automatic tools, with the sequential execution time of
that conjunction recorded by Mercury’s sequential profiler, to see whether executing the conjunction was
a good idea or not. provided that the two measurements are done in the same units. At the moment,
they are not, but as we discussed above, CSCs can be converted to nanoseconds using the NANOSECS -
PER CALL metric.

PARCONJ RUNNABLE SELF: The number of CPUs that can be used by a given parallel conjunc-
tion. For each dynamic parallel conjunction id that occurs in the trace, we can divide the time between
its start and end events into blocks, with the blocks bounded by the CREATE SPARK THREAD and
STOP THREAD events for its conjuncts, and the FUTURE WAIT SUSPEND and FUTURE SIGNAL
events of the futures used by those conjuncts. We can then compute, for each of these blocks, the number
of runnable tasks that these conjuncts represent. From this we can compute the history of the number
of runnable tasks made available by this dynamic conjunction. We can derive the maximum and the

40



10 Profiling parallel Mercury programs with ThreadScope

time-weighted average of this number, and we can summarize those across all dynamic instances of a
given static conjunction.

Consider a conjunction with n conjuncts. If it has a maximum number of runnable tasks that is sig-
nificantly less than n, this is a sign that the parallelism the programmer aimed for could not be achieved.
If instead the average but not the maximum number of runnable tasks is significantly less than n, this
suggests that the parallelism the programmer aimed for was achieved, but only briefly. The number of
runnable tasks can drop due to either a wait operation that suspends or the completion of a conjunct. Both
dependencies among conjuncts and differences in the execution times of the conjuncts limit the amount
of parallelism available in the conjunction. The impact of the individual drops on the time-weighted
average shows which effects do the most limiting in any given parallel conjunction.

PARCONJ RUNNABLE SELF AND DESC: The number of CPUs that can be used by a given par-
allel conjunction and its descendants. This metric is almost the same as PARCONJ RUNNABLE SELF,
but it operates not just on a given dynamic parallel conjunction, but also on the parallel conjunctions
spawned by the call-trees of its conjuncts as well. It takes their events into account when it divides time
into blocks, and it counts the number of runnable tasks they represent.

The two metrics, PARCONJ RUNNABLE SELF and PARCONJ RUNNABLE SELF AND DESC,
can be used together to see whether the amount of parallelism that can be exploited by the two parallel
conjunctions together is substantially greater than the amount of parallelism that can be exploited by just
the outer parallel conjunction alone. If it is, then executing the inner conjunction in parallel is a good
idea; if it is not, then it is a bad idea.

If the outer and inner conjunction in the dynamic execution come from different places in the source
code, then acting on such conclusions is relatively straightforward. If they represent different invocations
of the same conjunction in the program, which can happen if one of the conjuncts contains a recursive
call, then acting on such conclusions will typically require the application of some form of runtime
granularity control.

PARCONJ RUNNING SELF: The number of CPUs that are actually used by a given parallel con-
junction. This metric is computed similarly to PARCONJ RUNNABLE SELF, but it doesn’t count a
runnable conjunct until gets to use a CPU, and stops counting a conjunct when it stops using the CPU
(when it blocks on a future, and when it finishes).

Obviously, PARCONJ RUNNING SELF can never exceed PARCONJ RUNNABLE SELF for any
parallel conjunction at any given point of time. However, one important difference between the two
metrics is that PARCONJ RUNNING SELF can never exceed the number of CPUs on the system either.
If the maximum value of PARCONJ RUNNABLE SELF for a parallel conjunction does not exceed the
number of CPUS, then its PARCONJ RUNNING SELF metric can have the same value as its PAR-
CONJ RUNNABLE SELF metric, barring competition for CPUs by other parallel conjunctions (see
later) or by the garbage collector.

On the other hand, some conjunctions do generate more runnable tasks than there are CPUs. In such
cases, we want the extra parallelism that the system hardware cannot accommodate in the period of peak
demand for the CPU to “fill in” later valleys, periods of time when the conjunction demands less than
the available number of CPUs. This will happen only to the extent that the delayed execution of tasks
that lost the competition for the CPU does not lead to further delays in later conjuncts through variable
dependencies.

The best way to measure this effect is to visually compare the PARCONJ RUNNING SELF curves
for the conjunction taken from two different systems, e.g. one with four CPUs and one with eight. How-
ever, given measurements taken from e.g. a four CPU system, it should also be possible to predict with
some certainty what the curve would look like on an eight CPU system, by using the times and depen-

41



Paul Bone and Zoltan Somogyi 11

dencies recorded in the four-CPU trace to simulate how the scheduler would handle the conjunction on
an eight CPU machine. Unfortunately, the simulation cannot be exact unless it correctly accounts for
everything, including cache effects and the effects on the GC system.

The most obvious use of the PARCONJ RUNNING SELF curve of a conjunction is to tell program-
mers whether and to what extent that parallel conjunction can exploit the available CPUs.

PARCONJ RUNNING SELF AND DESC: The number of CPUs that are actually used by a given
parallel conjunction and its descendants. This metric has the same relationship to PARCONJ RUN-
NING SELF as PARCONJ RUNNABLE SELF AND DESC has to PARCONJ RUNNABLE SELF. Its
main use is similar to the main use of PARCONJ RUNNING SELF: to tell programmers whether and
to what extent that parallel conjunction and its descendants can exploit the available CPUs. This is im-
portant because a conjunction and its descendants may have enough parallelism even if the top-level
conjunction by itself does not, and in such cases the programmer can stop looking for more parallelism,
at least in that part of the program’s execution timeline.

PARCONJ AVAIL CPUS: The number of CPUs available to a given parallel conjunction. Scan-
ning through the entire trace, we can compute and record the number of CPUs being used at any given
time during the execution of the program. For any given parallel conjunction, we can also compute
PARCONJ RUNNING SELF AND DESC, the number of CPUs used by that conjunction and its de-
scendants. By taking the difference between the curves of those two numbers, we can compute the curve
of the number of CPUs that execute some task outside that conjunction, Subtracting that difference curve
from the constant number of the available CPUs gives the number of CPUs available for use by this
conjunction.

This number’s maximum, time-weighted average and the shape of the curve of its value over time,
averaged over the different dynamic occurrences of a given static parallel conjunction, tell programmers
the level of parallelism they should aim for. Generating parallelism in a conjunction that consistently
exceeds the number of CPUs available for that conjunction is more likely to lead to slowdowns from
overheads than to speedups from parallelism.

PARCONJ CONTINUE ON BEFORE: the probability, for any given parallel conjunction, that the
code after the conjunction will continue executing on the same CPU as the code before the conjunction.
If the parallel conjunction as a whole took only a small amount of time, then CPUs other than the original
CPU will still have relatively cold caches, even if they ran some part of the parallel conjunction. We want
to keep using the warm cache of the original CPU. The better the scheduling strategy is at ensuring this,
the more effectively the system as a whole will exploit the cache system, and the better overall system
performance will be.

PARCONJ CONTINUE ON LAST: the probability, for any given parallel conjunction, that the code
after the conjunction will continue executing on the same CPU as the last conjunct to finish. If the
parallel conjunction as a whole took a large amount of time, then how warm the cache of a CPU will
be for the code after the conjunction depends on how recently that CPU executed either a conjunct of
this conjunction or the code before the conjunction. Obviously, all the conjuncts execute after the code
before the conjunction, so if the conjunction takes long enough for most of the data accessed before the
conjunction to be evicted from the cache, then only the CPUs executing the conjuncts will have useful
data in their caches. In the absence of specific information about the code after the conjunct preferentially
accessing data that was also accessed (read or written) by specific conjuncts, the best guess is that the
CPU with the warmest cache will be the one that last executed a conjunct of this conjunction. The more
often the scheduling strategy executes the code after the conjunction on that CPU, the more effectively
the system as a whole will exploit the cache system, and the better overall system performance will be.

42



12 Profiling parallel Mercury programs with ThreadScope

4.3 Conjunct specific metrics

There are several simple times whose maximums, minimums, averages and variances can be computed
for each static parallel conjunct.

CONJUNCT TIME AS SPARK: the time between the conjunct’s creation (which will be as a spark)
and the start of its execution (when the spark will be converted into a context).

CONJUNCT TIME AS CONTEXT: the time between the start of the conjunct’s execution and its
end.

CONJUNCT TIME BLOCKED: the total amount of time between the start of the conjunct’s execu-
tion and its end that the conjunct spends blocked waiting for a future.

CONJUNCT TIME RUNNABLE: the total amount of time between the start of the conjunct’s execu-
tion and its end that the conjunct spends runnable but not running.

CONJUNCT TIME RUNNING: the total amount of time between the start of the conjunct’s execution
and its end that the conjunct spends actually running on a CPU.

Since every context is always either running, runnable or blocked, the last three numbers must sum
up to the second (in absolute terms and on average, not in e.g. maximum or variance).

Programmers may wish to look at conjuncts that spend a large percentage of their time blocked to
see whether the dependencies that cause those blocks can be eliminated.

CONJUNCT TIME AFTER: the time, for each parallel conjunct, between the end of its execution
and the end of the conjunction as a whole. It is easy to compute this for every dynamic conjunct, and to
summarize it as a minimum, maximum, average and variance for any given static conjunct. If the average
times after for different conjuncts in a given parallel conjunction are relatively stable (have low variance)
but differ substantially compared to the runtime of the conjunction as a whole, then the speedup from
the parallel execution of the conjunction will be significantly limited by Amdahl’s law. In such cases,
the programmer may wish to take two conjuncts that are now executed in parallel and execute them in
sequence. Provided the combined conjunct is not the last-ending conjunct, and provided that delaying
the execution of one of the original conjuncts does not unduly delay any other conjuncts that consume
the data it generates, the resulting small loss of parallelism may be more than compensated for by the
reduction in parallelism overhead. It is of course much harder and maybe impossible to select the two
conjuncts to execute in sequence if the times after for at least some of the conjuncts are not stable (i.e.
they have high variance).

FUTURE SUSPEND TIME FIRST WAITS: for each shared variable in each parallel conjunction:
the minimum, average, maximum and variance of the time of the first wait event on a future for this
variable by each consuming conjunct minus the time of the corresponding signal event. If this value
is consistently positive, then contexts never or rarely suspend waiting for this future; if this value is
consistently negative, then contexts often suspend on this future, and do so for a long time. Programmers
should look at shared variables that fit into the second category and try to eliminate the dependencies
they represent. If that is not possible, they may nevertheless try to reduce them by computing the variable
earlier or pushing the point of first consumption later.

FUTURE SUSPEND TIME ALL WAITS: for each future in each dynamic parallel conjunction: the
minimum, average, maximum and variance of the time of all wait events minus the time of the corre-
sponding signal event, and the count of all such wait events. This metric helps programmers understand
how hard delaying the point of first consumption of a shared variable in a conjunct is likely to be. De-
laying the first consumption is easiest when the variable is consumed in only a few places, and the first
consumption occurs a long time before later consumptions. If the variable is consumed in many few
places, many of these points of consumption are just slightly after the original point of first consumption,

43



Paul Bone and Zoltan Somogyi 13

then significantly delaying the point of first consumption requires eliminating the consumption of the
shared variable in many places in the code, or at least significantly delaying the execution of those many
pieces of code.

FUTURE SUSPEND PROBABILITY FIRST WAIT: for the first wait event of each future: the num-
ber of times the signal event occurs before the wait event versus the number of times the wait event occurs
before the signal event.

FUTURE SUSPEND PROBABILITY ALL WAITS: for each wait event of each future, the number of
times the signal event occurs before the wait event versus the number of times the wait event occurs
before the signal event. Like FUTURE SUSPEND TIME ALL WAITS and FUTURE SUSPEND -
TIME FIRST WAIT, these two metrics can help programmers find out how often contexts are suspended
waiting for futures.

WAITED FUTURE SIGNAL TO CONJUNCT END TIME: the average, maximum and variance of
the time between the signaling of a future on which another context is blocked and the end of the parallel
conjunct that signalled the future. This should be computed for every parallel conjunct that signals at
least one future. If the average is below the time that it normally takes for a context made runnable to
begin executing on an engine, and the variance is low, then it suggests that it is better to execute the
context made runnable by the signal on the same engine immediately after the current conjunct finishes.

FUTURE SIGNAL TO CONJUNCT END TIME: the average, maximum and variance of the time
between the signaling of a future and the end of the parallel conjunct that signaled that future. As above,
this should be computed for every parallel conjunct that signals at least one future. This value can be
used to determine how often the optimization described above will not be useful.

OUT OF ORDER PROBABILITY: given two parallel conjuncts A and B, with A coming logically
before B either by being to the left of B in some conjunction, or by some ancestor of A being to the left
of an ancestor of B in some conjunction, how much time does the system spend with B running while A
is runnable but not running, compared to the time it spends with either A or B running? Ideally, when A
and B are both runnable but the system has only one available CPU, it should choose to run A. Since it
comes logically earlier, the consumers that depend on its outputs will also tend to come logically earlier.
Delaying the running of A has a substantial risk of delaying them, thus delaying the tasks depending on
their outputs, and so on. Any efficient scheduling algorithm must take this effect into consideration.

OUT OF ORDER SCHEDULING BLOCKS ANOTHER CONTEXT: when tasks are executed out of
order, as described above, how much of the time is another context C blocked on a future produced by
A? This metric describes how often out of order execution has a direct impact on another task.

OUT OF ORDER SCHEDULING BLOCKS ANOTHER CONTEXT TC: When tasks are executed
out of order, as described above, how much of the time do other contexts D,E,F . . . block waiting on
a future signaled by C,D,E, . . . which, eventually, depend on A? This metric considers the transitive
closure of the dependency chain measured by the previous metric.

4.4 Presenting metrics to users

The ThreadScope tool is a graphical program. Its main display screen shows a continuous timeline of
the program’s execution on the horizontal axis, while along the vertical axis, the display is divided into a
discrete number of rows, with one row per CPU (per engine in Mercury, per capability in Haskell). The
color of a display point for CPU n at time t shows what CPU n was doing at time t: whether it was idle,
doing GC, or executing the program. The time axis can be scaled to see an overview of the execution
as a whole or to focus on a specific period during the program run. If the current scale allows for it, the
display also shows the individual events that the on-screen picture is derived from. Above the per-CPU

44



14 Profiling parallel Mercury programs with ThreadScope

rows ThreadScope shows a plot that is virtually identical to the curve of the CPUS OVER TIME metric
we defined above, and now it can do so for Mercury programs as well as for Haskell programs.

The main ThreadScope GUI also has a mechanism that allows the user to ask for simple scalar data
about the profiled program run. Originally, it was used only to display the overall time taken by the run.
It is trivial to modify this to let the user input the number of call sequence counts (CSCs) executed by
a sequence version of the same program on the same data, which would allow the tool to compute and
display the value of the NANOSECS PER CALL metric. It is not much harder to modify it to compute
and then output the values of the GC STATS and MUTATOR VS GC TIME metrics.

We plan to modify the ThreadScope GUI so that if the user hovers the pointer over the representation
of an event connected with a parallel conjunction as a whole (such as a START PAR CONJUNCTION
or END PAR CONJUNCTION event), they get a menu allowing them to select one of the conjunction-
specific metrics listed above. The system should then compute and print the selected metric. Similarly if
the user hovers the pointer over the representation of an event connected with a specific parallel conjunct,
they should be able to ask for and get the value of one of the conjunct-specific metrics.

We plan to add to ThreadScope a screen that lists all the parallel conjunctions executed by the pro-
gram. (The information needed for that list is available in the strings representing the static ids of the
executed parallel conjunctions.) By selecting items from this list, the tool should be able to print sum-
maries from all the dynamic occurrences of the conjunction for any of the conjunction-specific metrics.
It should also be able to take users to all those occurrences in the main display.

We also plan to add to ThreadScope a mechanism that allows the user to request the generation of
a plain text file in a machine-readable format containing all the metrics that may be of interest to our
automatic parallelization tool. We want our tool to be able to compare its predictions of autoparallelized
programs with metrics derived from actual measurements of such programs, so that we can help tune its
performance to reduce the resulting discrepancies.

5 Related work and conclusion

Many parallel implementations of programming languages come with visualization tools since (as we
argued in the introduction) the people writing parallel programs need such tools to understand the actual
behavior of their programs, and the people implementing those languages find them useful too. Such
tools have been created for all kinds of programming languages: imperative (even Visual Studio has
one), functional ([2, 10, 12] among others) and logic ([6, 14] and the systems cited by [7]).

Many of these visualizers share common ideas and features. For example, many systems (including
ThreadScope) use a horizontal bar with different parts colored differently to display the behavior of
one CPU, while many other systems use trees that display the structure of the computation. (The latter
approach is more common among visualizers for sequential languages.) Nevertheless, each visualizer
is necessarily oriented towards giving its users what they want, and the users of different systems want
different information, since they are using different languages based on different concepts. For example,
functional languages have no concept of parallel conjunctions, and their concept of data flow between
computations is quite different from Mercury’s, and users of concurrent logic programming languages
such as Concurrent Prolog, Parlog and Guarded Horn Clauses have quite different concerns from users
of Mercury (where to disable parallelism, not where to enable it).

We know of only one visualizer for a not-inherently-concurrent logic programming language that
does nevertheless support dependent AND-parallelism: VACE [14]. However, the ACE system supports
OR-parallelism and independent AND-parallelism as well as dependent AND-parallelism, and its fea-

45



Paul Bone and Zoltan Somogyi 15

tures don’t seem designed to help programmers exploit dependent AND-parallelism better. As far as
we know, noone has built a profiler for a dependent AND-parallel logic programming language with the
capabilities that we propose. We haven’t yet built one either :-), but we are working on it. We expect to
have at least a third of our proposed metrics implemented by the time of the workshop, and many more
by the end of the year.

We would like to thank everyone who has contributed to the development of ThreadScope, in partic-
ular Simon Marlow and Duncan Coutts, who have answered many of our questions, and helped us add
Mercury specific features to ThreadScope.

References
[1] Gene M. Amdahl (1967): Validity of the single processor approach to achieving large scale computing

capabilities. In: Proceedings of the AFIPS Spring Joint Computer Conference, Atlantic City, New Jersey,
pp. 483–485.

[2] Jost Berthold & Rita Loogen (2007): Visualizing parallel functional program runs: Case studies with the
Eden trace viewer. In: Proceedings of the International Conference ParCo 2007, Parallel Computing: Achi-
tectures, Algoritthms and Applications, Jülich, Germany.

[3] Hans Boehm & Mark Weiser (1988): Garbage collection in an uncooperative environment. Software –
Practice and Experience 18, pp. 807–820.

[4] Paul Bone, Zoltan Somogyi & Peter Schachte (2011): Estimating the overlap between dependent computa-
tions. In: Proceedings of the 27th International Conference on Logic Programming, Lexington, Kentucky.

[5] Thomas Conway & Zoltan Somogyi (2001): Deep profiling: engineering a profiler for a declarative pro-
gramming language. Technical Report, Department of Computer Science and Software Engineering, Uni-
versity of Melbourne, Melbourne, Australia.

[6] Ian Foster & Delta Ian Foster (1996): Compositional Parallel Programming Languages. ACM Transactions
on Programming Languages and Systems 18, pp. 454–476.

[7] Gopal Gupta, Khayri A. M. Ali, Mats Carlsson & Manuel V. Hermenegildo (1995): Parallel Execution of
Prolog Programs: A Survey. ACM Transactions on Programming Languages and Systems 23, p. 2001.

[8] Robert H. Halstead (1984): Implementation of MultiLisp: Lisp on a multiprocessor. In: Proceedings of the
1984 ACM Symposium on List and Functional Programming, Austin, Texas, pp. 9–17.

[9] Don Jones, Jr., SimonMarlow& Satnam Singh (2009): Parallel performance tuning for Haskell. In: Proceed-
ings of the Second ACM SIGPLAN Symposium on Haskell, Edinburgh, Scotland, pp. 81–92, doi:http://
doi.acm.org/10.1145/1596638.1596649.

[10] Hans Wolfgang Loidl (1998): Granularity in Large-Scale Parallel Functional Programming. Ph.D. thesis,
Department of Computer Science, University of Glasgow.

[11] Simon Marlow, Simon Peyton Jones & Satnam Singh (2009): Runtime support for multicore Haskell. SIG-
PLAN Notices 44(9), pp. 65–78, doi:http://doi.acm.org/10.1145/1631687.1596563.

[12] Colin Runciman & David Wakeling (1993): Profiling parallel functional computations (without parallel
machines). In: Glasgow Workshop on Functional Programming, Springer.

[13] Zoltan Somogyi, Fergus Henderson & Thomas Conway (1996): The execution algorithm of Mercury, an
efficient purely declarative logic programming language. Journal of Logic Programming 26(1-3), pp. 17–64.

[14] R. Vaupel, E. Pontelli & G. Gupta (1997): Visualization of And/Or-parallel execution of logic programs. In:
Proceedings of the 14th International Conference on Logic Programming, Leuven, Belgium, pp. 271–285.

[15] Peter Wang & Zoltan Somogyi (2011): Minimizing the overheads of dependent AND-parallelism. In: Pro-
ceedings of the 27th International Conference on Logic Programming, Lexington, Kentucky.

46


