
Packing sub-word-size arguments

Packing sub-word-size arguments

Zoltan Somogyi
YesLogic

YesLogic

2018 October 12

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 1 / 30

Packing sub-word-size arguments Classic term representation

Term representation

On a 64 bit architecture, aligned pointers always have the bottom three
bits clear.

Mercury has always used those bottom bits as a primary tag.

In the simplest case, every function symbol gets its own ptag value.
We add the ptag value to the pointer to the memory cell containing the
arguments; we subtract it, or mask it off, before following the pointer.

This works for up to eight function symbols.

:- type t

---> f0(...) % ptag 0

; f1(...) % ptag 1

; ...

; f6(...) % ptag 6

; f7(...). % ptag 7

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 2 / 30

Packing sub-word-size arguments Classic term representation

Local secondary tags

Constants, i.e. function symbols without arguments, don’t need a memory
cell. We allocate the ptag value 0 to all constants in a type, and
distinguish between them using a local secondary tag stored in the 61 bits
left over.

:- type t

---> c0 % ptag 0, local sectag 0

; c1 % ptag 0, local sectag 1

; c2 % ptag 0, local sectag 2

; f1(...) % ptag 1

; ...

ptaglocal sectag

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 3 / 30

Packing sub-word-size arguments Classic term representation

Remote secondary tags

We assign ptag value 0 to all the constants, if any.

We assign ptag values up to 6 to nonconstant function symbols.

If there is more than one function symbol remaining, then we assign
the last ptag value (7) to all of them, and distinguish between them
using a 64 bit remote secondary tag stored in the first word of the
memory cell.

111 remote sectag

arg 1

arg 2

arg 3

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 4 / 30

Packing sub-word-size arguments Classic term representation

Types using other allocation schemes

We represent values of types containing only N constants using the
integers 0 .. N-1, like enums in C.

:- type suit ---> club ; diamond ; heart ; spades.

Types with one function symbol of arity one are notag types. We represent
them as if the wrapper wasn’t there, e.g. we represent a counter as an int.

:- type counter ---> counter(int).

Types with one function symbol of arity zero are dummy types. Their
representation does not need any bits.

:- type dummy ---> dummy.

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 5 / 30

Packing sub-word-size arguments Classic term representation

Direct arg optimization

This optimization applies to function symbols with exactly one argument
(such as tf1 and tf2) where that argument is of a type whose values’
ptags are guaranteed to be 000 (such as s1 and s2).

:- type s1 ---> sf1(sf11, sf12, ...).

:- type s2 ---> sf2(sf21, sf22, ...).

:- type t ---> tf1(s1)

; tf2(s2).

The optimization repurposes those guaranteed-to-be-000 bits in s1 and s2

to distinguish between tf1 and tf2.

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 6 / 30

Packing sub-word-size arguments Classic term representation

Without direct arg optimization

:- type s1 ---> sf1(sf11, sf12, ...).

:- type s2 ---> sf2(sf21, sf22, ...).

:- type t ---> tf1(s1)

; tf2(s2).

000sf1(...): <sf11>
<sf12>
<...>

000sf2(...): <sf21>
<sf22>
<...>

001tf2(...):

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 7 / 30

Packing sub-word-size arguments Classic term representation

With direct arg optimization

:- type s1 ---> sf1(sf11, sf12, ...).

:- type s2 ---> sf2(sf21, sf22, ...).

:- type t ---> tf1(s1)

; tf2(s2).

000sf1(...): <sf11>
<sf12>
<...>

000sf2(...): <sf21>
<sf22>
<...>

001tf2(...):

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 8 / 30

Packing sub-word-size arguments Packing sub-word-sized arguments

Packing enums

Until 2011, all arguments were stored in one word in the heap cell (with
the exception of floats on 32 bit systems, which used two words). Then
Peter implemented packing of enums.

:- type suit ---> club ; diamond ; heart ; spades. % 2 bits

:- type rank ---> two ; three ; ... ; king ; ace. % 4 bits

:- type card ---> card(suit, rank) ; joker.

001 suit

rank

001 suitrank

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 9 / 30

Packing sub-word-size arguments Packing sub-word-sized arguments

Packing non-enums

I extended Peter’s work to also pack

int{8,16,32} and uint{8,16,32} values

Unicode chars (21 bits)

values of dummy types (0 bits)

000 bool

dummy

int8

char

000 boolint8char

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 10 / 30

Packing sub-word-size arguments Packing sub-word-sized arguments

Storing args next to local sectags

When the arguments of a function symbol fit together into one word, we
may not need a separate memory cell at all.

000 boolint8char

ptagsectagboolint8char

If a type has N such function symbols where N ≤ 2k , we can apply this
optimization to a function symbol if its arguments need at most
64− 3− k bits. (3 for primary tag, k ≥ 0 for local secondary tag.)

We prefer to use this scheme for function symbols whose args are packable
into fewer bits. This allows k to be bigger, which allows more function
symbols to be optimized this way.

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 11 / 30

Packing sub-word-size arguments Packing sub-word-sized arguments

Storing args next to remote sectags

Remote secondary tags don’t need to take up a full word either: they need
only as many bits as is needed to differentiate the function symbols
sharing the primary tag value.

We can use the remaining bits to store any initial subsequence of
sub-word-sized arguments.

111 sectag

word sized arg

boolint8char

111

word sized arg

sectagboolint8char

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 12 / 30

Packing sub-word-size arguments Packing sub-word-sized arguments

Argument reordering

At the moment, the compiler can pack sub-word-sized arguments together
into a word only when those arguments are next to each other. We can
thus pack the two bools in t2, but not in t1.

:- type t1 ---> t1f(bool, map(...), bool, ...).

:- type t2 ---> t1f(bool, bool, map(...), ...).

With the right option, the compiler will generate an informational message
telling the programmer that replacing t1 with t2 would be a win, and why.

It would be nice if the compiler could just automatically treat t1 as it were
written as t2.

The challenge is ensuring consistency across module boundaries when the
definitions of some argument types are hidden behind abstraction barriers.

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 13 / 30

Packing sub-word-size arguments Packing sub-word-sized arguments

Mini types

At the moment, for the compiler to recognize that a type is sub-word-sized
and therefore packable, the type must be either

an enum type,

a dummy type, or

a builtin type.

We should also recognize as packable

notag types wrapped around packable types, such as nt, and

general du types that can be stored in a part of a word, such as t1.

:- type nt ---> nt(int8).

:- type t1 ---> t1f(bool, int8). % can optimize now

:- type t2 ---> t2f(bool, nt). % cannot optimize now

:- type t3 ---> t3f(bool, t1). % cannot optimize now

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 14 / 30

Packing sub-word-size arguments Packing sub-word-sized arguments

Mini types and module boundaries

Module boundaries are also the challenge for implementing mini types.

module A: module B:

:- type a1 ---> a1(bool). :- type b1 ---> b1(a1).

:- type a2 ---> a2(b1, bool). :- type b2 ---> b2(a2).

...

:- type a9 ---> a9(b8, bool). :- type b9 ---> b9(a9).

To find the size of e.g. a9,

we could do a fixpoint iteration, with each compiler invocation adding
information about one more type to either A’s or B’s interface file, or

we could put constraints such as sizeof(a9) = sizeof(b8) + 1

into interface files, and let the readers of those interface files solve the
constraints.

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 15 / 30

Packing sub-word-size arguments Exploiting arg packing

Updating non-packed args

p(T0, T) :-

T0 = f1(A, B, C, _, E, F, G),

D = ...,

T = f1(A, B, C, D, E, F, G).

We used to translate this to code that picks up A,B,C,E,F,G from T0
separately, and then packs them all up to generate T, even when both the
first three and last three args are packed together.

We now save many shifts, ANDs and ORs in hlc grades by generating

MR_Unsigned packed_word_0 = field(mktag(0), T0, 0);

MR_Unsigned packed_word_1 = field(mktag(0), T0, 2);

T = alloc(...);

field(mktag(0), T, 0) = packed_word_0;

field(mktag(0), T, 1) = D;

field(mktag(0), T, 2) = packed_word_1;
Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 16 / 30

Packing sub-word-size arguments Exploiting arg packing

Updating packed args

We can reuse part of a packed word as well.

p(T0, T) :-

T0 = f1(A, B, _, D, E, F, G),

C = ...,

T = f1(A, B, C, D, E, F, G).

MR_Unsigned packed_word_0 = field(mktag(0), T0, 0);

D = field(mktag(0), T0, 1);

MR_Unsigned packed_word_1 = field(mktag(0), T0, 2);

T = alloc(...);

field(mktag(0), T, 0) = (packed_word_0 & (~0x...)) | C;

field(mktag(0), T, 1) = D;

field(mktag(0), T, 2) = packed_word_1;

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 17 / 30

Packing sub-word-size arguments Exploiting arg packing

Automatically generated unify predicate

The compiler has always generated a type-specific unification predicate for
every type constructor. This predicate

figures out what function symbol the args X and Y are bound to,

requires the two function symbols to be the same, then

pairwise unifies the function symbols’ corresponding arguments.

__Unify__(X, Y) :-

(

X = f(XF1, XF2, ...), Y = f(YF1, YF2, ...),

XF1 = YF1, XF2 = YF2, ...

;

...

).

The argument unifications will turn into simple tests for atomic types, and
calls to type-specific unification predicates for nonatomic types.

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 18 / 30

Packing sub-word-size arguments Exploiting arg packing

Unifying packed arguments

We initially kept unifying arguments one by one even if e.g. the first two
are packed together, leading to code like this

XF1 = field(mktag(0), X, 0) & 3;

YF1 = field(mktag(0), Y, 0) & 3;

XF2 = (field(mktag(0), X, 0) >> 2) & 3);

YF2 = (field(mktag(0), Y, 0) >> 2) & 3);

... pick up later args in other words ...

succeeded = (XF1 == YF1);

if (succeeded) {

succeeded = (XF2 == YF2);

if (succeeded) {

... compare later args

}

}

}

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 19 / 30

Packing sub-word-size arguments Exploiting arg packing

Unify in bulk

There is no point in picking apart the word containing f’s first two
arguments. We can compare those words from X and Y in their entirety,
yielding shorter, faster code. (The bits that do not store arguments are
guaranteed to be zero.)

WordX1 = field(mktag(0), X, 0);

WordY1 = field(mktag(0), X, 0);

... pick up later args in other words ...

succeeded = (WordX1 == WordY1);

if (succeeded) {

... compare later args

}

}

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 20 / 30

Packing sub-word-size arguments Exploiting arg packing

Automatically generated compare predicate

The compiler has always generated a type-specific comparison predicate
for every type constructor as well. This predicate

figures out what function symbol X and Y are bound to,

return the result if they are different, and otherwise

pairwise compares the function symbol’s arguments in turn.

The code for the last part has always looked like this:

X = f(XF1, XF2, ...),

Y = f(YF1, YF2, ...),

compare(R1, XF1, YF1),

(if R1 != (=) then

R = R1

else

...

)
Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 21 / 30

Packing sub-word-size arguments Exploiting arg packing

Compare in bulk

When an argument word contains two or more sub-word-sized arguments
packed together, we can compare this word from X and Y all at once,
provided

the arguments are stored in an order that puts earlier arguments into
more significant bit positions, and

all the arguments compare as unsigned.

:- type b ---> b0 ; b1.

:- type oct ---> oct(b, b, b).

We can compare oct(b1, b0, b1) with oct(b0, b1, b1) all at once
for the same reason why we can compare 101 with 011 all at once: both
conditions are satisfied.

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 22 / 30

Packing sub-word-size arguments Exploiting arg packing

New mixed-endian allocation algorithm

When we pack several sub-word-sized arguments totaling N bits into one
word,

we still allocate the absolute least significant bits either to a primary
tag and a local secondary tag, or to a remote secondary tag, if needed,

we still store the arguments in the least significant N available bits
remaining after that, but

when processing the arguments first-to-last, we now allocate not the
least but the most significant bits still available among these.

:- type t ---> ; ... ; f(char, int8, bool, int).

111

int

sectagboolint8char

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 23 / 30

Packing sub-word-size arguments Exploiting arg packing

Compare in bulk

When an argument word contains two or more sub-word-sized arguments
packed together, and all of them compare as unsigned, we can now
compare the argument words from X and Y in their entirety.

When some of the packed-together arguments compare as signed, this
would not work, because it would say that e.g. -5i8 (1111 1011) is greater
than 6i8 (0000 0110).

Instead, we divide the word into a sequence of segments, and compare the
segments in turn. Each segment is a bitfield containing either

one argument that compares as signed, or

a maximal sequence of one or more consecutive arguments that
compare as unsigned.

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 24 / 30

Packing sub-word-size arguments Exploiting arg packing

Unify terms as a whole

:- type b ---> b0 ; b1.

:- type digit

---> binary(b).

; octal(b, b, b).

; hex(b, b, b, b).

00000b

00001bbb

00010bbbb

If the representation of all the functors in a type fits in one word, then we
can test whether two values of that type are the same or not by testing
whether the two words as a whole are equal.

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 25 / 30

Packing sub-word-size arguments Exploiting arg packing

Compare term as a whole

Even if the representation of all the functors in a type fits in one word,
testing two values of that type for order by testing the two words for order
is not guaranteed to work.

For example, both of the first two
words would come out as greater than
the third, even though all hex terms
should compare as greater than all
binary and all octal terms.

000001

00001100

000100000

The root of the problem is that the local sectag is stored in less significant
bits than the arguments.

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 26 / 30

Packing sub-word-size arguments Exploiting arg packing

Compare term as a whole

Nevertheless, compare-word-as-a-whole does work in two special cases:

The type has just one function symbol with args that fit into a word.

The type has just one constant, and one function symbol with args
(that fit into a word), in that order.

:- type hex % special case 1

---> hex(b, b, b, b).

:- type maybehex % special case 2

---> null

; hex(b, b, b, b).

The second case works because the constant will be represented by all
zeroes, while (due to having ptag=1) the nonconstant cannot be all
zeroes, so it will be recognized as being greater.

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 27 / 30

Packing sub-word-size arguments Conclusion

Performance

Packing data allows bigger data sets to be handled, and makes data
caches more effective.

It does take more code to access packed fields, but the cost of this code
should be less than the cost of the cache misses that the packing avoids.

The compiler’s new ability to unify, compare, copy and update packed
arguments in bulk should lead to speedups as well (though bulk copy and
update have been implemented only in hlc grades).

Unfortunately, due to the limitations of my work laptop, I don’t have any
reliable performance numbers.

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 28 / 30

Packing sub-word-size arguments Conclusion

Conclusion

The hardest part of implementing all this was extending the runtime type
information (RTTI) data structures to allow the description of the new
argument packing schemes, and getting the runtime system to handle
them correctly.

The resulting RTTI system works, but is not clean. Some parts of it would
benefit from a redesign, but this would require nontrivial bootstrapping.

The biggest challenge for the future work (automatic argument reordering
and the optimization of mini types) is revising the system of interface files
to make it possible to fit them in.

Argument packing is currently off by default, but now it needs only
a bit more testing before being switched on by default.

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 29 / 30

Packing sub-word-size arguments Reserve slides

Packed words: why MLDS/hlc only?

For the deconstruction, we generate this, and then a later pass optimizes
away the unneeded assignments.

MR_Unsigned packed_word_0 = field(mktag(0), T0, 0);

A = (field(mktag(0), T0, 0) >> ...) & ...;

B = (field(mktag(0), T0, 0) >> ...) & ...;

C = field(mktag(0), T0, 0) & ...;

D = field(mktag(0), T0, 1);

MR_Unsigned packed_word_1 = field(mktag(0), T0, 2);

E = (field(mktag(0), T0, 2) >> ...) & ...;

F = (field(mktag(0), T0, 2) >> ...) & ...;

G = field(mktag(0), T0, 2) & ...;

This would be much harder to do for the LLDS: whether we want to e.g.
allocate a stack slot for packed word 0 to hold its value across calls
depends on whether and when it is used.

Zoltan Somogyi (YesLogic) Packing sub-word-size arguments October 11, 2018 30 / 30

	Packing sub-word-size arguments
	Classic term representation
	Packing sub-word-sized arguments
	Exploiting arg packing
	Conclusion
	Reserve slides

