
Region-based memory management

for the logic programming language Mercury

Quan Phan

November 2009

Abstract

Region-based memory management (RBMM) is a form of compile-time memory
management, well-known from the functional programming world. In this thesis
we describe our work of investigating and developing RBMM for the logic pro-
gramming language Mercury. Mercury is designed with strong type, mode, and
determinism systems. These systems not only provide Mercury programmers with
several direct software engineering benefits, such as self-documenting code and
clear program logic, but also give the language developers useful information for
optimizations.

The first challenge in realizing RBMM for a programming language is to di-
vide program data into regions such that the regions can be reclaimed as soon as
possible. In the thesis we have developed program analyses that determine the dis-
tribution of data over regions as well as their lifetimes in a Mercury program. The
program then is transformed to a region-annotated program containing the neces-
sary region constructs. We provide the correctness proofs of the related program
analyses and transformation, which guarantee the safeness of memory accesses in
annotated programs.

We have implemented runtime support that tackles the special challenge posed
by backtracking. Backtracking can require regions removed during forward exe-
cution to be “resurrected”, and any memory allocated during a computation that
has been backtracked over must be recovered promptly, without waiting for the
regions involved to come to the end of their life.

We study the effects of RBMM for a selection of benchmark programs including
well-known difficult cases for RBMM. Our RBMM-enabled Mercury system ob-
tains clearly faster runtime for two third of the benchmarks compared to the Mer-
cury system using the Boehm runtime garbage collector, with an average speedup
of 20%. In terms of memory usage, the region system achieves optimal memory

i

consumption in some programs. Our in-depth case study reveals the impact of
sharing on memory reuse in programs in region-based systems.

Finally, we propose region reuse extension to our current region framework.
Our RBMM system augmented with region reuse can automatically improve mem-
ory reuse for a popular class of programs that otherwise often require non-intuitive
manual program-rewriting so that RBMM systems can obtain good memory reuse.

CONTENTS iii

Contents

Abstract i

List of Tables vi

List of Figures vii

Acknowledgements ix

1 Introduction 1

1.1 Programming Languages and Memory Management 1

1.2 Motivational Example . 3

1.3 Goals and Contributions . 8

1.4 Structure of the Thesis . 9

1.5 Bibliographic Notes . 9

2 Preliminaries 11

2.1 Mercury Language . 11

2.1.1 Predicates . 11

2.1.2 Types . 12

2.1.3 Modes . 12

2.1.4 Determinism . 12

2.1.5 Other Features . 13

2.2 Mercury Code inside its Compiler 13

2.3 Overview of Region-Based Memory Management in Mercury . . . 15

3 Region Modelling 17

3.1 Storing Terms in Regions Based on Their Types 17

3.2 Modelling Regions of a Type . 19

3.3 Region Points-To Graph . 20

3.4 Conclusion . 22

iv CONTENTS

4 Region Points-To Analysis 23

4.1 Overview . 23
4.2 Intraprocedural Analysis of a Procedure 23
4.3 Interprocedural Analysis . 25

4.4 Correctness of the Region Points-To Graphs 29
4.5 Regions That Are Allocated Into in A Procedure 32

4.6 Conclusion . 32

5 Region Liveness Analysis 35
5.1 Technical Background . 35

5.2 Live Region Variables at a Program Point 36
5.3 Lifetime of Regions across Procedure Boundary 37
5.4 Correctness . 40

5.5 Conclusion . 41

6 Program Transformation 43
6.1 Region Arguments . 43

6.2 Insertion of create and remove instructions 44
6.2.1 Transformation Rules . 44

6.2.2 Insertion Algorithm . 48
6.3 Correctness of Region-Annotated Programs 49
6.4 Conclusion . 53

7 Runtime Support for Regions in Deterministic Programs 55

7.1 Region Data Structure . 56
7.2 Region Operations . 56

8 Runtime Support for Backtracking 59

8.1 Introduction . 59
8.2 Runtime Concepts . 61

8.2.1 Changes to Live Regions by a Goal 62

8.3 Support for disjunction . 63
8.3.1 Disj-Protecting Backward Live Regions 64

8.3.2 Instant Reclaiming of New Regions 65
8.3.3 Instant Reclaiming of New Allocations in Old Regions . . . 66

8.3.4 Specialized Treatment of Semidet Disjunctions 67
8.4 Support for if-then-else . 67

8.4.1 Ite-Protecting Backward Live Regions 69

8.4.2 Instant Reclaiming . 70
8.4.3 Handling if-then-elses with Nondet Conditions 70

8.5 Support for commit . 72
8.6 Conclusion . 75

CONTENTS v

9 Experimental Evaluation 77
9.1 The Experimental Systems . 77
9.2 The Benchmark Programs . 78
9.3 Experimental Results . 79

9.3.1 Compilation Times and Object File Sizes 79
9.3.2 Memory Usage . 81
9.3.3 Runtime Performance . 84

9.4 When is It Hard to Reuse Memory in RBMM? 87
9.5 Conclusion . 90

10 Region Reuse 91
10.1 Motivation . 91
10.2 Region Points-to Graph with Same-Edges 93
10.3 Region Points-to Analysis . 95

10.3.1 Intraprocedural Analysis of a Procedure 95
10.3.2 Interprocedural Analysis . 98

10.4 Good Same-Edges . 98
10.4.1 Region Liveness Information 100
10.4.2 Safeness Conditions for Same-Edges 100

10.5 Transformation . 103
10.6 Discussion . 105

10.6.1 Preliminary Experimental Results 105
10.6.2 Future Work . 106

10.7 Conclusion . 108

11 Related Work 109

12 Conclusion and Future Work 113
12.1 Conclusion . 113
12.2 Future Work . 114

12.2.1 Support the Whole Mercury Language 114
12.2.2 Combining with Compile-Time Garbage Collection 117
12.2.3 Backward Region Liveness Analysis 118
12.2.4 Further Optimizations . 119

A Using the region-based systems 121

Bibliography 125

Index 129

List of Publications 133

Biography 135

vi LIST OF TABLES

List of Tables

5.1 Input and output arguments of unifications. 36
5.2 Live variable and live region variable sets in quicksort program. . . 40
5.3 Division of the set of region variables. 40

9.1 Information about the benchmarks. 79
9.2 Compilation time. 80
9.3 Size of the object files. 81
9.4 Memory use in the region-based systems. 82
9.5 Words reclaimed thanks to runtime support. The other words are

reclaimed by remove instructions. Only programs with some non-
zero numbers are shown. 83

9.6 Memory use in the heap system. 83
9.7 Runtime performance. 84
9.8 Runtime support information in rbmm1 and rbmm2 systems. . . . 85
9.9 Runtime support information in rbmm3 system. 85

LIST OF FIGURES vii

List of Figures

1.1 A plain triangle and one of its highlighted versions. 3
1.2 Code that highlights a plain triangle. 4
1.3 In-memory representations. A box containing a pointer, which is

drawn as an arrow, is tagged to show the type of the data structure
that the box points to. 5

2.1 The quicksort program in Mercury. 13
2.2 quicksort program in superhomogeneous form. 14
2.3 Region-annotated quicksort program. 16

3.1 Term representation of L=[f, g(1), h([1, 2],2)]. 18
3.2 The type-based region graph of the type list elem. 20
3.3 Type-based region graph of mutually recursive types. 20
3.4 Modelling of sharing information. 22

4.1 The resulting region points-to graph of init rptg(L). 25
4.2 Interprocedural analysis rules. 26
4.3 The region points-to graphs of split and qsort. 27
4.4 Capturing region-sharing in a call to another procedure. 28
4.5 Capturing region-sharing in a recursive call. 28

5.1 Region liveness analysis rules. 39

6.1 Transformation rules. 44
6.2 Effect of re-creation of regions. 46
6.3 Effect of re-creation of regions: region-annotated version. 46

7.1 The data structure of a region R. 56

8.1 Illustrating the interaction of regions and backtracking. 60
8.2 RBMM runtime support for nondet disjunctions. 64
8.3 The structure of a disj frame. 65

viii LIST OF FIGURES

8.4 RBMM runtime support for semidet disjunction. 68
8.5 RBMM runtime support for if-then-else with semidet condition. . . 69
8.6 Code at (i2.a) for if-then-else with nondet condition. 72
8.7 RBMM runtime support for commit. 73
8.8 The structure of a commit frame. 74

9.1 The computation of generations in life. 88

10.1 The running example for region reuse. 92
10.2 Region-annotated version with the eager approach. 92
10.3 Region-annotated version with region reuse. 93
10.4 Region points-to graphs of q and produce. 95
10.5 The running example extended with calling contexts of q. 101
10.6 Reuse region-annotated version for calling context 1. 101
10.7 Wrong reuse region-annotated version for calling context 2. 102
10.8 Region-annotated version with the eager approach (with main). . . 102
10.9 No explicit “reuse” after procedure calls. 105
10.10A chance for optimization. 107

12.1 Backward liveness of region variables. 119

Acknowledgements

This dissertation is the final work that completes my doctorate education in
the research group “Declarative Languages and Artificial Intelligence” (DTAI)
at Katholieke Universiteit Leuven. It has been a long time, more than five years,
since I was given a chance to try the domain of research, in particular research
on programming languages, which I am always interested in. I think to be able
to work with what we like is a lucky thing that does not happen to every of us.
Despite working with the “hobby”, it soon turned out to be a real challenge. I
am very happy that I can finish the journey with a concrete achievement, namely
being awarded the PhD degree in Computer Science.

At this special moment I would like to sincerely thank the professors in my
research group for accepting me to DTAI. In particular I would like to thank
Professor Maurice Bruynooghe, who has been leading DTAI since its first days.
After around 20 years, the founding leader is still active than ever in every aspect
of DTAI, making it a strong research group of more than 50 members. Maurice
leads the group by examples with his dedication, consistency, and discipline in
research, kindness, calmness and enjoyment in life. I believe that two things are
needed for the durable existence of any organization: its good culture and its
strong source of finance. I am very grateful to the professors for their great effort
to ensure DTAI having both, making doing research in the group a privilege.

During my doctoral education, I worked under the supervision of my promoter,
Professor Gerda Janssens. Supervision is actually not at all the right word for
describing what she has done for me. I think it must be a good combination of
help, guidance, caring, and protection. The very nice experience was that she
always made me feel comfortably free with my work and my time. Gerda has
always been available, showing the support and encouragement, when I needed
such things the most. I am very grateful to her for everything she has brought
to me. I also knew that helping me with a research topic that is not right in
her expertise was not always comfortable for her. It required extra effort and
determination. To this end I would like to express my great appreciation for her
enduring interest, hard work and patience.

Apart from Gerda who has worked closely with me, I would like to thank the

ix

x Acknowledgements

other professors of my doctoral Examination Board for reading and commenting
the dissertation’s text: chairman Peter Van Houtte, two external members Kostis
Sagonas and Zoltan Somogyi, Yolande Berbers from Distrinet research group, and
two members from DTAI who are also my doctoral advisors Bart Demoen and
Maurice Bruynooghe.

One of the decisive factors for the completion of my PhD is the implementation
of my theory in the Mercury compiler. The implementation we have today would
not exist without the help of the Mercury development team in the University
of Melbourne, Australia. I had a very fruitful, fun and memorable 3-month stay
there. My special thanks go to Professor Zoltan Somogyi who showed tremendous
interest in my research. I enjoyed so much working with and learning from him
during that time. I thank him for his enthusiasm for improving my first paper
and for being my co-author of another one. I also thank Julien Fischer for his
technical support during the development of my system. This was the time when
I got to know the Mercury compiler, which is a complex system with many parts
that are not necessarily compatible. Without their valuable help I would not have
a system up and running during my time there. I also would like to extend my
grateful thanks to the rest of the Mercury team at that time Rafe and Mark; the
Mission Critical people Pete, Ian and Peter. It was much fun to share the office
with you all, enjoyed the coffee culture in Melbourne every afternoon and the pubs
every Friday. You made my stay in Melbourne an enjoyable and warm experience.

I thank my past and present colleagues in DTAI and in the Computer Science
department in general. In particular I would like to thank Denise Brams and Karin
Michiels for taking care of all the necessary routines and the system administra-
tors including the DTAI representatives Jon Sneyers, Kurt De Grave, and Pieter
Wuille for ensuring a smooth working environment. All my research activities are
funded by DTAI, which, as far as I know, is then mainly funded by the Flemish
government, I would like to thank them for the generous financial support.

During my time in Melbourne, I stayed at the Graduate House where I met
several friendly graduate students from different parts of the world. I would like
to thank them for creating such a warm, open, and fun atmosphere. Leslie also
visited Melbourne and stayed in the House for a month during that time. It is
fair to say that the experience there had caused certain mental changes to both of
us. (Well, who don’t at the Down Under? :-).) I thank him for spending time on
discovering the spread out Melbourne with me.

I would like to thank Theofrastos for a pleasant time to ICLP 2009 in Pasadena.
The trip would never be the same without you. Our two-people team was never
competitive enough to challenge the first place in the Prolog contest but it was
fun. That disappointment, if any, is easy to forget but the almost-12-hour shopping
spree in that mall will never be forgotten ;-). The Prolog contest this year was very
well organized by Tom Schrijvers and his wife. I am thankful for their arrangement.
A warm thank goes to Dean, Hanne, Jon, Paolo, and Peter for a nice socializing

xi

time during the same trip. I also very much appreciated Hanne for showing me
that sushi can really be delicious.

Hanne is actually one of my two office mates for the last couple of years. She is
energetic, passionate and open about many things. The other used to be a Danish
girl, Mai, who joined us for almost a year then left prematurely due to personal
reasons. I really felt for her and would wish her all the best in the future. Now
that other is Abi from India, who has just started his PhD journey. It seems that
the next one to leave the office will be me so I would like to thank them for the
time together and wish them great success in work as well as in life.

I feel something missing if I do not mention my compatriot friend Nguyen
Manh Thang who died very unluckily in a car accident just around a week after
the preliminary defense of his PhD under the guidance of Professor Danny De
Schreye. We had been together since the Master program in Artificial Intelligence
in 2003-04. October 2004 we started our PhD education in DTAI, sitting next
to each other in one side of our first office. I feel very sorry that now he has
gone forever. All I can do is to keep the fond memories of him, a sincere friend,
a dedicated husband and father, and a responsible Vietnamese citizen. Rest in
peace, my dear friend! I would like to thank everyone who has shared this sadness
with me. In particular, I am grateful to Jacques Riche and Paula Bruggen for their
sympathy. They used to come infrequently to our office. Jacques came once a week
while Paula only showed up in the evening. They both showed warm openness to
our culture. I met Jacques more often. I thank him especially for his caring and
willingness to share his vast knowledge and experience.

I would like to thank my friends for their support during this long period.
Closest to me in Leuven are friends in VinaKUL, the group of Vietnamese in
Leuven and in particular the footballers with whom I had so much enjoyment.
Thank you very much, I am proud to be part of you.

The final thanks are to my family and relatives. The older I am the more I
realize that I cannot thank my parents enough for their understanding and uncon-
ditional love. To my aunts and uncles, sisters and brothers, nieces and nephews,
thank you for the warm moments we had together. I thank my parents-in-law for
giving me their youngest daughter. Without her, I am sure not who I am today.
To my beloved wife, Lan, thank you for the passionate love, patience and also the
lack of it, which have opened up my eyes to many interesting perspectives.

Chapter 1

Introduction

1.1 Programming Languages and Memory Man-

agement

Programming languages are created to express computations that can be per-
formed by a computer. The computations are often described by algorithms that
manipulate data. When such algorithms are executed on a computer, the data
need to be stored in the computer’s memory. This leads to the necessity of mem-
ory allocation, namely assigning locations in memory to store some piece of data.
In the very early days of programming languages, programmers had to manually
take care of mapping their data onto physical addresses in the memory. Later on,
automatic memory allocation has been implemented in almost all programming
systems (Wilson, Johnstone, Neely, and Boles 1995). Also algorithms often have
high memory complexity, producing a lot of temporary data that are necessary
during the computation but not in their effective results. In general, new memory
is allocated to store new data. But the computer memory is finite, hence at some
point there will be a demand to reuse part of the allocated memory whose contents
are no longer used. Without memory reuse not only would out-of-memory be an
imminent problem, but also wasteful use of memory can lead to bad performance
due to the burden of memory accesses. Having a convenient and efficient mecha-
nism of memory management, i.e., allocation and reuse, thus plays a vital role in
the popularity and success of a programming language system.

Manual memory management, such as the C-like malloc/free, leaves most of
the responsibility to programmers. The programmers explicitly write code to ask
for the exact amount of memory needed. More problematically, they themselves
need to find the point where the allocated memory can safely be released. This
decision is nontrivial considering the complexity of software systems nowadays,
causing all sorts of problems. Most prominently are memory leaks when some

1

2 Introduction

part of memory is reclaimed too late and mysterious runtime crashes when still-
used data are released too soon. Moreover, no matter how good the programmers
are, there cannot be guarantees for the soundness of memory accesses.

Overcoming the tedious and error-prone nature of manual deallocation became
a requirement for the development of increasingly larger computer applications.
This necessity along with the development of high-level programming languages
led to the fruitful research on automatic garbage collection techniques (Wilson
1995). The term garbage collection dates back to the development of the high-
level declarative programming language LISP (McCarthy 1960). A garbage col-
lector is a computer program whose function is to, during the runtime of the main
program, detect data that are no longer in use, called garbage, and make their
storage available for reuse by the main program. Runtime garbage collection has
gradually been adopted as an integral component of modern programming lan-
guage systems. Garbage collection algorithms guarantee memory safety, which
is essential for large-scale application development. The state-of-the-art imple-
mentations of garbage collectors can provide programmers with good memory use
and competitive performance compared to the manual practice. In spite of all
the proven advantages, one noticeable drawback of runtime garbage collection is
that the task of detecting garbage is done completely at runtime, which can incur
significant overheads. Runtime garbage collection is also known to have adverse ef-
fects on locality of reference, affecting the overall performance of programs. These
problems can be alleviated using more sophisticated techniques such as incremen-
tal or generational garbage collection but in general to have a state-of-the-art
implementation of a garbage collector requires many difficult decisions on design
and strategy.

One idea to reduce the incurred overheads is to shift some of the collection
overheads from runtime to compile-time. Compile-time garbage collection is a
technique following this approach. The idea is that, when compiling a program,
we use program analyses to decide when a data object becomes dead during the
execution of the program. After the point the object is no longer accessed in the
remaining execution and its storage can be reused for new allocation by in-place
updating. Compile-time garbage collection has long been investigated with the
potential of reducing the cost of runtime garbage collection because in the presence
of in-place updating the collection process would need to be triggered less often
during the run of a program. In the context of declarative programming languages,
due to the absence of imperative constructs such as assignments, updating a field
in a data structure requires reconstruction of the structure itself. Therefore the
research on compile-time garbage collection here focuses on in-place updating in
popular aggregate data structures such as list and array (Hudak and Bloss 1985;
Sastry, Clinger, and Ariola 1993; Jones and Le Métayer 1989; Mazur 2004). For
object-oriented languages, the emphasis is to reclaim individual objects (Guyer,
McKinley, and Frampton 2006; Cherem and Rugina 2006). Programming systems

1.2 Motivational Example 3

in which a runtime garbage collector is assisted by compile-time garbage collection
often have a smaller memory footprint and improved runtime performance.

Region-based memory management (RBMM) (Tofte and Talpin 1997) is an-
other compile-time technique. It is based on the idea of grouping data objects
having the same lifetime into regions, the motive being that reclaiming entire
regions at the end of their lifetime makes collection very fast. A typical use of
regions is to store temporary data that hopefully can be reclaimed in time. So
the main challenge in region-based memory management is to find an automatic
way to divide program data into regions such that the regions have as short as
possible lifetimes so that we can reuse memory as much as possible while the
overheads of using regions need to be small enough so that the gain due to no
runtime garbage collection can actually lead to execution speedups for programs.
The program analysis that is charged with this responsibility is usually referred to
as region inference or region analysis. There is an additional and unique challenge
when applying RBMM to logic programming due to the existence of nondeter-
ministic execution in terms of backtracking. Supporting backtracking in RBMM
poses several issues to both the region analysis and the engineering of the runtime
system.

In this thesis we investigate the application of region-based memory manage-
ment to the modern logic programming language Mercury.

1.2 Motivational Example

We give a simple and intuitive example showing the idea and benefits of RBMM.
Through the example we reveal the challenges and issues of realizing RBMM in a
programming language system.

Take, for example, a drawing program in which we have an operation that
produces a highlighted triangle from a plain one. An example of a plain triangle
and a highlighted version of it is shown in Figure 1.1.

A plain triangle is represented by a triple of points, each in turn is encoded
by horizontal and vertical coordinates. In the triangle ABC in Figure 1.1, A is at
(1, 1), B is at (1, 5), and C is at (4, 1). We use the following term to represent it,

plain_triangle(point(1,1), point(1,5), point(4,1)).

A highlighted triangle has some additional features, such as a thickness for its
edges, a pattern for its surface, and two edges highlighted with their own colors.
The highlighted triangle shown in Figure 1.1 has a thickness of two; the pattern
on its surface is parallel lines raising to the right; and it has an edge in red and
one in green. To represent highlighted triangles we use a data structure different
from that of plain ones. For the highlighted ABC in Figure 1.1 we represent it by
the following term:

4 Introduction

���
���
���
���
���
���
���

���
���
���
���
���
���
���

B

1

5

1 4

A C

0x

y

x

y

B

1

5

1 4

4

3
A C

0

Figure 1.1: A plain triangle and one of its highlighted versions.

highlight_triangle(PlainTriangle, HighlightedTriangle) :-

PlainTriangle = plain_triangle(A, B, C),

% (*) code to compute the Lengths and Angles of the two edges.

...,

% (**) code to pick a Thickness and a Pattern for the triangle,

% and two Colors for the two edges.

...,

AB = edge(A, Length1, Angle1, Color1),

AC = edge(A, Length2, Angle2, Color2),

HighlightedTriangle = highlighted_triangle(AB, AC, Thickness, Pattern).

Figure 1.2: Code that highlights a plain triangle.

highlighted_triangle(

edge(point(1,1), 4, 90, red),

edge(point(1,1), 3, 0, green),

2, 1).

The first two components represent the two highlighted edges. The position of an
edge is defined by a point, the length of the edge, and an angle from the x-axis.
For example, AB starts from A, has length of four, and is 90 degree away from
the x-axis. The third component is the thickness and the last one encodes the
pattern. Our highlighted ABC has a thickness of two and here we simply assume
its pattern is encoded by one.

The desired operation can be implemented as in Figure 1.2. We ignore the code
at (*) and (**) because it is not significant to the issue we are considering. The
in-memory representations of these terms are in Figure 1.3. Each box visualizes a
memory word, a basic storage unit. We call a block of contiguous words a memory

1.2 Motivational Example 5

p_t

e

1

h_t

2

1

pA

HighlightedTriangle

PlainTriangle

e

p

p

p

1

5

4

1

p

4

90

red

3

p

0

green

1

Figure 1.3: In-memory representations. A box containing a pointer, which is
drawn as an arrow, is tagged to show the type of the data structure that the box
points to.

6 Introduction

cell. For example, PlainTriangle points to a memory cell of three words. We
also use a tag, the right part of some box, to denote the type of data structure that
the box points to, such as p t for plain triangle, p for point and so on. The
boxes in bold mean the words on the heap, the other are words on stacks or are
registers. The cells reached from PlainTriangle are in memory before the run of
the triangle-highlighting operation in Figure 1.2. Out of these, ones with shaded
background become garbage after the operation and the two-word cell pointed to
by A is shared between the plain triangle and the resulting, highlighted one. We
say that the cell is reused. The three other four-word heap cells reachable from
HighlightedTriangle are newly allocated in the operation, at the last three lines.

If we can somehow arrange that the garbage cells are allocated into a region
and the cells reachable from HighlightedTriangle are put into different regions,
we will be able to reclaim the garbage cells by releasing their corresponding re-
gion, right after the highlighting operation. Note that, in this example, in-place
updating as in compile-time garbage collection where a garbage cell is reused for
a new allocation will not help because the sizes of the new cells are larger than
those of the garbage ones.

To realize this idea, we have to accomplish several tasks.

• We can see, for example, that the term representing the plain triangle needs
to be stored in two different regions, one for the garbage cells and the other
for the two-word, reused cell. This poses the task of deciding which data are
allocated into which regions. The usage context of data is a decisive factor
in this decision. If we limit the scope to just the highlighting operation
in our example, we would reasonably think that all the cells reached from
HighlightedTriangle should be in one region. But if, at some other part of
the program, only one of the two edges of the highlighted triangle is needed
and the other becomes garbage then we may want them to be in separate
regions so that the garbage can be reclaimed. A suited distribution of data
over regions is needed to have satisfactory memory reuse.

• We need to locate the points in a program where the regions have to be
created and can safely be destroyed. This means we have to estimate the
lifetimes of regions. With the aim to reuse memory we would want to give
regions as short as possible lifetimes. We want to have a fully automatic
system. Therefore this and the above task have to be done at compile-
time. The tools for that are program analyses that allow us to learn about
properties of programs before running them.

• Support for regions and region operations needs to be implemented in the
runtime system of the programming language. Efficient implementation
plays a significant role in the overall runtime performance of programs in
the region-based system.

1.2 Motivational Example 7

• The existence of backtracking in logic programming requires taking back-
ward executions into account, usually leading to more complicated program
analyses and more responsibilities for the runtime support.

Grouping data objects into regions then releasing them all at once has several
advantages.

• Reclaiming the whole region is very efficient because there is no overhead of
detecting garbage at runtime.

• The latency between when a memory cell becomes dead and when it is
actually reclaimed can often be small. This certainly depends on whether
we can give regions short enough lifetimes.

• It may also offer good data locality because related data are put together.

We choose to study RBMM in the context of Mercury amid the limited research
about RBMM for logic programming. Since the fundamental work about RBMM
for functional programming (specifically SML) (Tofte and Talpin 1997), there have
been several improvements and new developments in that context (Aiken, Fähn-
drich, and Levien 1995; Birkedal, Tofte, and Vejlstrup 1996; Henglein, Makholm,
and Niss 2001), and the idea has also been brought to other programming paradigms,
such as imperative programming (Gay and Aiken 1998; Grossman, Morrisett, Jim,
Hicks, Wang, and Cheney 2002) and object-oriented programming (Cherem and
Rugina 2004; Chin, Craciun, Qin, and Rinard 2004). A thorough review of the
achievements of this research field can be found in (Tofte, Birkedal, Elsman, and
Hallenberg 2004).

For logic programming languages, there have been only attempts to apply
RBMM to Prolog in (Makholm 2000b; Makholm 2000a) and in (Makholm and
Sagonas 2002). However, the algorithm for RBMM in (Makholm 2000b; Makholm
2000a) was developed for a non-standard implementation of Prolog which would
require substantial changes before it could be applied in any standard implementa-
tion. In (Makholm and Sagonas 2002) the authors fixed the problem by implement-
ing RBMM in the context of the standard technology for implementing Prolog,
the Warren Abstract Machine (WAM) (Aı̈t-Kaci 1999). Nevertheless, this work
mainly concentrated on the runtime extensions needed by regions to run Prolog
programs with RBMM. It adapted a type-based region analysis originally devel-
oped for the functional programming language SML (Henglein, Makholm, and Niss
2001) to work with Prolog. Since Prolog is natively untyped and, more impor-
tantly, unmoded, the region inference has to get the needed information from type
and mode inferences, which often yields imprecise results. Moreover, that Prolog
predicates inherently have no determinism requires them to be treated generally
as nondeterministic. These limitations restrict the optimizations that would im-
prove the performance of RBMM, making it hard to become a practical alternative

8 Introduction

to native runtime collectors in Prolog systems. The logic programming language
Mercury has none of these limitations. It has strong type and mode systems and
also the determinism information. This fact, the pure nature of Mercury (the
absence of side-effects), and the limited research on RBMM in logic programming
motivated us to investigate whether region-based memory management could be
developed and implemented efficiently in this context.

1.3 Goals and Contributions

We would like to have a region-based Mercury system in which the memory man-
agement task is fully automated. There has been research on explicit RBMM
in which programmers manually augment programs with information about re-
gions (Gay and Aiken 1998; Grossman, Morrisett, Jim, Hicks, Wang, and Cheney
2002). Since Mercury is a high-level, declarative language we consider this explicit
approach inappropriate for Mercury. Instead, program analyses and transforma-
tion will be used to derive the necessary information automatically.

Mercury requires explicit declarations of types, modes, and determinism.
This in turn gives us a rich body of information about a program at compile-
time. We investigate how these pieces of information can help making the program
analyses precise. The precision of these program analyses has a decisive role in
obtaining good memory reuse. An important aspect of memory management is
its runtime efficiency. We want to investigate whether it is possible to build a
region-based system that is competitive with the Mercury system using the state-
of-the-art implementation of runtime garbage collection (Boehm and Weiser 1988).
One challenge is to support backtracking in the context of regions, without much
adverse effects on deterministic programs.

In this thesis we describe the first automated RBMM system for the logic
programming language Mercury. For a Mercury program as written by program-
mers, our system automatically detects the necessary regions and augments each
allocation site with a region into which the allocation happens and also inserts
instructions to create the regions when needed and to remove them to recover
memory when it is safe to do so. The main contributions of the thesis are as
follows.

1. We develop the static program analyses for generating the region-annotated
programs. These include a region points-to analysis to divide Mercury terms
into regions, a liveness analysis that assigns lifetimes for the regions, and a
program transformation to annotate the original programs with the derived
region information.

2. We prove the correctness of the program analyses in the sense that all mem-
ory accesses in the annotated programs are safe.

1.4 Structure of the Thesis 9

3. The runtime support for RBMM is designed and implemented to deal cor-
rectly with backtracking and without incurring significant overhead.

4. Our RBMM-enabled system achieves faster execution times for several bench-
mark programs than the Mercury system that uses the Boehm garbage collec-
tor (Boehm and Weiser 1988) for memory management. The region system
also achieves optimal memory consumption in some benchmarks.

5. We make a detailed analysis of the RBMM behaviour of a selection of pro-
grams (including well-known difficult cases). This study reveals the impact
of sharing on memory reuse in RBMM systems. We develop a solution to
improve memory reuse for a certain class of programs in such difficult situ-
ations.

1.4 Structure of the Thesis

In Chapter 2 we introduce Mercury as a programming language and its intermedi-
ate form that our work is based on. We also describe intuitively how RBMM can
be realized for Mercury and justify our decisions on how to support backtracking.

The model of the heap when it is divided into regions is presented in Chapter 3.
We explain the modeling of the locations of terms based on their types by the use of
type-based region graphs. The sharing among program variables then is modeled
by region points-to graphs.

Based on this region model we develop the static analyses: region points-to
analysis, region liveness analysis, and program transformation and their corre-
sponding correctness proofs are given in Chapters 4, 5, and 6, respectively. All in
all these analyses and transformation automatically convert a Mercury program
written by programmers into a region-annotated program that contains enough
region information such as the assignments of regions to allocation sites and when
to create and remove regions.

Chapter 7 shows the basic extensions to the runtime system needed to support
RBMM in deterministic programs. We show in detail how regions and basic region
operations, such as region creation, region removal, allocation into regions are
implemented. Chapter 8 describes our handling of backtracking. Backtracking in
Mercury involves disjunctions, if-then-elses, and commit operations. Therefore we
describe the detailed support for each of these constructs.

The evaluation of our RBMM systems is given in Chapter 9. We look at
both memory usage and runtime performance for a selective set of benchmarks,
including known difficult programs for RBMM. We discuss the relation between
sharing and memory reuse in region-based systems through our detailed study of
the runtime behaviour of several programs in our region-based systems. The above
study results in the region reuse improvement that is described in Chapter 10.

10 Introduction

We discuss the related research activities in Chapter 11 and finally conclude in
Chapter 12.

1.5 Bibliographic Notes

Several parts of the technical content in this thesis have been published in pro-
ceedings of internationally reviewed conferences. The first version of the material
in Chapters 4, 5, and 6 is first published in (Phan and Janssens 2007). Chapters 7
and 8 are based on our publication (Phan, Somogyi, and Janssens 2008). Parts
of the experimental results in Chapter 9 were reported in (Phan and Janssens
2007) and (Phan, Somogyi, and Janssens 2008). Finally, the work in Chapter 10
is published as (Phan and Janssens 2009). The list of publications can be found
at the end of the thesis.

Chapter 2

Preliminaries

In this chapter we briefly introduce the logic programming language Mercury. The
language contains explicit declarations of types, modes and determinism. More
important to the technical contents of this thesis is the language’s intermediate
form that is internal to the Mercury compiler because our program analyses and
transformation are defined for it. We then describe intuitively how RBMM can be
realized for Mercury and justify our design choices.

2.1 Mercury Language

Mercury is a pure logic programming language intended for the creation of large,
fast, reliable programs (Somogyi, Henderson, and Conway 1996). While the syntax
of Mercury is based on the syntax of Prolog, semantically the two languages are
very different due to Mercury’s purity, its type, mode, determinism and module
systems, and its support for evaluable functions.

2.1.1 Predicates

Predicates in Mercury are similar to Prolog predicates. A predicate definition
contains one or more clauses. A clause contains a head atom and a body. A body
is a goal, which can either be a conjunction of goals, a disjunction of goals, an
if-then-else construct, a negated goal, or a literal. A literal is either a unification
or an atom.

Example 2.1. The clauses of a predicate that produces the concatenation of two
lists by appending one to another are as follows.

append(_, Y, Y).

append([Xe | Xs], Y, [Xe | Zs]) :- append(Xs, Y, Zs).

11

12 Preliminaries

2

Mercury treats functions as predicates with the return value as an extra argu-
ment, so in the thesis we will only deal explicitly with predicates.

2.1.2 Types

Mercury has a strong Hindley-Milner type system very similar to Haskell’s. Apart
from some special types that are builtin (e.g., int), users can introduce types by
type declarations as in Example 2.2.

Example 2.2. The declaration of the type list int.
:- type list int ---> []; [int | list int].
It declares the type for lists of integers, int is a builtin type in Mercury. 2

Mercury programs are statically typed; the compiler knows the type of every ar-
gument of every predicate (from declarations or inference) and every local variable
(from inference).

2.1.3 Modes

The mode system classifies each argument of each predicate as either input or
output; there are exceptions, but we do not explicitly consider them in this thesis.
If input, the argument passed by the caller must be a ground term. If output,
the argument passed by the caller must be a distinct free variable, which the
predicate will instantiate to a ground term. It is possible for a predicate to have
more than one mode; the usual example is append, which has two principal modes:
append(in,in,out) and append(out,out,in). We call each mode of a predicate
a procedure. The Mercury compiler generates separate code for each procedure.

2.1.4 Determinism

Each procedure has a determinism, which puts limits on the number of its possible
solutions. Procedures with determinism det succeed exactly once; semidet proce-
dures succeed at most once; multi procedures succeed at least once; while nondet
procedures may succeed any number of times, including zero.

Example 2.3. The quicksort program written in Mercury with declarations of
types, modes, and determinisms for two essential predicates, qsort and split, is
shown in Figure 2.1. Some specific elements in main are included for completeness
but have no importance to the reader’s understanding. These include !IO, which
are state variables representing the states of the world for declarative input/output,
and io.write, a predicate from the io library module, that writes out a term. 2

2.2 Mercury Code inside its Compiler 13

main(!IO) :- :- pred split(int, list_int, list_int,

qsort([2, 3, 1], [], S), list_int).
io.write(S, !IO). :- mode split(in, in, in, out) is det.

split(_, [], [], []).

:- pred qsort(list_int, list_int, list_int). split(X, [Le | Ls], L1, L2) :-
:- mode qsort(in, in, out) is det. (if X >= Le then

qsort([], A, A). split(X, Ls, L11, L2),
qsort([Le | Ls], A, S) :- L1 = [Le | L11]

split(Le, Ls, L1, L2), else
qsort(L2, A, S2), split(X, Ls, L1, L21),
qsort(L1, [Le | S2], S). L2 = [Le | L21]

).

Figure 2.1: The quicksort program in Mercury.

2.1.5 Other Features

In this thesis we deal with the core subset of the language as we describe above. We
typically require a program to be written in a single module. Mercury has several
other features that we have not yet explicitly supported or considered in this work.
In Chapter 12 we discuss some of these features such as module system, library
modules, and higher-order programming. A complete description of Mercury can
be found in the Mercury language reference (Mercury 2009).

2.2 Mercury Code inside its Compiler

The compiler converts all predicate definitions into an internal form. For our
subset of Mercury, this internal form is given by the following abstract syntax:

predicate P : p(x1, . . . , xn) ← G

goal G : x = y | x = f(y1, . . . , yn) | p(x1, . . . , xn)
(G1, · · · , Gn) | (G1; . . . ; Gn) | not G |
(if Gc then Gt else Ge) | some [x1, . . . , xn] G

The first three kinds of goals including unifications and calls are called literals or
atoms. The rest are called compound goals, in which a sequence of goals separated
by commas is a conjunction, while a sequence of goals separated by semicolons is
a disjunction.

As this shows, the Mercury compiler internally converts any predicate definition
with two or more clauses into a single clause with an explicit disjunction. The
clauses themselves are transformed into superhomogeneous form, in which each
atom (including clause heads) must be of one of the forms p(X1,...,Xn), Y = X,
or Y = f(X1,...,Xn), where all of the Xi are distinct.

Inside the compiler, every goal (compound goals as well as literals) is anno-
tated with mode and determinism information. For unifications, we show the

14 Preliminaries

main(!IO) :- split(X, L, L1, L2) :-

(1) L <= [2, 1, 3], (
(2) A <= [], (1) L => [],
(3) qsort(L, A, S), (2) L1 <= [],

(4) io.write(S, !IO), (3) L2 <= []
;

qsort(L, A, S) :- (4) L => [Le | Ls],
((5) (if X >= Le then

(1) L => [], (6) split(X, Ls, L11, L2),
(2) S := A (7) L1 <= [Le | L11]
; else

(3) L => [Le | Ls], (8) split(X, Ls, L1, L21),
(4) split(Le, Ls, L1, L2), (9) L2 <= [Le | L21]

(5) qsort(L2, A, S2),)
(6) A1 <= [Le | S2],).

(7) qsort(L1, A1, S)
).

Figure 2.2: quicksort program in superhomogeneous form.

mode information by writing <= for construction unifications, => for deconstruc-
tion unifications, == for equality tests, and := for assignments. Based on the mode
information, the compiler reorders the subgoals in a conjunction to ensure that
ones that consume the value of a variable always come later than the subgoal
that produces its value. More details about this abstract syntax can be found
in (Somogyi, Henderson, and Conway 1996).

We show the quicksort program in this abstract syntax in Figure 2.2. For read-
ability, we have chosen meaningful names for some additional variables that are
added automatically by the Mercury compiler. The reader may want to compare
this with the program in Figure 2.1, which is the kind of code Mercury program-
mers would normally write. We also replace the sequence of unifications needed
to construct a single ground term with a single goal. For example, the list con-
struction at (1) in main in Figure 2.2, actually stands for

V_0 <= [],

V_1 <= 3, V_2 <= [V_1 | V_0],

V_3 <= 1, V_4 <= [V_3 | V_2],

V_5 <= 2, L <= [V_5 | V_4]

The extra detail is of no interest in this thesis.
In the rest of the thesis, we will ignore negation, since not G can be imple-

mented as if G then fail else true, where fail and true are two builtin
goals, with fail always failing while true always succeeding. Note that in Mer-
cury (unlike in Prolog), the condition of an if-then-else is allowed to succeed several
times. Whether the condition of a particular if-then-else can do so will be recorded
in its determinism annotation, and many parts of the compiler, including the
RBMM implementation, handle conditions of different determinisms differently.

2.3 Overview of Region-Based Memory Management in Mercury 15

Another situation in which determinism information is important is existential
quantification. (Mercury also supports universal quantification, but the compiler
internally converts all [x1, . . . , xn] G to not some [x1, . . . , xn] not G, so we do
not have to deal with it.) If some [. . .] G quantifies away all the output variables
of G, then different solutions of G would be indistinguishable, so even if G can
have more than one solution, some [. . .] G will not. We call such a quantification
a commit, and we handle commits differently from other quantifications.

2.3 Overview of Region-Based Memory Manage-

ment in Mercury

We divide the task of realizing RBMM for Mercury between static analyses and
transformation and dynamic runtime support. The goal of the static analyses and
transformation is to annotate a plain Mercury program with information about
regions. An annotated program contains information about the regions in which
terms are constructed and when regions are created and freed. To obtain this
information, we first use a region points-to analysis to detect the regions used by
a program. After that we compute the lifetime of these regions by using a region
liveness analysis. The program transformation uses these pieces of information to
convert the program into a region-annotated program.

In logic programming languages, the presence of backtracking requires the no-
tion of liveness to be divided into two parts. A variable, memory location, region
and so on is forward live at a program point if it can be accessed during forward
execution from that program point, and it is backward live at a program point
if it can be accessed in backward execution (e.g., after backtracking to a choice
point established before that program point). The two notions of liveness are in-
dependent: all four combinations of forward and backward liveness and deadness
are possible. In our region liveness analysis, we take into account only forward
liveness and we handle backward liveness by runtime support.

The runtime support for RBMM has two main purposes. Firstly, we need to
enhance the runtime system of Mercury to work with the heap memory organized
in terms of regions. Secondly, we provide support for backtracking in the context
of RBMM, including the support for backward liveness and for instant reclaiming.
We will discuss the necessity of this support in detail in Chapter 8.

In region-annotated programs, which are the result of the static part, we use
region variables to refer to regions, just as we use program variables to refer to
values. To allocate a new region, we use the instruction create(R), which creates
a region and binds the region variable R to it. (We describe the implementation of
regions in Chapter 7.) To free a region we use the instruction remove(R) , which
frees the memory of the region to which R is currently bound. Our regions can (and
actually do) live across procedure boundaries and thus we pass region variables

16 Preliminaries

main(!IO) :- split(X, L@R1, L1@R3, L2@R4) :-

create(R20), create(R21), (
(1) L <= [2, 1, 3] in R20, (1) L => [],

create(R22), remove(R1),

(2) A <= [] in R22, create(R3),
(3) qsort(L@R20, A@R22, S@R22), (2) L1 <= [] in R3,

(4) io.write(S, !IO), create(R4),
remove(R21), remove(R22). (3) L2 <= [] in R4

;
qsort(L@R6, A@R8, S@R8) :- (4) L => [Le | Ls],
((5) (if X >= Le then

(1) L => [], (6) split(X, Ls@R1, L11@R3, L2@R4),
remove(R6), (7) L1 <= [Le | L11] in R3

(2) S := A else
; (8) split(X, Ls@R1, L1@R3, L21@R4),

(3) L => [Le | Ls], (9) L2 <= [Le | L21] in R4
(4) split(Le, Ls@R6, L1@R9, L2@R10),)
(5) qsort(L2@R10, A@R8, S2@R8),).

(6) A1 <= [Le | S2] in R8,
(7) qsort(L1@R9, A1@R8, S@R8)

).

Figure 2.3: Region-annotated quicksort program.

as extra arguments to procedure calls. Figure 2.3 shows the region-annotated
quicksort program after our region transformation.

In the region-annotated code, we use the postfix @Ri to annotate both actual
and formal arguments with their region variables. We also annotate each unifica-
tion that constructs a new memory cell with the region in which the cell will be
allocated. For example, in main, the skeleton of the list L is in the region (bound
to by) R20, that of the accumulator A is in R22. The elements of the lists are in
R21. In the call to qsort, R20 and R22 are passed as actual region arguments,
corresponding to the formal arguments R6 and R8 in the definition of qsort. We
do not need to pass the region of the elements because qsort and split just read
from it. The region R20 is passed to qsort from main and is removed in the base
case branch of split in the call to split at (4) in qsort. The two new lists L1 and
L2 are allocated in two separate regions referred to by R9 and R10. These regions
are created by the base case branch of split (note that the two output lists of
split start to be constructed in the base case), and removed (indirectly) by the
recursive calls to qsort at (5) and (7). If L1 and L2 are empty lists the removals
will happen in the base case branch of qsort; otherwise, they will happen in the
base case branch of split. The region R22 of the resulting list is the region of the
accumulator, which is created in main.

Chapter 3

Region Modelling

Data in logic programs are typically represented by so-called terms. Terms often
have different lifetimes. In RBMM we want to allocate these terms to different
regions for the purpose of reclaiming the terms in one region at once. So the first
and perhaps most important task in implementing RBMM is to arrange terms into
regions. In this chapter we develop the model of the storage of terms when the
heap is composed of regions.

3.1 Storing Terms in Regions Based on Their Types

As we want to distribute terms over different regions, we first discuss the repre-
sentation of terms when the heap memory is divided into regions.

We assume that a term that can be represented by a single memory word does
not require heap storage. A term that does not fit into a word is represented by a
pointer to memory locations on the heap.

Our assumptions are compatible with the implementation of Mercury in the
Melbourne Mercury Compiler (MMC). In the MMC, types, which are known at
compile-time, give us information about the storage size of terms. Terms of prim-
itive types such as int, char and of enumeration types of which all functors have
arity zero are stored in one word. The principal functor of a term that needs heap
space is stored by a possibly-tagged pointer to a block of memory words on the
heap. The compiler knows all the functors in the type of the term. Therefore the
principal functor does not need to be explicitly recorded in the block (as in a com-
mon implementation of Prolog) but can be tagged in the lowest bits of the pointer.
When a type has only one functor the tag is even not needed. So the memory
block on the heap is mostly for storing the arguments of the functor. When there
are more functors than can be encoded by the available lower bits, the first word
of the memory block is also used as a secondary tag to distinguish them.

17

18 Region Modelling

[|]

21

[]

L [|]

[|] []

1

[|]

[|]

g h

2

f

Figure 3.1: Term representation of L=[f, g(1), h([1, 2],2)].

Example 3.1. Consider the following types.
:- type elem ---> f; g(int); h(list int, int).
:- type list elem ---> []; [elem | list elem].
Figure 3.1 shows the representation of a term bound to by the variable L of the
type list elem in the MMC. The box with a slim border is a location on the stack
or in a register, one with a bold border is a location on the heap. Note the storage
of a functor such as h/2 of the last element of the list. We need a two-word block
for its arguments, the functor itself is stored implicitly in the tagged pointer. 2

We now consider the storage of terms when the heap is split into regions. The
idea is to use different regions to store different parts of a term so that we can
reclaim the memory of a part by destroying its region as soon as the part becomes
dead. In list-based programs, such as quicksort, we often see that a program creates
several temporary lists but the elements of the input list are needed throughout.
Therefore it will serve our purpose if we store the elements and the skeletons in
different regions. Generalizing from this we divide a term into regions based on
its type. We will develop this idea in the next section.

In Figure 3.1 the regions used to store that term are visualized by the dashed
lines. We put the two-word memory blocks making up the skeleton of the list L into
one region because they have the type list elem. We also put all the elements,
which have the type elem, into another region. Finally, the second subterm of the
third element, which is a list of integers, is also stored in a separate region.

The representation of the list of integers here seems inconsistent with what we
said in Section 2.3, where we have an extra, separate region for the integers. The
reason for this is because in this section we want to give a region model as close as
possible to the implementation of Mercury in the MMC. Strictly speaking, whether
a type needs heap storage or not depends on implementation. For convenience, we
take the liberty to switch between the two options. When talking about theoretical
topics such as static analyses and transformation for convenience we generally
assume that all types (also int) require heap storage. Otherwise, for example
when we talk about regions for a type, we assume that its terms actually need to

3.2 Modelling Regions of a Type 19

be stored on the heap. We will be more specific only if the context is not clear.

3.2 Modelling Regions of a Type

We want to have a storage scheme that specifies how the terms of a type are stored.
Consider a type t declared as follows.

:- type t ---> ...; f(t1,..., ti,..., tn); ...

We associate a region variable Rt to the type. The block of memory words corre-
sponding to a principal functor, such as f, of a term of the type t is stored in the
region bound to by Rt. In the rest of the thesis we abbreviate this by simply saying
that a principal functor is stored in Rt. The principal functor of an argument of f
that has type ti is stored in the region bound to by Rti, which is associated to ti.
If a type t is recursive or mutually recursive we still use only one region variable
Rt. This implies that any term of a recursive type is modelled in a finite number
of regions.

We model the storage scheme using a type-based region graph, TG(N, E) with
N a set of nodes and E a set of directed edges. A node stands for a region
variable. A directed edge from one node to another represents the fact that the
region bound to by the region variable represented by the source node of the edge
contains references into (points-to) the region bound to by the region variable
represented by the target node of the edge. The reference relation represented by
the edges is actually defined by the type.

Consider the type-based region graph of the type t, TG t, with the region
variables Rt, Rti’s, and so on. If Rt is represented by the node n, then for each
node m representing Rti, we have exactly one edge (n, (f, i), m) with the label
(f, i). We refer to n as the principal node of TG t.

Example 3.2. The type-based region graph for the type list elem in Exam-
ple 3.1 is shown in Figure 3.2. The [|] principal functor is stored in Rlist elem . It
has two arguments, the first having the type elem and the second having the same
type list elem. Thus we have two edges from Rlist elem , one pointing to Relem

where the principal functors of elem (g/1 and h/2) are stored and the other is a
self-edge. The edge labelled (h,1) is due to the first argument of the functor h/2.
The reader may want to compare this type-based region graph with the memory
representation of a given term of this type in Figure 3.1. 2

Example 3.3. Consider the following types t1 and t2, which are mutually re-
cursive.

:- type t1 ---> f(int, t2).

:- type t2 ---> g(t1, int).

The type-based region graph for them is as in Figure 3.3.

20 Region Modelling

R
list_elem elem

([|],2)

([|],1) (h,1)

([|],2)

R
list_int

R

Figure 3.2: The type-based region graph of the type list elem.

R

(g,1)

(f,2)

t1
R

t2

Figure 3.3: Type-based region graph of mutually recursive types.

3.3 Region Points-To Graph

Now that we have the region model for types, our next goal is to model the
memory used by a Mercury program in terms of regions. A program consists of a
set of procedures, each having its own set of program variables that, at runtime,
are instantiated with relevant terms. Therefore we define the notion of a region
points-to graph that models the memory used by a set of variables. The memory
used by a procedure is then modelled by a region points-to graph for its variables.
Finally, the memory model for the whole program is expressed through the region
points-to graphs of its procedures.

In Mercury, the instantiation of variables is caused by unifications. A con-
struction unification X <= f(..., Y, ...) allocates new memory for storing the
functor f (actually the block of memory words corresponding to f) and creates
sharing between X and Y. In a deconstruction unification X => f(..., Y, ...)

or an assignment unification Y := X, Y is instantiated and shares a subterm or the
whole term with X, respectively. Hence the region points-to graph should capture
the memory locations of the variables and the sharing among them.

A region points-to graph, G(N, E), for a set of variables V , consists of a
set of nodes, N , representing region variables and a set of directed edges, E, rep-
resenting references between the regions bound to by these region variables. The
edges here serve exactly the same purpose as those in a TG graph. However, each
node n in the region points-to graph has an associated set of program variables,
vars(n), whose principal functors are stored in the region that is bound to by the
region variable that is represented by n. Note that this set can be empty. We
have V =

⋃

n∈N
vars(n). The node nX denotes the node such that X ∈ vars(nX)

and we refer to nX as the location of X where the principal functor of the term
that X is bound to is stored. The function node(nX , (f, i)) returns the node m

if (nX , (f, i), m) ∈ E otherwise it is undefined. Sharing is represented in a region
points-to graph in two ways. Firstly, directed edges represent sharing of subterms
and secondly, that a vars set of a node may contain more than one variable repre-

3.3 Region Points-To Graph 21

sents the fact that these variables may be bound to the same term. An example
of the latter is given by the variables of an assignment unification: they are bound
to the same term and therefore they should be in the vars set of the same node.
A region points-to graph represents sharing at the level of the regions.

Definition 3.1 (Region-sharing in a region points-to graph) Two variables
X and Y region-share in a region points-to graph if there exists a node that can
be reached from nX and nY .

For convenience, we also say a node represents a region, by which we mean the
region to which the region variable represented by the node is bound at runtime.
Then we can say a functor is stored in a node meaning that the functor (i.e., the
memory block corresponding to it) is stored in the region represented by the node.

For a procedure p, we often denote its region points-to graph by Gp(Np, Ep)
and Gp should represent the locations and sharing among all the variables in p.
It is possible to form a region points-to graph for a procedure exactly from the
type-based region graphs of all of its variables (whose types are known to the
compiler). Although this region points-to graph adequately models the locations
of the procedure’s relevant terms it does not represent the sharing among them.
Actually as we will see in Section 4 we use that region points-to graph as the
starting point in our region points-to analysis of a procedure with the ultimate
aim of producing a region points-to graph that also represents all the possible
sharing among the procedure’s variables.

Example 3.4. Consider the following sequence of code to construct the term
that L in Example 3.1 is bound to. The type of K is of no importance.

...,

X <= [1, 2],

Y := X,

Z <= h(Y, 2),

L <= [f, g(1), Z],

K <= k(Z),

...

The region points-to graph that represents the memory manipulated by this se-
quence is shown in Figure 3.4. X and Y are in the vars set of the same node
because the assignment makes Y point to the term to which X is bound. The
direct sharing between Z and Y , and between L and Z is represented by the
edges between their corresponding nodes. The indirect sharing between L and Y

is modelled by the fact that nY is reachable from nL through the directed edges.
The sharing between L and K is represented by the fact that nZ is reachable from
both nL and nK . 2

22 Region Modelling

X, Y

K

L Z

([|],1) (h,1)

(k,1)

([|],2) ([|],2)

Figure 3.4: Modelling of sharing information.

3.4 Conclusion

We have described the memory models of terms in a region-based system. Terms,
program variables, types, and in-memory storage of terms are closely related. We
have relied on types, which are statically available to the Mercury compiler, to
assign regions to terms and program variables. The region-based memory model
of a procedure is then defined by a region points-to graph for its variables and
that of a program is by a set of region points-to graphs of its procedures. Region
points-to graphs not only contain information about locations of program terms
but also represent sharing among them at the level of regions. We formulate this
sharing as region-sharing. Our next task now is to develop a program analysis
that computes these memory models for Mercury programs, which will be dealt
with in the next chapter.

Chapter 4

Region Points-To Analysis

In this chapter we develop a region points-to analysis that aims at computing for
each procedure in a Mercury program a region points-to graph that represents
the locations of its variables and the sharing among them. As we described in
Chapter 3 the memory model of the whole program consists of the region points-
to graphs of its procedures.

4.1 Overview

The region points-to analysis is unification-based and flow-insensitive, i.e., the
execution order of the literals in a procedure does not matter, and consists of
an intraprocedural analysis and an interprocedural analysis. Both analyses make
use of a unify operation, which is defined in Algorithm 1, to capture sharing by
unifying nodes in a region points-to graph. To ensure that there is only one out-
edge with a specific label from one node to another, the operation is recursive, i.e.,
unifying two nodes may cause more nodes to be unified.

We will describe the analyses in turn with the assumption that we are analysing
a procedure p.

Recall that, when describing the static region analysis and transformation, for
convenience, we make the assumption that all terms are stored on the heap and
therefore we need regions for them. In a concrete implementation, such as ours
inside the MMC (Chapters 7 and 8), if certain terms do not need heap storage,
their corresponding regions can just be ignored.

4.2 Intraprocedural Analysis of a Procedure

The intraprocedural analysis initializes Gp and then captures the sharing created
by the explicit unifications. Its definition is in Algorithm 2.

23

24 Region Points-To Analysis

Algorithm 1 unify(n, m)

Require: G(N, E), n, m ∈ N .
Ensure: G(N, E) with n representing the unified node.

N = N \ {m}
vars(n) = vars(n) ∪ vars(m)
for all (m, (f, i), k) ∈ E do

E = E \ {(m, (f, i), k)}
if (n, (f, i), k) 6∈ E then

E = E ∪ {(n, (f, i), k)}
end if

end for
for all (k, (f, i), m) ∈ E do

E = E \ {(k, (f, i), m)}
if (k, (f, i), n) 6∈ E then

E = E ∪ {(k, (f, i), n)}
end if

end for
for all l, l′ ∈ N do

if (n, (g, j), l) ∈ E ∧ (n, (g, j), l′) ∈ E ∧ l 6= l′ then
unify(l, l′)

end if
end for

Algorithm 2 intraproc(p): intraprocedural analysis of a procedure p

Require: p is in superhomogeneous form.
Ensure: Sharing created by explicit unifications is represented in Gp.

Gp = (∅, ∅)
for all X ∈ p do

Gp = Gp ⊎ init rptg(X)
end for
for all unif ∈ p do

if unif ≡ (X := Y) then
unify(nX , nY)

else if unif ≡ (X => f(Y1, . . . , Yn) or X <= f(Y1, . . . , Yn)) then
for i = 1 to n do

unify(node(nX , (f, i)), nYi
)

end for
end if

end for

4.3 Interprocedural Analysis 25

([|],2)

([|],1) (h,1)

([|],2)L

R1 R2 R3

Figure 4.1: The resulting region points-to graph of init rptg(L).

As we know the type of each variable in p, we initialize Gp by using the TG
graphs of the variables. In Algorithm 2, we use the function init rptg(X) that
generates a region points-to graph for X from the type-based region graph of the
type of X , TG type(X), by maintaining all the nodes and edges, but initializing the
vars set of the node corresponding to the principal node in TG type(X) with {X}
and those of the other nodes with an empty set, and generating a fresh region
variable for each node in the region points-to graph. The region points-to graph
returned by init rptg(L), with L of the type list elem (Figures 3.1 and 3.2) is
shown in Figure 4.1 with the assumption that the region variables are fresh.

The intraprocedural analysis adds all the sharing created by the unifications in
the procedure to Gp. For assignment, construction and deconstruction unifications
we unify the nodes corresponding with the sharing created by them. We ignore
test unifications because they do not create any sharing.

4.3 Interprocedural Analysis

The interprocedural analysis, Algorithm 3, updates Gp by integrating the relevant
region-sharing information from the region points-to graphs of the called proce-
dures into Gp.

For a call q(Y1, . . . , Yn), the head of the defining procedure is assumed to be
q(X1, . . . , Xn). The region-sharing among Xi’s in Gq may not have been present
in Gp as region-sharing among Yi’s. The interprocedural analysis makes sure that
this will be the case. Firstly, it builds the function α : Nq → Np that maps the
nodes of the formal arguments (Xi’s) to the nodes of the corresponding actual
arguments (Yi’s). Then these nodes are the starting points for the integration of
the remaining region-sharing. This is done by following the relevant edges in Gq

to extend the α function to all the relevant nodes in Gq (rule P2) and to unify the
relevant nodes in Gp (rule P1).

For a whole program, we can first do the intraprocedural analysis for every
procedure. Then given the fact that in the interprocedural analysis the analysis
information is only propagated from graphs of callees to those of callers, we can
do the interprocedural analysis for a program efficiently by decomposing the call-
dependency graph into a tree of strongly connected components, and analysing
the components in bottom-up order. Algorithm 4 illustrates this approach.

The points-to graphs of the split and qsort procedures in the quicksort pro-

26 Region Points-To Analysis

Algorithm 3 interproc(p): interprocedural analysis of a procedure p

Require: p is in superhomogeneous form.
Ensure: The sharing created by procedure calls is represented in Gp(Np, Ep).

repeat
for all call site in p do

Assume that the call is q(Y1, . . . , Yn), with X1, . . . , Xn as corresponding for-
mal arguments, and that Gq is available.

% Build an α relation.

for k = 1 to n do
α(nXk

) = nYk

end for

% Ensure α is a function.

for all Xi, Xj do
if α(nXi

) = nYi
∧ α(nXj

) = nYj
∧ nXi

= nXj
∧ nYi

6= nYj
then

unify(nYi
, nYj

)
end if

end for

% Integrate sharing in Gq into Gp.

In the graph Gq , start from each nXi
, follow each edge once and apply the

rules P1 and P2 in Figure 4.2 when applicable.
end for

until There is neither change in Gp nor in any of the α functions.

(nq, (f, i), mq) ∈ Eq

α(nq) = np

(np, (f, i), m
′

p) ∈ Ep

α(mq) = mp 6= m
′

p

unify(mp, m
′

p)
(P1)

(nq, (f, i), mq) ∈ Eq

α(nq) = np

(np, (f, i), mp) ∈ Ep

α(mq) undefined

α(mq) = mp

(P2)

Figure 4.2: Interprocedural analysis rules.

4.3 Interprocedural Analysis 27

Algorithm 4 Region points-to analysis of a program

Require: A Mercury program P with its procedures in superhomogeneous form.
Ensure: Region points-to graphs for all procedures.

for all procedure p in P do
intraproc(p)

end for
Decompose P ’s call-dependency graph into a tree of strongly connected components
(SCCs).
for all SCC (bottom-up order) do

repeat
for all p in SCC do

interproc(p)
end for

until reach a fixpoint
end for

([|],1)

([|],2)

([|],2)

([|],1)

([|],1)

([|],2)

(R1) L,Ls

L2

L21

L1

L11
(R3) (R4)

Le X

(R2)

(R5)

(a) split

S,A

([|],2)

([|],2)

([|],1)

([|],1)

([|],2)

([|],1)

([|],2)

([|],1)

L,Ls Le S2,A1

L2L1

(R6) (R8)

(R9) (R10)

(R7)

(b) qsort

Figure 4.3: The region points-to graphs of split and qsort.

gram in Example 2.3 are shown in Figure 4.3. For split, the region points-to
analysis can detect that the two sublists L1 and L2 can be in separate regions
that are different from the region of the input list L. For qsort, the input list, the
two temporary lists, and the resulting list are all in different regions. That the
resulting list is in the same region as the accumulator and the temporary lists S2
and A1 is reasonable because the resulting list is gradually built up from them.

Illustration of Interprocedural Analysis

In Figures 4.4 and 4.5, we illustrate the interprocedural region points-to analysis
of the qsort procedure at two call sites. Each figure contains two region points-to
graphs: one of the caller (namely qsort) at the top and the other of the involved
callee at the bottom. The directed dash-dot lines represent the typical α mappings
at each call site.

Figure 4.4 shows the processing at the call to split at the program point (4)
in qsort. At this point the region points-to graph of split, Gsplit , is already in

28 Region Points-To Analysis

([|],1)

L,Ls Le

([|],1)

([|],2)

([|],1)

S,A ([|],2)

([|],2)S2,A1

([|],1)

([|],1)

([|],1)

L,Ls

L2

L21

L1

L11

Le X

L1

([|],2)

([|],1)

L2

([|],2)

split(X, L, L1, L2)

([|],1)

(4): split(Le, L, L1, L2)

([|],2)

([|],2)

([|],2)

Figure 4.4: Capturing region-sharing in a call to another procedure.

([|],1)

L,Ls Le

([|],1)

L1
([|],1)([|],1)

([|],2)

([|],2)

([|],2)

([|],1)

L,Ls Le

([|],1)

L1

L2

([|],1)([|],1)

([|],2)

([|],2)

([|],2)

S2,A1 ([|],2)

qsort(L, A, S)

([|],1)

S,A ([|],2)

([|],1)

S,A ([|],2)

([|],2)S2,A1L2

(5): qsort(L2, A, S2)

Figure 4.5: Capturing region-sharing in a recursive call.

4.4 Correctness of the Region Points-To Graphs 29

its final state, which is the same as the graph in Figure 4.3(a). At this point,
the points-to graph of qsort, Gqsort , which is obtained by the intraprocedural
analysis, does not yet represent the sharing of the elements between the input
list L and the temporary lists L1 and L2. The interprocedural analysis makes
the sharing available from the sharing of the elements between L, L1, and L2 in
split. Starting from α(nL1) = nL1 , α(nL2) = nL2 , and α(nL) = nL (not drawn
in Figure 4.4), the application of the rule P2 will capture the mappings from nLe

in Gsplit to three different nodes in Gqsort . This will cause the three nodes to be
unified due to the rule P1. And the region points-to graph of qsort after this
step is the same as the ones shown in Figure 4.5, which are the graphs used in the
analysis of the recursive call to qsort at (5).

For the analysis of the recursive call at (5), notice that the sharing among the
arguments of qsort has not been fully represented in the callee’s graph yet. For
example, the sharing of the elements between the input list L and the output list
S is not yet available. This sharing, represented as the region-sharing between nL

and nS , is captured after, for example, the rule P1 is applied to unify nA and nS2

due to α(nA) = nA and α(nS) = nS2 . After this step the region points-to graph
of qsort is the same as the final one in Figure 4.3(b). (The analysis of the second
recursive call at (7) does not add any more information to the graph. In reality,
the analysis would also need to go one more iteration to confirm that the fixpoint
of Gqsort has been reached.)

4.4 Correctness of the Region Points-To Graphs

We will prove that the region points-to analysis of a program terminates and that
the resulting region points-to graphs for the procedures in the program are correct,
i.e., they represent all the locations of the terms and the sharing among the terms.

Theorem 4.1 The region points-to analysis of a program terminates.

Proof. An α function at a call site is a mapping from a subset of the nodes in
the callee’s region points-to graph to a subset of the nodes in the caller’s region
points-to graph. Therefore if we can show that the sets of nodes are finite then so
is the α function. This then implies that the termination of the region points-to
analysis solely depends on the finiteness of the region points-to graphs.

For any procedure, the Algorithm 2 starts with a region points-to graph having
a finite number of nodes and edges. The analysis uses only the unify operation
(Algorithm 1) to change the graphs. It always decreases the number of nodes
and does not increase the number of edges. Therefore the analysis must, at some
point, terminate. In the most extreme cases, the final region points-to graph of a
procedure contains only one node and self-edges, if any.

30 Region Points-To Analysis

Theorem 4.2 The resulting region points-to graphs of the region points-to analy-
sis of a program represent all the locations of the terms that are possibly constructed
during the execution of the program and the possible sharing among the terms.

The theorem has two parts, one about locations and the other about sharing.
We prove each part separately.
Proof. (Locations) During the execution of a program a variable can get bound
to a compound term. However that compound term must be built step-by-step
using construction unifications. In such a step, a construction unification allocates
memory to store only the principal functor that the variable on its left-hand side is
bound to. Therefore to show that terms have their locations it should be enough
to show that all variables have their locations. We will prove that the region
points-to analysis ensures that every variable is assigned a location.

Consider a procedure. The region points-to analysis of the procedure starts
with the intraprocedural analysis (Algorithm 2) that assigns a set of nodes to each
variable based on the type-based region graph of the type of the variable. These
nodes represent the regions where a term to which the variable is possibly bound
is stored. Moreover, the variable is assigned a location by the fact that it is added
to the vars set of the node where the principal functor of the term it is bound
to is stored. During the analysis this node may be removed from the graph when
it is unified with another node. However, regardless of where this happens, in
the intraprocedural or in the interprocedural analysis, the unify operation ensures
that the remaining node now represents the location of the variable.

Now, for the second part of Theorem 4.2, we will show that all sharing between
the terms is represented in the region points-to graphs. For a procedure, the
sharing among its variables is created either by the explicit unifications in the
procedure or by the ones hidden in procedure calls. The lemma below deals with
explicit unifications.

Lemma 4.3 (Sharing created by explicit unifications) If a unification ex-
plicitly appears in a procedure, the sharing created by the unification is represented
in the region points-to graph of the procedure.

Proof. The explicit unifications are dealt with by Algorithm 2, the intraprocedural
analysis. Test unifications do not create sharing, so we can ignore them. Consider
an assignment unification. Algorithm 2 unifies the nodes of its left and right
variables and keeps these two variables in the vars set of the unified node. This
represents their sharing.

The other case is with a unification of this form X = f(. . . , Xi, . . .). If
we assume node(nX , (f, i)) = m, Algorithm 2 does unify(m, nXi

) when han-
dling the unification. This adds Xi to vars(m). After the unification, the edge
(nX , (f, i), m), which was already in the region points-to graph, has become
(nX , (f, i), nXi

). This represents the sharing between X and Xi.

4.4 Correctness of the Region Points-To Graphs 31

For procedure calls, we consider a procedure p that invokes q, Xi’s are the for-
mal arguments and Yi’s are the actual ones. We call Gsub

p (Nsub
p , Esub

p) the subgraph

of the region points-to graph of p rooted at the nodes of Yi’s and Gsub
q (Nsub

q , Esub
q)

the subgraph of the region points-to graph of q rooted at the nodes of Xi’s.
In order to prove that all the region-sharing in Gsub

q is also in Gsub
p , we first

observe two arbitrary formal arguments Xi and Xj that share. By Definition 3.1,
this means that there exists a node in Gsub

q that can be reached from nXi
and

nXj
. There are two cases, either nXi

= nXj
, i.e., the sharing between Xi and Xj

is represented in Gsub
q by the fact that they are in the vars set of the same node,

or nXi
6= nXj

, i.e., the sharing among them is represented by intermediate edges
to the common node.

The following lemma shows that the region-sharing in the first case is brought
to Gsub

p .

Lemma 4.4 The region-sharing between the formal arguments that are in the vars
set of a node nq ∈ Nsub

q is also in Gsub
p .

Proof. The interprocedural analysis (Algorithm 3) first builds an α relation
that represents the connection between Gsub

q and Gsub
p . This initial α relation

connects the nodes of the formal arguments with the nodes of the corresponding
actual arguments. In this α relation, it is possible that a node in Gsub

q whose vars
set contains more than one formal argument is connected to more than one node
of the actual arguments in Gsub

p . The region-sharing of such formal arguments

(represented by the fact that they are in the same vars set) is brought into Gsub
p

when Algorithm 3 turns the α relation into a function. So the actual arguments
corresponding to the formal arguments that are in the vars set of a node nq in
Gsub

q are in the vars set of a node np in Gsub
p and α(nq) = np.

For the second case, we first introduce the following lemma.

Lemma 4.5 If n and m are in N sub
q such that (n, (f, i), m) ∈ Esub

q and α(n) ∈

N sub
p then α(m) ∈ N sub

p and also (α(n), (f, i), α(m)) ∈ Esub
p .

Proof. In a well-typed Mercury program, an actual argument has the same type
as its corresponding formal one. Therefore if (n, (f, i), m) is in Esub

q there must

exist a node k ∈ N sub
p such that (α(n), (f, i), k) is in Esub

p . If α(m) = k, our
proof is done. If α(m) = m′ 6= k, the algorithm applies rule P1 to unify k and
m′. After that we have the desirable effect α(m) = k. If α(m) is undefined, the
algorithm applies rule P2 to produce α(m) = k, which is also the desirable result.
Lemma 4.5 essentially shows that the α function is extended for all the nodes

in Nsub
q and all the intermediate edges connecting these nodes in Esub

q have their

counterparts in Gsub
p .

32 Region Points-To Analysis

Theorem 4.6 (Sharing created by procedure calls) All the region-sharing in
Gsub

q is also in Gsub
p .

Proof. The proof of Theorem 4.6 follows from Lemma 4.4 and Lemma 4.5.

Now we can continue with the proof of the sharing-among-terms part of The-
orem 4.2.
Proof. (Sharing among terms) The proof of the second part of Theorem 4.2 follows
from Lemma 4.3 and Theorem 4.6, which show that the sharing created by explicit
unifications as well as by procedure calls in a procedure is all represented in the
region points-to graph of the procedure.

When a procedure is recursive or mutually recursive, it is possible that the re-
gion points-to graph of a called procedure (recursive or mutually recursive) has not
fully represented the sharing among its formal arguments. However, if a program
ever creates sharing, ultimately this creation must involve a unification. (An ex-
ample for this can be found in Figure 4.5.) And we already showed by Lemma 4.3
that this sharing is represented in the region points-to graph of the procedure
containing the unification. By Theorem 4.6, we showed that the sharing will also
be represented in the region points-to graphs of any procedures that invoke the
procedure. Therefore even when the procedure is recursive, the sharing created
by the recursive calls will finally be represented in its region points-to graph. This
concludes the proof of Theorem 4.2.

In the future chapters when we mention region points-to graphs we mean the
ones obtained by the region points-to analysis. We will only be specific if otherwise.

4.5 Regions That Are Allocated Into in A Proce-

dure

During the region points-to analysis of a procedure we can track the regions that
are possibly allocated into during the execution of the procedure. A construction
unification is the only construct in Mercury that allocates memory. When pro-
cessing a construction unification X <= f(. . .) we mark the node nX as allocated.
When two nodes are unified, if one node is marked as allocated then the unified
node is also marked as allocated. At a call site, if an actual node is mapped to
by an allocated node, it is marked as allocated. For a procedure p, we call this
set of nodes allocation(p). In the quicksort example of Figure 2.2 and Figure 4.3,
allocation(split) = {R3 ,R4}, allocation(qsort) = {R8 ,R9 ,R10},

4.6 Conclusion

In this chapter we have presented a program analysis that computes a region-based
memory model for a Mercury program. The analysis is unification-based: the

4.6 Conclusion 33

region points-to graphs of program variables are unified to reflect the sharing the
program possibly creates. We prove that the resulting memory model adequately
represents locations and sharing of the terms in a program. The sharing relation
is important for the estimation of lifetimes of the region variables as we will see in
Chapter 5.

34 Region Points-To Analysis

Chapter 5

Region Liveness Analysis

After the region points-to analysis we know the region variables of each procedure
and how the program variables are distributed over the regions to which these
region variables are bound. In this chapter we construct a region liveness analysis
that approximates lifetimes of the region variables, i.e., their liveness, to decide
when a region needs to be created and when it can safely be reclaimed. We make a
distinction between local liveness and global liveness. Local liveness concerns the
lifetime of the region variable inside the procedure itself, namely when we consider
the procedure alone. Global liveness concerns the liveness with respect to the whole
program, namely when we take into account the call sites of the procedure. Local
liveness is computed in Section 5.2 and global liveness is described in Section 5.3.

5.1 Technical Background

A region variable being live means that it should be bound to a region and is
possibly used in future (forward) execution. As regions may need to exist through
a sequence of procedure calls, e.g., a call may allocate memory into an existing
region, we pass region variables as arguments of procedures. The set of region
arguments is a subset of the set of region variables derived by the region points-to
analysis. The goal of the region liveness analysis is therefore to decide which region
variables are live at each program point and which region arguments become live
or stop being live in each procedure.

Consider a procedure p. We associate a program point with every literal in
the body of p. An execution path in p is a sequence of program points, such
that at runtime the literals associated with these program points are performed
in sequence. We denote an execution path by 〈l1, . . . , ln〉, in which the li’s are
the literals involved, the indexes i’s reflect the order among the literals in this
execution path (not their associated program points). The function pp(l) returns

35

36 Region Liveness Analysis

Table 5.1: Input and output arguments of unifications.

in args out args
X <= f(X1, . . . , Xn) {X1, . . . , Xn} {X}
X => f(X1, . . . , Xn) {X} {X1, . . . , Xn}
X == Y {X, Y } ∅
X := Y {Y } {X}

the program point associated to l. We use the notions before and after a pro-
gram point. Before a program point means right before the associated literal is
going to be executed; while after a program point means its literal has just been
completed. The set of live region variables at a program point is computed via
the set of live variables at the program point. We also use the in args(atom) and
out args(atom) functions that respectively return the sets of input and output
arguments to atom. For specialized unifications they are defined in Table 5.1. If
atom is a procedure’s head, they return formal arguments, whereas if atom is a call
they return actual ones. Those sets can be computed from the mode information
of Mercury procedures.

5.2 Live Region Variables at a Program Point

In this section we specify the analysis that computes the local liveness of region
variables in a procedure. We express local liveness by the sets of region variables
that are live before and after every program point in the procedure. The liveness of
a region variable at a program point is determined by the liveness of the variables
that are stored in the corresponding region.

Live variables. A variable is live before a program point if it has been instantiated
before the point and may be used in the future. A variable is live after a program
point if it has been instantiated before or at the point and may be used in the
future.

The live variable analysis for a procedure p is defined in Algorithm 5. It is a
backward computation of live variables, in which we follow each execution path
(ep) backwards from its last program point. At each program point we apply the
suitable formula to update the LV after and LV before sets of the program point.
The LV before of the first program point(s) is defined to be in args(p) while the
LV after of the last program point(s) is defined to be out args(p).

Live region variables. A region variable is live before (after) a program point if
its node is reachable from a variable that is live before (after) the program point.

The set of nodes that are reachable from a variable is defined as follows.

Reach(X) = {nX} ∪ {m | ∃(nX , m) ∈ E∗(X)},

5.3 Lifetime of Regions across Procedure Boundary 37

Algorithm 5 lva(p): live variable analysis of a procedure p.

Require: p in superhomogeneous form.
Ensure: The sets of live variables before (LV before) and after (LV after) all program points

in p.
for all program point i in p do

LV before (i) = LV after (i) = ∅
end for
for all ep ≡ 〈l1, . . . , ln〉 in p do

for j = n downto 1 do
i = pp(lj)
if j = n then

LV after (i) = out args(p)
else

LV after (i) = LV after (i) ∪ LV before(pp(lj+1))
end if
if j = 1 then

LV before (i) = in args(p)
else

LV before (i) = (LV after (i) \ out args(lj)) ∪ in args(lj)
end if

end for
end for

in which E∗(X) is defined as:

E∗(X) = {(nX , ni) | ∃(nX , label0, n1), . . . , (ni−1, label i−1, ni) ∈ E}.

Then the live region variable analysis of a procedure is specified in Algorithm 6
in which the sets of live region variables before (LRbefore) and after (LRafter) a
program point are straightforwardly computed as the unions of the Reach sets of
all live variables in LV before and in LV after of the program point, respectively.

5.3 Lifetime of Regions across Procedure Bound-

ary

As said before we use region arguments to pass regions among procedure calls. For
a procedure, the region variables reachable from its arguments are candidates for
region arguments. But as we will see later not all of them may need to be. This
section introduces an analysis that, by taking into account the calling contexts of
a procedure in the whole program, decides which region variables become live or
cease to be live inside the procedure. With this global liveness information we can
give shorter lifetime for regions, achieving better memory reuse.

Consider a procedure q that is called by some procedure p, we define:

38 Region Liveness Analysis

Algorithm 6 lra(p): live region variable analysis of a procedure p

Require: LV before and LV after of all program points in p.
Ensure: The sets of live region variables before (LRbefore) and after (LRafter) all program

points in p.
for all program point i in p do

LRbefore (i) = LRafter (i) = ∅
for all X ∈ LV before (i) do

LRbefore (i) = LRbefore(i) ∪ Reach(X)
end for
for all X ∈ LV after (i) do

LRafter (i) = LRafter (i) ∪ Reach(X)
end for

end for

• bornR(q) is the set of region variables of q that are mapped (by the α function
at the call site) to region variables of p that definitely become live inside q,
i.e., in q or in one of the procedures it calls.

• deadR(q) is the set of region variables of q that are mapped to region variables
of p that definitely cease to be live (or become dead) inside q.

• outlivedR(q) is the set of region variables of q that are mapped to region
variables of p that outlive the call to q. They are live before the call and still
live after the call.

The motivation is that, in the transformed program, the region variables of p that
are mapped to by those in bornR(q) will get bound to a region during q and are
still bound after q, the ones mapped to by those in deadR(q) are bound before the
call to q and are safely removed during q, and the ones mapped to by those in
outlivedR(q) are bound before the call and maintain their bindings throughout the
call. An alternative approach would be that p creates those mapped to by ones in
bornR(q) just before and removes those mapped to by ones in deadR(q) right after
the call to q. In this approach, the corresponding regions have longer lifetime.

For a procedure p, initially, bornR(p) = outputR(p) \ inputR(p); deadR(p) =
inputR(p) \ outputR(p), where inputR(p) and outputR(p) are the sets of region
variables reachable from the variables in in args(p) and out args(p), respectively.
This is an overestimate in which all the region variables that contain input terms
but are not involved with output terms are assumed to become dead in p, while all
the region variables where output terms are stored but are not yet bound at the
entry of p are assumed to become live in p. We call the set of the region variables
that are local to p (not reachable from input or output variables), localR(p), which
is computed by Np\(inputR(p)∪outputR(p)). Initially, outlivedR(p) = inputR(p)∩
outputR(p). It is clear that the Np is composed of four disjoint sets, localR(p),
bornR(p), deadR(p), and outlivedR(p).

5.3 Lifetime of Regions across Procedure Boundary 39

r ∈ LRbefore(pp(l))
r ∈ LRafter (pp(l))

r = α(r
′

) r
′

∈ deadR(q)

deadR(q) = deadR(q) \ {r
′}

outlivedR(q) = outlivedR(q) ∪ {r
′

}

(L1)

α(r′) = r α(r′′) = r

r
′

6= r
′′

r
′

∈ deadR(q)

deadR(q) = deadR(q) \ {r
′}

outlivedR(q) = outlivedR(q) ∪ {r
′

}

(L2)

r ∈ LRbefore(pp(l))
r = α(r′) r

′ ∈ bornR(q)

bornR(q) = bornR(q) \ {r
′}

outlivedR(q) = outlivedR(q) ∪ {r
′

}

(L3)

α(r′) = r α(r′′) = r

r
′ 6= r

′′
r
′ ∈ bornR(q)

bornR(q) = bornR(q) \ {r
′}

outlivedR(q) = outlivedR(q) ∪ {r
′

}

(L4)

The literal l is a call to q(. . .) at a program point.

Figure 5.1: Region liveness analysis rules.

The calling contexts of a procedure influence what it can do to its non-local
region variables. Therefore when analysing a procedure p, the analysis applies
the rules in Figure 5.1 to any call q in p to correct the deadR and bornR sets of
q according to the calling context. A region variable is moved from deadR(q) to
outlivedR(q) if it needs to be live after the call to q in p (i.e., the region it is bound
to before the call must not be reclaimed during the call) (rule L1); or to avoid
wrong removals due to the so-called “region alias”, which generally means that a
region is referred to by more than one region variable (rule L2). A typical case
of region alias is when a procedure, e.g., q(X1, X2), with RX1

6= RX2
, is called as

q(Y1, Y2), with RY1
≡ RY2

.

A region variable is moved from bornR(q) to outlivedR(q) if it is already live
before the call to q (rule L3); or to avoid wrong creations, again due to region
alias (rule L4). Note that the rules L2 and L4 are there to deal with region alias.
The aim of handling region alias is to make sure that any region variables that are
involved in region alias do not belong to either bornR or deadR sets. It is probably
easier to read the two rules as if we are dealing with r′. We can also apply the
rules to r′′, with r′′ in the role of r′ in the rules. If r′′ belongs to either set, it is
eliminated from the set. Otherwise nothing happens.

When there is a change to those sets of q, q needs to be analysed to propagate
the change to its called procedures. Therefore, this analysis requires a fixpoint
computation. After a fixpoint is reached, each procedure has exactly one bornR
set and one deadR set that are suited for the most restrictive context. If the
procedure is called in a less restrictive context, it will be the case that creation
and removal will happen outside the call.

In the quicksort program in Figure 2.3, split has three execution paths:
〈(1), (2), (3)〉, 〈(4), (5), (6), (7)〉, and 〈(4), (8), (9)〉; qsort has two paths: 〈(1), (2)〉
and 〈(3), (4), (5), (6), (7)〉. 1 Note that the third execution path of split does not
contain the test at (5) because of the semantics of if-then-else. The LV and LR

1For convenience, we use program points to describe execution paths.

40 Region Liveness Analysis

Table 5.2: Live variable and live region variable sets in quicksort program.

pp LV LR

(1b) {X, L} {R5 ,R1 ,R2}
(1a, 2b) {} {}
(2a, 3b) {L1} {R3 , R2}
(3a) {L1 ,L2} {R3 ,R2 ,R4}
(4b) {X, L} {R5 ,R1 ,R2}

(4a, 5b) {X,Le ,Ls} {R5 ,R2 ,R1}
(5a, 6b) {X,Le ,Ls} {R5 ,R2 ,R1}
(6a, 7b) {L2 ,Le,L11} {R4 ,R2 ,R3}
(7a) {L1 ,L2} {R3 ,R2 ,R4}

(5a, 8b) {X,Le ,Ls} {R5 ,R2 ,R1}
(8a, 9b) {L1 ,Le,L21} {R3 ,R2 ,R4}
(9a) {L1 ,L2} {R3 ,R2 ,R4}

(a) split

pp LV LR

(1b) {L, A} {R6 ,R7 ,R8}
(1a, 2b) {A} {R8 ,R7}

(2a) {S} {R8 ,R7}
(3b) {L, A} {R6 ,R7 ,R8}

(3a, 4b) {A,Le,Ls} {R8 ,R7 ,R6}
(4a, 5b) {A,Le, L1 ,L2} {R8 ,R7 ,R9 ,R10}
(5a, 6b) {Le,L1 ,S2} {R9 ,R7 ,R8}
(6a, 7b) {L1 ,A1} {R9 ,R7 ,R8}

(7a) {S} {R8 ,R7}

(b) qsort

Table 5.3: Division of the set of region variables.

localR bornR deadR outlivedR

split ∅ {R3 ,R4} {R1} {R2 ,R5}
qsort {R9 ,R10} ∅ {R6} {R7 ,R8}

sets of split are in Table 5.2(a), of qsort in Table 5.2(b) (see also Figure 2.2
and Figure 4.3). Note that, in this example, it happens to be that the set after
one program point is always equal to the one before the next point in the same
execution path. In general, this is not necessarily the case, for example consider
a split point before a disjunction or before an if-then-else, the set of live region
variables after it is the union of all the sets before its next points. When computing
deadR and bornR sets, R5 is eliminated from deadR(split) due to the application
of the rule L1 to the call to split inside qsort. The final result is as in Table 5.3.

5.4 Correctness

Algorithm 6 that detects live region variables locally at each program point is an
extension of live variable analysis, which is a standard, well-known program anal-
ysis (Nielson, Nielson, and Hankin 1999). Theorem 4.2 guarantees the locations
of variables and their possible sharing, which are represented in terms of region
points-to graphs. Therefore Algorithm 6 computes all the live region variables by

5.5 Conclusion 41

starting from the live variables and collecting all the reachable region variables
using the region points-to graphs.

The analysis in Section 5.3 aims to compute a shortest possible lifetime for
a region. Its termination can intuitively be understood from the fact that each
procedure uses a finite set of region variables, hence, initially bornR and deadR
sets are finite, and the analysis just reduces their size. The rules in Figure 5.1
enforce all the cases where a caller of a procedure needs to restrict what the callee
can do to its region variables. The eager application of the rules therefore ensures
that, for a procedure, the bornR and deadR sets obtained after a fixpoint is reached
contain exactly the region variables it will safely create and remove, respectively.

5.5 Conclusion

In this chapter we have developed a program analysis to estimate lifetimes of
the region variables. The idea is to know the places where a region needs to be
created and where it can safely be removed. Recall that we have chosen to deal
with lifetimes with respect to forward execution only. Backward executions when
happen will be handled by runtime support, which will be described in Chapter 8.

In our framework region variables can live across procedure boundaries and can
have arbitrarily overlapping lifetimes. Regions can be passed among procedures
by using region arguments. We classify the set of region variables of a procedure
into local ones, which only exist in the scope of the procedure, and nonlocal ones,
which may exist outside the scope. With local ones only local liveness, namely the
liveness before and after the program points in the procedure, is needed to decide
where to create and remove them. For nonlocal ones, other than local liveness we
also compute their global liveness by taking into account the calling contexts of
the procedure.

After this phase we have enough information about regions and the places
where they need to be created and removed in a program. The next task is to
annotate the program with these pieces of information, which is the main content
of the next chapter.

42 Region Liveness Analysis

Chapter 6

Program Transformation

The purpose of the program transformation is to annotate all the procedures in a
program with sufficient information about regions. For a procedure the transfor-
mation needs to accomplish the following tasks.

• Extend the procedure definition with the formal region arguments.

• Annotate its construction unifications with the region variables of their left-
hand side variables.

• Annotate its procedure calls with actual region arguments.

• Insert create and remove instructions at suitable points.

The second task is straightforward because the information about which program
variables are in which regions is available after the region points-to analysis. The
aim is that the memory needed by a construction unification will be allocated in
the region that is bound to by the region variable of its left-hand size variable.

We elaborate the other tasks in the next two sections.

6.1 Region Arguments

We need to make the region variables in bornR and deadR arguments, because
they are going to be created and removed inside the procedure. Other than these
region variables, we also need to pass as arguments the region variables that are
reachable from the input and output variables and are allocated into during the
execution of the procedure, called allocR. This set of region variables can be
computed by allocR = (inputR ∪ outputR) ∩ allocation (Section 4.5). Note that
allocR is not necessarily disjoint with bornR, deadR and outlivedR.

43

44 Program Transformation

l ≡ q(. . .)
r ∈ LRafter (pp(l)) \ LRbefore(pp(l))

r ∈ localR(p) ∪ bornR(p) ∪ deadR(p)
r = α(r′) → r

′ 6∈ bornR(q)

add “create(r)” before l
(T1)

l ≡ X <= f(. . .)
r ∈ LRafter (pp(l)) \ LRbefore(pp(l))

r ∈ localR(p) ∪ bornR(p) ∪ deadR(p)

add “create(r)” before l
(T2)

l ≡ q(. . .)
r ∈ LRbefore(pp(l)) \ LRafter(pp(l))

r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)
r = α(r′) → r

′ 6∈ deadR(q)

add “remove(r)” after l
(T3)

l ≡ unif

r ∈ LRbefore(pp(l)) \ LRafter (pp(l))
r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)

add “remove(r)” after l
(T4)

l
′
is next to l in an execution path

r ∈ LRafter(pp(l)) \ LRbefore(pp(l
′

))
r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)

add “remove(r)” before l
′

(T5)

r ∈ VR(pp(l)) \ LRafter (pp(l))
r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)

add “remove(r)” after l
(T6)

Figure 6.1: Transformation rules.

So all in all, the set of formal region arguments of a procedure is deadR∪bornR∪
allocR. In the quicksort program, allocR(split) = {R1 ,R2 ,R3 ,R4}∩{R3 ,R4} =
{R3 ,R4}, allocR(qsort) = {R6 ,R8} ∩ {R8} = {R8}, and the region arguments
are {R1}∪{R3 ,R4}∪{R3 ,R4} = {R1 ,R3 ,R4} and {R6}∪∅∪{R8} = {R6 ,R8},
respectively.

The actual region arguments to a procedure call are derived from the formal
region arguments of the called procedure and the α function at the call site.

6.2 Insertion of create and remove instructions

When manipulating regions our intention is that a region is created and removed
only by the create and remove instructions, respectively. When a region is cre-
ated, the region variable in the create instruction is bound to it. To remove a
region, we call remove on the region variable that is bound to the region. We can
consider create and remove special Mercury procedures. Other than that, regions
can be indirectly created and removed in procedure calls, which invoke the two
instructions. Unifications neither create nor remove regions.

6.2.1 Transformation Rules

The transformation rules in Figure 6.1 make use of the local and global liveness
of region variables to introduce create and remove instructions when necessary.

Transformation Rules T1 and T2

To justify the transformation rules consider a literal l at a program point i in a
procedure p. When a region variable locally becomes live at i, namely when it is

6.2 Insertion of create and remove instructions 45

not live before i but is live after i, we need to ensure that the region variable is
bound to a region after i. It will never be the case that a region variable locally
becomes live because it is not live after a program point but it is live before the next
program point in an execution path (Proposition 6.2, Section 6.3). So, we consider
when the region, which is bound to by the region variable that locally become live,
is created. If l creates the region, then no annotation is added at i. Otherwise
the region is created either by a caller of p or by p itself. The former means that
the region should not be created again in p, hence no annotation is added at i.
Only in the latter case we need to add a create instruction before l and this occurs
when the region variable belongs to either localR(p), bornR(p), or deadR(p). This
is reflected by the transformation rules T1 and T2. The first condition on r in
these two rules means the region variable locally becomes live at i. The second
condition on r means according to the global liveness p is allowed to create the
region. It is intuitively clear that p needs to a region to which a region variable
that belongs to bornR(p) or localR(p) is bound. The reason that T1 and T2 also
have deadR in the second condition on r is that it is acceptable for p to remove the
region bound to by R at some point before l, if that is safe, and re-create R right
before l. The new region will be removed later because R is in deadR(p). The third
condition in T1 is make sure that l, which is a procedure call, does not create the
region. The rule T2 is for specialized unifications. Recall that unifications never
create regions. This rule is restricted to only construction unifications because for
the other kinds of specialized unifications the first condition on r always fails (see
Proposition 6.3, Section 6.3).

Transformation Rules T3, T4, and T5

When a region variable locally ceases to be live, we need to distinguish two cases.
The first case is when the region variable is live before i but not live after i. We
now consider when the region bound to by the region variable is removed. If the
global liveness of the region variable does not allow p to remove the region, the
region is removed by a caller of p and no annotation is introduced at i. Otherwise,
the region is removed inside p. This means the region variable is in one of the
deadR, localR, or bornR sets of p. There are two subcases: if l removes the region,
then no remove instruction needs to be inserted at i; otherwise if p removes the
region itself, we insert a remove instruction after l. The transformation rules T3
and T4 ensure this. The first condition on r in these two rules says that the region
variable locally become dead. The second one expresses that p is allowed to remove
the region. Similar to the case of creation, the removal of a region that is bound
to by a region variable in bornR(p) is necessary because it is acceptable for p to
safely remove the region after i and re-create it later on. The fact that the region
variable is in bornR(p) ensures this. Again, the third condition on r in the rule
T3 is to ensure that the procedure call does not remove the region.

The second case is when the region variable is live after i, but not live before

46 Program Transformation

the literal l′ that is next to l in a certain execution path. This can happen when
i is a shared point among different execution paths and the region variable is live
after i due to an execution path to which l′ does not belong. A remove instruction
is added before l′ to remove the region as expressed by the transformation rule
T5.

Example of Re-Creation

We illustrate the effects of the re-creation of regions by two procedures in Figure 6.2
and their region-annotated counterparts in Figure 6.3. We include the definition

% p(in, out). % q(in, out).
p(A, B) :- q(X, Y) :- length(L) = N :-

(1) C <= [1], (1) Z := length(X), (L == [], N := 0
(if (if ; L => [_ | T],

(2) A == 1 (2) Z == 1 N := length(T) + 1
then then).

(3) B := C (3) V := X
else else

(4) B <= [2] (4) V <= [1]

).),
(5) Y := Z + length(V).

Figure 6.2: Effect of re-creation of regions.

of the function length, which returns the number of elements of the input list, for
completeness. It is of no importance to what we are illustrating. We also assume

p(A, B@R1) :- q(X@R2, Y) :-

create(R1), (1) Z := length(X),
(1) C <= [1] in R1, (if

(if (2) Z == 1

(2) A == 1 then
then (3) V := X

(3) B := C else
else remove(R2),

remove(R1), create(R2),
create(R1), (4) V <= [1] in R2

(4) B <= [2] in R1),

). (5) Y := Z + length(V),
remove(R2).

Figure 6.3: Effect of re-creation of regions: region-annotated version.

that there is no region for integers. Therefore the focus is only on the variables B
and C in the procedure p and V and X in q, which are of the type list int (see
Example 2.2). Each pair of them is assigned to the same region variables, R1 in p

6.2 Insertion of create and remove instructions 47

and R2 in q due to the respective assignments at the program points (3). p and q

are unrelated and used to demonstrate different situations.

Assume that p can create R1, i.e., no calling context forces it otherwise. So R1

is in bornR(p). In Figure 6.3, the create instructions added for it before (1) and
(4) are due to the rule T2. The remove instruction added before (4) is due to the
rule T5. So if the else branch is reached, R1 that was live after (1) is no longer live
before (4) and we can reclaim the memory occupied by the list [1] by removing
R1 before re-creating R1 and allocating the list [2].

For q, assume that R2 is in deadR(q). Before the program point (4) R2 is not
live, the remove instruction is added due to the rule T5. As R2 is live after (4) the
create instruction is added before (4) due to the rule T2, The remove instruction
after (5) is added due to the rule T4. So if the else branch is reached, we can
reclaim the memory of the input list X by removing R2 before recreating it to
construct V.

Handling of Instantly-Dead Variables: Rule T6

In a program, we may have variables that are instantiated at some point but never
used after that. We call them instantly-dead variables. In logic programming in
general and in Mercury in particular, they can be void or singleton variables. A
void variable’s name generally starts with the underscore (, e.g., see Figure 2.1)
to explicitly tell the compiler that we do not care about its value. A singleton
variable is often a mistake of the programmer. The Mercury compiler issues a
warning when it detects a singleton variable and to avoid the warning the correct
action is to turn it into a void variable. Because it is useless to do a construction
to an instantly-dead variable, i.e., when the left-hand side variable of a construc-
tion unification is instantly-dead, we assume that construction unifications whose
left-hand side variables are instantly-dead have been eliminated before our region
analysis and transformation. (In fact, the Mercury compiler does apply this kind
of optimization.)

For the purpose of this work, we care only about the fact that they get in-
stantiated and are not used in the future. Being instantiated means that we need
regions to store their terms, and we do want to remove the regions. However, that
such variables are not used in the future makes them never live according to our
concept of live variables (Section 5.2). Therefore we may not always rely on the
change of liveness, from live to dead, to remove related regions (as in the rules
T3-T5) because some of the regions may never be live. That is why we have the
rule T6 that tries to remove a region reachable from a void variable right after the
point where the void variable gets instantiated. We assume that at each program
point i we have the set of such instantly-dead variables, VV (i). (i is the point
they get instantiated.) We then compute VR(i), the set of region variables that

are reachable from the variables, by
⋃

V ∈VV (i)
Reach(V). The basic idea of T6 is to

48 Program Transformation

remove a region variable reachable from an instantly-dead variable right after the
point where the variable gets instantiated if the region variable is not reachable
from any of the live variables after the point.

6.2.2 Insertion Algorithm

The insertion of the instructions is specified by Algorithm 7 in which the trans-
formation rules in Figure 6.1 are applied to the literal at each program point.

Algorithm 7 Insertion of region instructions in a procedure p.

Require: p in superhomogeneous form; the information about region points-to graphs
and region liveness is ready.
for all program point i in p do

l = literal(i)
apply rule T6 to l

if l ≡ unif then
apply rule T4 to l

if l ≡ X <= f(. . .) then
apply rule T2 to l

end if
else

apply rules T1 and T3 to l

end if
end for
for all ep ≡ 〈l1, . . . , ln〉 in p do

for j = 1 to n − 1 do
apply rule T5 to lj , l′ ≡ lj+1

end for
end for

Each program point is associated with three sets of region instructions: a set of
remove instructions added before the program point, a set of create instructions
added before it, and a set of remove instructions added after it. We assume that
the region instructions in the first set are executed before the ones in the second
set. The reason for this will become clear in Section 6.3.

The first loop in Algorithm 7 applies all the transformation rules, except T5, to
the literals at all the program points in a procedure. We use the function literal(i)
to refer to the literal at the program point i. While the rule T6 can be applied
to any literal, T4 needs to be tried only when the literal at a program point is a
unification, T2 only when the literal is a construction unification, and T1 and T3
only when the literal is a procedure call. The second loop follows every execution
path to try rule T5, which needs to consult the information at two consecutive
program points at the same time.

6.3 Correctness of Region-Annotated Programs 49

The result of the program transformation of the quicksort program in Exam-
ple 2.3 has been shown in Figure 2.3. The addition of the remove instructions after
the first program points in both qsort and split procedures results from the appli-
cation of T4. Two create instructions inserted in the split procedure are effects of
T2.

6.3 Correctness of Region-Annotated Programs

In region-annotated programs, the computational behaviour of the original pro-
grams is not changed. Only the memory locations of terms are different. We
therefore restrict the correctness of region-annotated programs to the correctness
of memory access, i.e., the safety of read and write accesses to terms. Before
arguing about this safety we prove a theorem about the bindings of live region
variables.

Theorem 6.1 Consider a procedure p in a program P . We call P ′ the region-
annotated program that is produced by applying the analyses and transformation
in Chapters 4, 5, and 6 to P , in which p′ is the region-annotated version of p. If a
region variable is live before (after) a program point i in p′, then in p′ it is bound
to a region before (after) i.

To prove Theorem 6.1, we formulate several propositions.

Proposition 6.2 If program point i is right before program point j in some ex-
ecution path of a procedure then LV before(j) ⊆ LV after (i) (*) and LRbefore(j) ⊆
LRafter (i) (**).

Proof. (*) follows immediately from Algorithm 5. (**) follows from (*) and
Algorithm 6.

Proposition 6.3 When the literal at program point i is a unification, we have
the following two properties. If it is a construction unification then LRbefore(i) ⊆
LRafter (i). If LRbefore(i) ⊂ LRafter (i) (strict subset) then the literal is a construc-
tion unification.

Proof. Consider a construction unification of the form X <= f(X1, . . . , Xn). By
definition (Algorithm 5) LV before(i) = LV after (i)\{X}∪{X1, . . . , Xn}. So we can
compute LRbefore(i) = (

⋃
Reach(V) ∀ V ∈ LV after (i)∧V 6= X)∪(

⋃
Reach(Xi) i =

1..n). We can also write LRafter (i) = (
⋃

Reach(V) ∀ V ∈ LV after (i) ∧ V 6= X) ∪
Reach(X). Algorithm 2 ensures that the edges from nX to nXi

are in the region
points-to graph, therefore Reach(X) ⊇ (

⋃
Reach(Xi) i = 1..n). So LRbefore(i) ⊆

LRafter (i).

50 Program Transformation

To prove the second property we will show that if the unification is not a
construction unification then LRbefore(i) ⊇ LRafter (i).

Consider an assignment unification of the form X := Y . From Algorithm 2 we
have that X and Y are in the same node in the region points-to graph, therefore
Reach(X) = Reach(Y). By definition LV before(i) = (LV after (i)\{X})∪{Y }, then
LRbefore(i) = (

⋃
Reach(V) ∀ V ∈ LV after (i) ∧ V 6= X)∪Reach(Y). We can write

LRafter (i) = (
⋃

Reach(V) ∀ V ∈ LV after (i) ∧ V 6= X) ∪ Reach(X) and therefore
LRbefore(i) = LRafter (i).

Consider a test unification of the form X == Y . In this case LV before(i) =
LV after (i) ∪ {X, Y } then it is trivial that LRbefore(i) ⊇ LRafter (i).

Consider a deconstruction unification of the form X => f(X1, . . . , Xn). Here
LV before(i) = (LV after (i) \ {X1, . . . , Xn}) ∪ {X}, and we have LRbefore(i) =
(
⋃

Reach(V) ∀ V ∈ LV after (i)\{X1, . . . , Xn})∪Reach(X). We can write LRafter (i) =
(
⋃

Reach(V) ∀ V ∈ LV after (i) \ {X1, . . . , Xn}) ∪ (
⋃

Reach(Xi) i = 1..n). We
have shown that Reach(X) ⊇ (

⋃
Reach(Xi) i = 1..n). Therefore LRbefore(i) ⊇

LRafter (i).

Proposition 6.4 If the literal at program point i is a unification and there exists a
region variable R such that R 6∈ LRbefore(i) and R ∈ LRafter (i), then LRbefore(i) ⊂
LRafter (i) (strict subset).

Proof. The existence of a region variable R such that R 6∈ LRbefore(i) and
R ∈ LRafter (i) means that the literal can neither be an assignment, a test, or
a deconstruction unification because if it would, LRbefore(i) would have been a
superset of or equal to LRafter (i) (shown in the proof of Proposition 6.3).

If the unification is a construction then LRbefore(i) ⊆ LRafter (i) (Proposi-
tion 6.3). Then that there exists an R such that R 6∈ LRbefore(i) and R ∈ LRafter (i)
means that LRbefore(i) ⊂ LRafter (i).

Now we can give the proof for Theorem 6.1.
Proof. (Theorem 6.1)

Hypothesis: Assume that Theorem 6.1 is true globally at all the points that
are reached before the (local) program point i in p in an execution of the program.

Consider a region variable R.
If R belongs to outlivedR(p), according to the Hypothesis it is bound to a

region at the entry to p. Because no create(R) or remove(R) is added in p and
none of the procedures called by p creates or removes R, it is bound to the same
region at all points in p, certainly including the points where it is live.

Consider the other case in which R belongs to either of localR, bornR, or deadR.

1. Consider a region variable R that is live before i, i.e., R ∈ LRbefore(i).

• When i is the first program point, R must be reachable from a variable
in in args(p) (Algorithms 5 and 6). In the context of a caller of p,

6.3 Correctness of Region-Annotated Programs 51

the region variable of the caller that R is mapped to is live before the
call. By the Hypothesis we have that the region variable of the caller
is bound to a region before the call and therefore R is bound to the
region at the entry to p. The transformation rule T5, which adds a
remove instruction before a program point, is not applicable to the
first program point. Therefore no remove instruction is added before i,
meaning that R is bound to a region before i.

• If i is not the first program point then R is in LRafter (h) where h is the
program point right before i in an execution path (Proposition 6.2). Ac-
cording to our hypothesis, R is bound to a region after h. Again, the rule
T5 is not applicable because R is in both LRafter (h) and LRbefore(i),
therefore R is bound before i.

2. Consider a region variable R that is live after i, i.e., R ∈ LRafter (i). Assume
that l is the literal at i.

(a) Consider the case in which R is not in LRbefore(i).

• If l is a unification, from Proposition 6.4 we have that LRbefore(i) ⊂
LRafter (i) and then from Proposition 6.3 it must be a construction
unification.
A create(R) instruction is added before l according to rule T1. This
means that R is bound to a region before l. Recall that we assume
that the set of create instructions are executed right before l after
the execution of the set of remove instructions, if any. Therefore
R is bound before l. In addition to that, that l is a construction
unification, which does not remove any regions, means R is still
bound to the region after l.

• Consider the case in which l is a procedure call to q. If R is mapped
to by a region variable in bornR(q), the region variable is live after
any last program point of q. By the Hypothesis we can say that
the region variable is bound to a region at the exit of q. So R is
bound to that region after the call.
Otherwise, create(R) is added before l by rule T1, which means
that R is bound to a region before l (again no remove instruction
is executed in between create(R) and l).
Because R is not live before the call, it is not reachable from any
actual input arguments to the call to q. Therefore it is not mapped
to by a region variable of q that belongs to deadR(q). So we have
that R is not mapped to by any region variables of q that are either
in bornR(q), in deadR(q), or in localR(q), which contains only region
variables local to q. This means that R is not removed in q.

In both subcases above, the rules T3, T4 and T6 will not be applicable

52 Program Transformation

because R is in LRafter (i). Therefore no remove(R) is added after l. So
we can conclude that R is bound to a region after l.

(b) Consider the case in which R is in LRbefore(i). We showed in 1. that R

is bound to a region before i.

If l is a unification it does not remove R. If l is a call to q, because R is
in both LRafter (i) and LRbefore(i), R is neither mapped to by a region
variable in deadR(q) nor in bornR(q) (Rules L1 and L3). So l does not
remove it.

Again, no remove(R) is added after l because R is in LRafter (i).

Therefore we conclude that R is bound to the same region after l.

Theorem 6.5 In region-annotated programs, an allocation of memory, i.e., a
memory write access, is safe.

Proof. An allocation of memory involves a construction unification. From The-
orem 4.2 we know the region variable containing the left-hand side variable of
the construction unification, i.e., where the being-constructed functor is stored.
We say that the construction is safe if that region variable is bound before the
construction unification.

Consider the program point associated to the construction unification. With
the assumption that the left-hand side variable is not instantly dead, it must be
live after this point where it is instantiated. And therefore its region variable is
also live after this point (Algorithm 6). By Theorem 6.1 the region variable is
bound to a region after the program point. Because the construction unification
does not create regions, the region must have been created before and is available
at the construction.

Theorem 6.6 When a variable appears as an input argument to a literal at a
program point, we say that the variable is read at that point. In region-annotated
programs, when a variable is read at a program point the term it is bound to is
available.

Proof. When a variable is read at a program point, the Mercury compiler ensures
that it has been instantiated before that. From Theorem 4.2 we know the region
variables where the terms that the variable is possibly bound to are stored. They
are the region variables reachable from the variable.

Because the variable is read at that point we consider it a live variable before
that point, and therefore the region variables reachable from it are also live before
the point (Algorithms 5 and 6).

Consider a variable X that is read at a program point i in a procedure p. The
fact that X is bound in p is either because it is an input argument of p or because

6.4 Conclusion 53

it is the output argument of some literal in p. Consider some execution path of p.
In the first case, X is live before the first program point of the path. Because it
is an input argument the Mercury compiler ensures that it never appears as the
output argument of any literal in p. So according to Algorithm 5, we have that X

is live in the scope from before the first program point up to before i. Similarly
in the second case, we have that X is live in the scope from after the literal up to
before i. This means that all the region variables reachable from X are live during
the same scope. Therefore none of them get removed during the scope because the
rules T3, T4, T5, and T6 are not applicable and no procedure calls in the scope
remove any of them due to the rule L1.

So the term that X is bound to is available at i and the read at i is safe.

6.4 Conclusion

We have described the transformation in which region points-to graphs and region
liveness information are used to annotate a Mercury program with region infor-
mation. In a region-annotated program a region variable is allowed to change its
bindings if it is safe to do so. This, in certain cases, leads to shorter lifetimes for
regions, thus better memory reuse.

We proved the correctness of the annotated programs by showing that memory
accesses in them are safe in the sense that when a term is allocated, its region has
been created and a region is removed only when no more memory accesses happen
to it.

Region-annotated programs contain enough region information to be run by a
specialized runtime system, which will be explained in Chapters 7 and 8.

54 Program Transformation

Chapter 7

Runtime Support for

Regions in Deterministic

Programs

In this and Chapter 8, we describe the runtime support needed to execute region-
annotated programs. The liveness of the regions in the programs is determined
with respect to forward execution. Let us have a look at the lifespan of a region
in a deterministic program (which has only forward execution). A region comes
into existence when a create(R) instruction is executed which assigns memory
to the region and binds the region variable R to a so-called region handle, which
refers to the assigned memory. From then on, terms are allocated into the region
by construction unifications annotated with R. The lifetime of a region is ended
by a remove(R) instruction when the memory referred to by the region handle
bound to R is no longer needed and is reclaimed. The runtime support for this is
described in the current chapter.

All the above works well in the case of simple forward execution in deterministic
programs but not in the case of backtracking. It is no longer safe for a remove

instruction to reclaim the region when the data in the region is still needed after
backtracking. So in the next chapter we extend the runtime support to take into
account backtracking. The runtime support for backtracking has to prevent the
reclamation of backward live regions and it also has to reclaim the memory used
by backtracked-over computations.

55

56 Runtime Support for Regions in Deterministic Programs

7.1 Region Data Structure

In our system, a region is a singly-linked list of fixed-size region pages. Each
region page has a data area, an array of words that can be used to store program
data, and a pointer to the next region page to form the singly-linked list. (In
the newest region page of a region, this pointer is of course null.) The handle of
the region (the way the rest of the system refers to it) is the address of the region
header. Besides some other fields that we will introduce later, the header structure
includes a region size record : a pointer to the newest region page, and a pointer
to the next available word in the newest region page. Since region pages have a
fixed size, these two values implicitly also specify the amount of free space in the
newest region page. To avoid fragmentation, we store each region header at the
start of the data area of its region’s first region page. Figure 7.1 shows a region
with two region pages; the shaded areas represent memory allocated to user data.

����
����
����
����

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

R

free words

next_avail_word

region size record

newest_region_page

region header

null
next_region_page

data area

(stored in the data area
of the first region page)

Figure 7.1: The data structure of a region R.

7.2 Region Operations

There is no bound on region size. When a region is created it will contain only one
region page, but it can be extended by adding more region pages when necessary.
The program maintains a global list of free region pages. If the free list runs out,
the program requests a big chunk of memory from the operating system, divides
it into region pages, and adds them to the free list. When a region needs to be
extended, we take a region page from the free list and add it to the region as its
new last region page, and then update the region’s size record. When a region is
reclaimed, we return all its region pages to the free list. An allocation into a region
always happens in its newest region page simply by increasing the pointer to the
next available word. When the free amount in this region page is not enough for
an allocation, we extend the region before allocating.

This aspect of our implementation is generally similar to the “standard” RBMM
implementations for SML and Prolog, which are described in detail in (Makholm

7.2 Region Operations 57

2000b; Makholm 2000a). The advantage of this implementation is that the basic
region management actions are bounded in time. Disadvantages are that there
is no natural size for the region pages (Tofte, Birkedal, Elsman, and Hallenberg
2004), and that if the remaining space of a region page is not enough for an allo-
cation, that space will be wasted when a new region page is added.

58 Runtime Support for Regions in Deterministic Programs

Chapter 8

Runtime Support for

Backtracking

8.1 Introduction

Backtracking introduces two issues that need to be handled: reclaiming the mem-
ory allocated by the computations backtracked over, and ensuring that regions are
reclaimed only when they are dead with respect to both forward and backward
execution. The first issue obviously has to be handled at runtime. For our initial
implementation, we have chosen to deal with the second issue, backward liveness,
in the runtime system too. We expect this to give us the insights we will need
in the case we want to extend the program analysis to handle backward liveness
both safely and precisely. Moreover, our current system can serve as a reference
for that work.

In Mercury, disjunctions are the main source of backtracking because they
provide alternatives. But an if-then-else is just a special kind of disjunction:
(if C then T else E) is semantically equivalent to (C, T ;not some [· · ·] C, E).
Operationally, Mercury will try C. If C succeeds, Mercury executes T ; if C fails,
it executes E as if C had never been tried. The handling of commit (Section 2.2)
is related to the handling of backtracking because committing to a solution may
prune some alternatives of relevant disjunctions. Therefore, we need to provide
runtime support for backtracking in the context of these three language constructs.

The region-annotated program in Figure 8.1 illustrates our two tasks.
We constructed this program, which, unfortunately, has no intuitive meaning,

to illustrate the interaction between regions and backtracking; we will use it as
our running example when describing the runtime support. (For completeness, we
include the definitions of member and length whose behaviour, as we will see, is
of no importance in this work.) Regarding the lifetime of the regions, in main,

59

60 Runtime Support for Backtracking

main(!IO) :- :- pred p(list_int, list_int, list_int, list_int).

create(R1), :- mode p(in, in, out, out) is semidet.
(1) X <= [1, 3, -1, 3] in R1, p(X@R4, U@R5, V@R5, Y@R6) :-

create(R2), (1) X => [H | T],
(2) A <= [-2] in R2, (if

(if remove(R4),
create(R3), (2) H < 0

(3) p(X@R1, A@R2, B@R2, Y@R3) then

then (3) Y <= [H] in R6,
(4) io.write(B, !IO), (4) (if member(H, U)

remove(R2), (5) then V := U
(5) io.write(Y, !IO), (6) else V <= [H | U] in R5

remove(R3))

else else
(6) io.write(X, !IO), (7) p(T@R4, U@R5, V@R5, Y1@R6),

remove(R1), (8) (if length(V) > length(Y1)
(7) io.write(A, !IO), (9) then fail

remove(R2)
).)

).

% mode(in, in), semidet % mode(in) = out, det.

member(X, L) :- length(L) = N :-
L => [H | T], (L == [], N := 0

(H == X ; member(X, T)). ; L => [_ | T],
N := length(T) + 1

).

Figure 8.1: Illustrating the interaction of regions and backtracking.

R1 and R2 are created before the construction of the two lists X and A. The main

procedure creates R3 before the call to p at (3), and p will use this region to store
the skeleton of Y. All the remove instructions for regions are added after the last
forward uses of the terms stored in them. Two procedures member and length only
read their input variables, so no region argument is needed. For p, deadR(p) =
{R4}, bornR(p) = ∅, outlivedR(p) = {R5, R6}, and allocation(p) = {R5, R6}.

• Task 1: Preventing the reclamation of backward live regions. The condition
of the if-then-else in the main predicate is the call to the semidet procedure
p. The RBMM transformation marks the region R1 for removal in the call
because it is forward dead (it is not used in the then part) even though it
is backward live (it is used in the else part). We must make sure that R1 is
not actually removed while it is backward live. In this case, that means we
need to delay the reclamation of R1 until we reach the then part; it is not
safe to actually destroy R1 if the condition fails. We therefore distinguish
reclaiming a region, which makes the memory of the region available for
other uses and thus potentially destroys its contents, from the operation of
removing a region, which causes the region to be reclaimed only when it is
safe to do so. Basically, a region is removed when it is forward dead, and it

8.2 Runtime Concepts 61

is reclaimed when it is both forward and backward dead.

• Task 2: Reclaiming the memory used by backtracked-over computations.
The call to p has two output arguments, B and Y. main tells p to put any
cells for B in R2. The condition is extended with a create instruction to
create R3 so that p can put Y into it. If the condition succeeds, we must
leave both regions alone. If the condition fails, we should restore R2 to its
size before the condition, and we should reclaim R3 in its entirety.

8.2 Runtime Concepts

We now define several runtime concepts that we will use in the description of the
runtime support for backtracking.

Old vs new regions. A region is old with respect to a point during the execution
of a program if it was created before that point, otherwise it is new with respect to
that point. We also refer to old regions as the existing regions. To allow efficient
checks whether a region is old or new, we maintain a global region sequence number
counter (starting at one) and include a sequence number field in region headers.
When we create a region, we timestamp it by setting its sequence number from
the global counter, and increment the counter. If at a point during the execution
of the program (such as a resumption point where the program resumes when
backtracking) we save the current sequence number, then all the regions which are
created before that point, i.e., the old regions with respect to the point, will have
their sequence numbers smaller than the saved value; ones which are created after
that point, i.e., the new regions with respect to the point, will have their sequence
numbers greater than or equal to the saved value. When the program backtracks
to the save point, we can use the saved value to check whether a region has been
created before or after the point. In the context of RBMM, the memory that we
want to reclaim at a resumption point will be new allocations into existing regions,
and new regions in their entirety (since they have been created by the computation
we have just backtracked over).

Region list. To do instant reclaiming of new regions, knowing the sequence num-
bers of the new regions is not enough; we also need to reach them. We therefore
link all the live regions into a doubly-linked region list (using two additional point-
ers in the region header). We maintain a global pointer to the head of the list,
which will be the newest live region. When a region is created we add it to the
head of the region list; when a region is reclaimed we remove it from the list. We
maintain the invariant that the region list is ordered by regions’ creation time,
newest first. To reclaim new regions, we can traverse the region list from its head
and reclaim each region until we meet an old one.

62 Runtime Support for Backtracking

Region size snapshots. To do instant reclaiming of new allocations into an
existing region, we need the old size of the region. When we need to remember
the size of a region at a point, we can save its region size record (Section 7.1) at
that point.

Protection. We will prevent the destruction of backward live regions by protecting
them so that when a removal happens to the region during forward execution, the
removal will be ignored.

8.2.1 Changes to Live Regions by a Goal

When providing support for backtracking, sometimes we want to know about the
changes which may be caused by a goal to the set of regions the goal may refer
to. This means we need to know about any new regions the goal creates, any
live regions the goal removes, and any live regions in which the goal performs
allocations. We refer to these sets of regions as the goal’s created, removed, and
allocated sets, respectively. We have computed several region variable sets of
procedures, such as inputR, bornR, deadR, and allocation . The created, removed,
and allocated sets of goals can be computed from these in a fairly straightforward
manner.
Changes to live regions by a goal: creation. Only create instructions and
procedure calls may create regions. A create instruction always creates the region
in its argument. A procedure call will create the regions that are the actual region
arguments corresponding to the formal arguments in the bornR set of the called
procedure. For a compound goal, its created set is the set of all regions created
inside it, including those that are also removed by it.
Changes to live regions by a goal: removal. We can similarly use remove

instructions and the deadR sets of procedures to compute the removed set of each
goal. Since we only care about the old regions which are removed inside a goal,
we exclude regions created inside the goal (i.e., the goal’s created set) from its
removed set.
Changes to live regions by a goal: allocation. A region is allocated into
in construction unifications and procedure calls. A construction unification will
allocate into the region with which it is annotated. A procedure call possibly
allocates into the region variables that are mapped to by those in the procedure’s
allocation set. Because we are only interested in the old regions, we restrict the
allocated set to the ones mapped to by those in inputR ∩ allocation .
Changes to live regions by a goal: an example. Take the condition of the
if-then-else in the procedure p in Figure 8.1 as an example goal. We say that the
region R4 is removed in the condition because R4 is live before the condition and
remove(R4) has been added to the condition. Or take the condition of the if-then-
else in main. We say region R3 is created in the condition because create(R3)

has been inserted into the condition, while region R1 is removed in the condition

8.3 Support for disjunction 63

because it is live before the condition and is removed in the call to p. We have
allocation(p) = {R5, R6}, but if consider only input region variables then the call
to p at (3) in main may only allocate into R2, which is mapped to by R5. So during
the condition in main R2 may be allocated into.

We provide the runtime support for backtracking for a program by generating
extra supporting code at the right places to achieve our goals. In the next three
sections we will describe in detail the support for disjunctions, if-then-elses, and
commits.

8.3 Support for disjunction

Although the Mercury language does not specify the language’s search strategy,
the Mercury compiler supports only one search strategy: depth-first search with
chronological backtracking, so that the disjuncts of each disjunction are tried in
order. Given a disjunction (g1; ...; gi; ...; gn), we refer to g1 as the first
disjunct, to the gi’s for all 1 < i < n as middle disjuncts, and to gn as the last
disjunct of the disjunction. We will also use “later disjunct” to refer to any gi for
i > 1.

A disjunction can have any determinism. The most general determinism is of
course nondet, but if one of the disjuncts always has at least one solution, then
the disjunction as a whole does too, so a disjunction can also be multi. And if
the disjunction has no outputs (which happens frequently for disjunctions in the
conditions of if-then-elses), then the disjunction as a whole cannot have more than
one solution, which means that it will be either det or semidet, depending on
whether it has an always-succeeding disjunct. (Typical programs do not contain
det disjunctions, since they are equivalent to true.)

For our purposes, the important distinction is between nondet and multi dis-
junctions on the one hand, in which backtracking may reach a later disjunct from
code executed outside the disjunction, after the success of a previous disjunct,
and semidet and det disjunctions on the other hand, in which backtracking to a
later disjunct is possible only from code within an earlier disjunct. Since we do
not care about the minimum number of solutions of each disjunction, our support
treats multi disjunctions the same as nondet ones and det disjunctions the same
as semidet ones. In the following, we will therefore talk only about nondet and
semidet disjunctions. We consider nondet disjunctions first, since they are more
general.

Figure 8.2 shows in pseudo-code form the supporting code we added to a nondet
disjunction. We insert code at the following points: (d1) which is the start of the
first disjunct, (d2) which represents the start of every middle disjunct, and (d3)
which is the start of the last disjunct. These code fragments communicate using
shared data in what we call a disj frame. Each entry to a disjunction creates
a new disj frame. Since multiple nested disjunctions can be active at the same

64 Runtime Support for Backtracking

time, we link these frames together to form the disj stack (this is possible due to
chronological backtracking). The disj stack is not a separate stack; we reserve space
for its frames in the usual stacks used by the Mercury language implementation.
We maintain a global pointer to the top disj frame on the disj stack.

...,
((d1): start of the disjunction and also of the first disjunct

(a) push a disj frame
(b) save the global region sequence number

(c) save region size records and their number
g1

; ...

; (d2): start of a middle disjunct
(a) do instant reclaiming of new regions

(b) do instant reclaiming of allocations in old regions
gi

; ...

; (d3): start of the last disjunct
(a) do instant reclaiming of new regions

(b) do instant reclaiming of allocations in old regions
(c) pop the disj frame

gn
), ...

Figure 8.2: RBMM runtime support for nondet disjunctions.

A disj frame has a fixed part and a nonfixed part. In Figure 8.3, the fixed part
is the 4-slot box separated by a thick line from the nonfixed part. The four slots
in the fixed part are:

• The prev disj frame slot holds the pointer to the previous disj frame, (or
null if there is none).

• The saved seq num slot holds the value of the global region sequence number
at the time when the disjunction was entered.

• The num prot region field gives the number of regions which are protected
by a semidet disjunction (which we will discuss later). For a nondet disjunc-
tion, this slot will contain zero.

• The num size rec field gives the number of region size records saved in the
nonfixed part.

8.3.1 Disj-Protecting Backward Live Regions

Consider a region which was created before the execution of a disjunction. As-
sume that this region is removed during forward execution, either by the code
of a disjunct, or after the success of that disjunct by code following and outside

8.3 Support for disjunction 65

������������
������������
������������
������������

������������
������������
������������
������������

(saved sequence number)

(previous disj frame)

num_prot_region

num_size_rec

(number of protected regions)

region_id

(number of saved region size records)

(handle to a protected region)

...

region_id

record

size

A saved size record

prev_disj_frame

saved_seq_num

Figure 8.3: The structure of a disj frame.

the disjunction, but that this region is backward live with respect to a later dis-
junct of the disjunction. In this case, we need to make sure that if the region is
removed during forward execution, it will not be actually reclaimed. Of course,
the instruction that removes the region may not be reached because forward ex-
ecution may fail before it gets there. But in general, we have to assume that the
remove instruction will be executed, and that if the region may be needed after
backtracking, we will need to prevent it from being reclaimed during the forward
execution. We achieve this by disj-protecting such regions as follows. At the start
of the disjunction, i.e., at (d1), we push a disj frame on the disj stack and save
the current global sequence number into the saved seq num slot of the disj frame.
A region is disj-protected by a disj frame if its sequence number is smaller than
the sequence number saved at the disj frame. The remove instruction will only
reclaim a region if the region is not disj-protected. There is an invariant that if a
region is protected by a disj frame, it is also protected by all the later frames on
the disj stack. This means that to check if a region is disj-protected or not, we
only need to check if it is protected by the top disj frame.

The program will no longer backtrack into a disjunction after starting the
execution of its last disjunct. This means that no regions need to be protected
any more by this disjunction. Therefore, at the start of the last disjunct, i.e., at
(d3), we disj-unprotect them by popping the disj frame. The regions which had
previously been protected only by this disj frame will be reclaimed when execution
reaches their remove instructions.

8.3.2 Instant Reclaiming of New Regions

When the program backtracks to a later disjunct, we want to reclaim all the regions
that have been created during the computation that has just been backtracked
over, i.e., all the regions that were created after entry to the disjunction. At (d1),
we saved the global sequence number in the disj frame. Therefore at the start of a
later disjunct of the disjunction, i.e., at (d2) and (d3), we just need to traverse the
region list, and reclaim all the regions we see until we encounter a region whose
sequence number indicates that it was created before the disj frame.

66 Runtime Support for Backtracking

8.3.3 Instant Reclaiming of New Allocations in Old Regions

When arriving at a later disjunct, we want to restore all the regions that existed
before the disjunction to the sizes they had when entering the disjunction, recov-
ering any memory that has been allocated in them. To restore the size of a region,
we need to save the region’s size record in the nonfixed part of the disjunction’s
disj frame at (d1) so that we can restore the region’s size at (d2) and (d3). We
need three slots for each region: one for the region handle so that we know to
which region the saved record belongs, and the other two for the record itself (see
Figure 8.3). To be able to loop through the saved records and restore the regions
at (d2) and (d3), we store the number of saved records in the fixed num size rec

slot. The first saved record can be located by taking the address of the frame,
and adding both the size of the fixed part and the number of slots for protected
regions (which is zero in this case of nondet disjunctions).

The set of regions that existed before the disjunction and that may be allocated
into by code following the disjunction is not available to the compiler. In theory,
we could implement a global analysis to make it available, but such an analysis
would be very complicated, especially for multi-module programs. Even if such an
analysis existed, we would still have a big problem, which is that the number of
regions in this set is not bounded, and in many cases the set would contain tens,
hundreds or even thousands of regions. Saving and then restoring the sizes of that
many regions can take a significant amount of both memory and time. We do not
want this overhead to outweigh the benefits of instant reclaiming.

In our implementation, we have chosen to save and restore the sizes of only
the regions that are locally forward live before the disjunction. (This information
is readily available inside the Mercury compiler.) This may lead to some missed
opportunities for recovering memory, but since nondet disjunctions are quite rare
in most Mercury programs, we do not expect this to be too much of a problem.
(We will see below that we do not miss memory recovery opportunities for semidet
disjunctions.)

We save and restore the sizes of all regions that are locally forward live at the
start of the disjunction (the number of these regions governs how much space we
reserve for the nonfixed part of the disj frame). We save and restore the sizes even
of regions that are never allocated into before backtracking, since, in the absence
of the analysis mentioned above, we do not know which ones of those are. This
may lead to some unnecessary saving and restoring, but since in typical programs
the number of regions whose size we save and restore at a disjunction is usually
relatively small, we do not expect the memory or runtime cost of these unnecessary
saves and restores to be all that significant.

8.4 Support for if-then-else 67

8.3.4 Specialized Treatment of Semidet Disjunctions

Because at most one disjunct of a semidet disjunction may succeed, when one of its
disjuncts is reached, it means that all the previous disjuncts have failed and more
importantly that the execution has not passed outside the disjunction’s scope.
Therefore, we only need to provide runtime support for a semidet disjunction if
in its scope there is some change with respect to the set of existing regions. This
basically means that the runtime support for nondet disjunctions described above
will only be applied to semidet disjunctions whose created, removed and allocated
sets are not all empty. In our practical experience with Mercury, most semidet
disjunctions contain only tests, and rarely make changes to the heap. Therefore
the support we describe below is needed only by a relatively small fraction of
semidet disjunctions.

For a semidet disjunction, the Mercury compiler generates code such that when
one of its non-last disjunct succeeds, the execution will commit to it and not go
back to try any later disjuncts. This means the code we add at (d3) may not be
reached after the success of a non-last disjunct, causing two problems. First, the
disj frame will not be popped. Second, the regions which are protected by this
disjunction will not be reclaimed at the start of the execution of the last disjunct
as in the case of nondet disjunctions. Our solution is to do these two tasks at
the end of any non-last disjuncts, i.e., after their success at (e1) and (e2) as in
Figure 8.4.

To solve the first problem, we pop the frame at (e1.b) and (e2.b). To solve the
second problem, at (d1) we loop through the regions in the disjunction’s removed
set. If a region is already protected, we do not want it to be reclaimed in the
disjunction and its remove instructions inside the disjunction will be ineffective
anyway, so we do not need to do anything. If a region is not already protected,
we save its handle in the nonfixed part of the disj frame. At the end, we store
the number of region handles we saved in the frame’s num prot region slot. The
code at (e1.a) and (e2.a) will loop through the saved handles, and reclaim all the
saved regions (they were logically removed during the disjunct but their remove

instructions were thwarted by the protection of this disjunction.)

At (d1.c), we save the sizes of only the regions in the disjunction’s allocated set.
Since execution cannot leave a semidet disjunction, we do not miss any memory
recovery opportunities by restricting ourselves to these regions.

8.4 Support for if-then-else

The condition of an if-then-else (ite) can be either semidet or nondet. In most
Mercury programs, the overwhelming majority are semidet, and this is the case
we will look at first. Such if-then-elses share some properties with semidet disjunc-
tions. If the condition succeeds, the execution will never enter the else part, and

68 Runtime Support for Backtracking

...,

((d1): start of the disjunction and of the first disjunct
(a) push a disj frame
(b) save the global region sequence number

(c) save region size records and their number
(d) save protected regions and their number

g1
(e1): end of the first disjunct

(a) reclaim protected regions
(b) pop the disj frame

; ...

; (d2): start of a middle disjunct
(a) do instant reclaiming of new regions

(b) do instant reclaiming of allocations in old regions
gi

(e2): end of a middle disjunct
(a) reclaim protected regions
(b) pop the disj frame

; ...
; (d3): start of the last disjunct

(a) do instant reclaiming of new regions
(b) do instant reclaiming of allocations in old regions
(c) pop the disj frame

gn
), ...

Figure 8.4: RBMM runtime support for semidet disjunction.

if the condition fails, the failure must have occurred in the scope of the condition.
Like disjunctions, if-then-elses need to protect regions from being reclaimed

while backward live. But in the case of if-then-elses, we can restrict out attention
to regions removed in the condition (i.e., in the condition’s removed set), since
this is the only part of the code in which the if-then-else itself can make a region
backward live. When execution reaches the start of the then part, backtracking to
the else part is no longer possible, which means that any regions that have been
marked for removal in the condition have to be reclaimed for real, unless they are
protected by a surrounding scope.

Also, if-then-elses, like disjunctions, should do instant reclaiming of memory al-
located by backtracked-over computations. In the case of if-then-elses, this means
that at the start of the else part, we should recover any memory allocated by the
condition.

In general, we only need to provide support for changes to regions which occur
inside the condition. This is good, because the conditions of if-then-elses are often
very simple, containing only one or a few tests. Conditions whose created, removed
and allocated sets are all empty are therefore fairly common. For such if-then-elses,
the mechanisms we describe below are unnecessary, and so we optimize them away.
If at least one of these three sets is not empty, we add code at the starts of the
condition, the then part, and the else part, i.e., at points (i1), (i2), and (i3) in
Figure 8.5.

8.4 Support for if-then-else 69

(if

(i1): start of the condition
(a) push an ite frame
(b) save the protected regions and their number

(c) save size records and their number
...

then
(i2): start of the then part

(a) reclaim the ite-protected regions
(b) pop the ite frame

...

else
(i3): start of the else part

(a) unprotect the ite-protected regions
(b) do instant reclaiming of new regions

(c) do instant reclaiming of allocations in old regions
(d) pop the ite frame

...

)

Figure 8.5: RBMM runtime support for if-then-else with semidet condition.

For each if-then-else, we use a data structure called an ite frame to store the
information used for its runtime support. As with disj frames, we embed ite frames
in the ordinary stacks used by the Mercury implementation, and link them together
into the ite stack, with a global variable pointing to its top. The structure of an ite
frame is exactly analogous to that of a disj frame, the only difference being that
the first slot of the fixed part, prev ite frame, holds a pointer to the previous ite
frame (or null if there is none).

8.4.1 Ite-Protecting Backward Live Regions

Since the compiler knows the regions in the removed set of the condition (in our
example in Figure8.1, R1 is such a region), we will stop them from being reclaimed
by ite-protecting them at the entry to the if-then-else. To allow us to ite-protect
regions, we add to the region header a pointer field, ite protected, which is set
to null when a region is created. A region is ite-protected if its ite protected

field is not null. The remove instruction will now only reclaim a region if its
ite protected field is null and it is not disj-protected. (We do not use the same
protection mechanism as in the case of disjunction. The reason for this will be
explained when we describe how we handle if-then-elses with nondet conditions.)
Before entering the condition, i.e., at (i1), we push an ite frame, and then iterate
over the to-be-protected regions. If one of these regions is already protected for a
surrounding disjunction or if-then-else, we ignore it. Otherwise, we protect it by
setting its ite protected field, which is currently null, to point to the ite frame.
For such a protected region, we add its handle to a region id slot in the nonfixed
part of the ite frame. Then we also put the final number of regions we protect

70 Runtime Support for Backtracking

in this way into the frame’s num prot region slot. We do this so that we can
loop over all the regions protected by this ite frame in two places: at the start of
the then part (i2.a), where we reclaim all these regions (giving delayed effect to
the remove instructions in the condition), and at the start of the else part (i3.a),
where we undo their protection by resetting their ite protected fields to null.

8.4.2 Instant Reclaiming

When the condition fails, we want to reclaim both the new regions created inside
it and any new allocations into old regions. In our example in Figure 8.1 we want
to reclaim all of R3 and some of R2.

To reclaim new regions, at (i1.a) we save the current sequence number into
the new frame’s saved seq num slot, and at (i3.b), we add code that traverses the
region list and reclaims all the regions until meeting an old region.

To reclaim new allocations into an old region, at (i1.c) we save its size record
into the nonfixed part of the ite frame. Although it is reasonable to do this for
the regions in the allocated set of the condition, it would be wasteful to reclaim
new allocations into the regions which will be reclaimed right at the start of the
else part. Unfortunately, while the compiler knows which old regions have remove
instructions at the start of the else part, it does not know which of these will
actually reclaim their regions, since it does not know which regions are protected
by surrounding code. We handle this uncertainty as follows. We generate code
at (i1.c) for every old region which is live at that point. For those that are not
removed at the start of the else branch, this code always saves their size records
unconditionally. For those that are removed at the start of the else branch, this
code checks whether they are protected before this if-then-else, and saves their
size records only if they are. This is an optimization because the test to see if
a region is protected takes less time than saving its size record, and restoring
it if the condition fails. We record the number of size records we saved in the
num size record slot, so that code at (i3.c) can restore them all.

The final action of an if-then-else with a semidet condition is to pop the ite
frame at either (i2.b) or (i3.d).

8.4.3 Handling if-then-elses with Nondet Conditions

Unlike Prolog, Mercury allows the condition of an if-then-else to have more than
one solution. If the condition is nondet, then execution can backtrack into the
condition from the then part or later code. This poses two problems we need to
solve.

First, since the condition can succeed more than once, the code we add at the
start of the then part (i2) can also be executed more than once. Because we need
the ite frame every one of these times, we cannot let the code pop it at (i2.b); we
must keep it until after the last time it may be used, i.e., after the last execution

8.4 Support for if-then-else 71

of the condition. We arrange for this to happen by modifying the way the code
generator handles the failure of the condition.

Normally, the code generator arranges for failures of the condition before the
condition succeeds for the first time to cause a branch to the start of the else
part, while a failure of the condition after it has succeeded represents a failure of
the if-then-else as a whole, and will be handled accordingly, in whatever way the
surrounding context demands. For example, if the if-then-else is one disjunct of
a disjunction, its failure will cause execution to resume at the start of the next
disjunct. We call the place to branch to on failure of the whole if-then-else the
failure continuation.

We modified the code generator so that if the nondet condition needs support
for region operations, i.e., it has a nonempty created set, removed set or allocated
set, we branch to the failure continuation only after we execute code to pop the
ite frame, the same code that for semidet conditions we would execute at (i2.b).

Second, the condition being nondet means that it must include, directly or
indirectly, a nondet disjunction (since this is the only Mercury construct that can
introduce nondeterminism). Therefore we must ensure that the supporting code
fragments we generate for the if-then-else and the disjunction inside it do not step
on each other’s toes.

Our support for if-then-elses with semidet conditions provides ite-protection
for regions in the condition’s removed set that are not yet protected before the
if-then-else. For such a region in a nondet condition, there are two cases. The first
case is when the region is removed before the first nondet disjunction inside the
condition. That means that when the remove instruction is executed, the region
is ite-protected but not disj-protected. The remove instruction will (correctly) not
reclaim it. Later on, the region will be reclaimed when the condition succeeds for
the first time by the supporting code added at (i2). Because the program may
backtrack into the condition and may reach the then part again, when the region
is reclaimed at (i2.a), we need to nullify its entry in the ite frame so that it will not
be wrongly reclaimed again the next time execution reaches (i2.a). This explains
our saving of the pointer to the ite frame in the ite protected field in the region
header of a protected region.

In the second case, the region is removed after the start of the first disjunction
in the condition, either in the disjunction itself or at some point after it. In an
execution containing a non-last disjunct, when the remove instruction is encoun-
tered the region is not reclaimed because it is both ite- and disj-protected. We
need to ensure that if the condition succeeds and execution reaches the then part,
the region should not be reclaimed at (i2) because it may be needed when the
execution goes back into the condition. We therefore put different code at (i2.a)
if the condition is nondet; this code will reclaim a region only if it is not currently
disj-protected (Figure 8.6). The region will remain both ite- and disj-protected un-
til the execution enters the last disjunct, at that time it will lose its disj-protection

72 Runtime Support for Backtracking

(Section 8.3). When the remove instruction in the condition is executed after this,
it will not reclaim the region because it is still ite-protected, but the code at (i2.a)
will reclaim it.

for each saved region_id
if region_id != null && !is_disj_protected(region_id)

reclaim the region;
region_id = null

Figure 8.6: Code at (i2.a) for if-then-else with nondet condition.

When the nondet condition fails, in both cases above, the region is only ite-
protected, not disj-protected. It is because in the first case, the region is never
disj-protected and in the second case, the failure happens only after all the dis-
juncts of the nondet code have been tried and failed, and the region has been
disj-unprotected at the start of the last disjunct. This situation is exactly the
same as when a semidet condition fails. Therefore the code at (i3) is exactly the
same for nondet conditions as for semidet conditions.

8.5 Support for commit

When the goal inside a commit succeeds for the first time, we commit to that
solution by discarding the inner goal’s outstanding alternatives. We call the point
in the code where this happens the commit point. If the inner goal is nondet
(rather than multi), it may also fail. When it fails, the compiler’s failure-handling
mechanism causes execution to pass through a failure point before the program
resumes forward execution at the resumption point of the next surrounding goal.
The failure point is there to allow the execution of some cleanup code. We add
code to support region operations at two or three points in Figure 8.7: the entry
point of the commit (c1), the commit point (c2), and the failure point (c3); if the
inside goal has determinism multi, we do not modify (c3) as execution will never
reach there.

Consider a region that is in the removed set of a commit goal. If it is already
protected by a disjunction or if-then-else when execution arrives at (c1), then the
region should not be reclaimed by any code inside the commit, and the mechanisms
we have described so far are sufficient to ensure this. If the region is not already
protected at (c1), then the region should be reclaimed before execution reaches
(c2). Ensuring this needs a new mechanism because the goal inside a commit will
contain, directly or indirectly, at least one disjunction that can succeed more than
once (if it did not, it would have at most one solution, and there would be no
commit operation), and the runtime support for this disjunction will protect the
region from being reclaimed during the execution of its non-last disjuncts. On the

8.5 Support for commit 73

some [...]

(c1): entry to the commit
(a) push a commit frame
(b) save the sequence number

(c) save the pointer to the top disj frame
(d) save the to-be-reclaimed old regions and their number

(the inner goal)

(c2): commit point
(a) reclaim the saved old regions
(b) reclaim the new regions

(c) restore the state of the disj stack
(d) pop the commit frame

(c3): failure point

(a) restore status of the saved regions
(b) pop the commit frame

Figure 8.7: RBMM runtime support for commit.

other hand, we cannot simply insert code at (c2) to reclaim the region, since it can
already be reclaimed by its remove instruction in the execution of the last disjunct
before reaching (c2). We do not need to worry about the case when regions are
protected only by semidet disjunctions or by if-then-elses inside a commit, since
these constructs, if any, protect regions only temporarily, and ensure that any
regions that are removed inside them and are not protected when the execution
enters them will be reclaimed before the execution exits them.

As before, our solution involves a new embedded stack, the commit stack. We
push a new commit frame at (c1), and fill in its fixed fields, which will be discussed
later. Following this will be the code that, for each region in the removed set of the
commit goal, checks whether the region is already protected. If it is, that region
is left alone. If it is not, we add the handle of the region to the commit frame’s
nonfixed part, and record the address where this handle is stored in the commit
frame in the region’s own header, in a new field called commit slot. This way,
when a region that should be reclaimed inside the commit actually survives to (c2)
due to the protection of an inner disjunction, code at (c2) can iterate through all
the region handles in the commit frame and reclaim those regions. However, we
cannot do this for regions that are actually reclaimed inside the commit (whose
remove instructions were executed in the last disjuncts). That is why, when we
reclaim a region, we check whether its header’s commit slot field is null. If not,
then it will contain the address of a pointer to the region header from a commit
frame and the reclaim operation will replace that pointer in the commit frame with
a null. Making the loop at (c2.a) ignore such nulled-out region handle pointers
ensures that each region recorded in the commit frame’s list is reclaimed exactly
once, and that this will happen as soon as possible.

If the goal inside the commit fails, we need to undo the update of the saved

74 Runtime Support for Backtracking

regions’ commit slot fields, so at (c3.a) we reset them all to their original values.
To make this possible, we save each original value in the commit frame next to
the pointer to the region header from which it is taken. This effectively chains
together all the entries referring to a given region in the commit stack. The reclaim
operation will set to null not just the first slot in this chain, but all of them.

This mechanism is sufficient to correctly handle any old regions that are in the
commit goal’s removed set. To handle any new regions (regions created inside the
commit) that are also removed inside the commit, we record the current region
sequence number in the commit frame at (c1). When a new region is removed in
the commit, if it is not protected, it is reclaimed. If it is protected, we mark it so
that at the commit point we can reclaim it. We add a field destroy at commit

to the region header, and we augment the remove instruction again so that when
a protected, new region is removed in a commit, the remove instruction will set
the region’s destroy at commit field to true. At the (c2.b) part of the commit
point, we traverse the region list until meeting an old region, and reclaim the new
regions whose destroy at commit field is true.

We do not need to worry about instant reclaiming of new regions in the created
set and of new allocations into regions in the allocated set of the commit, since
that will be done by the construct(s) surrounding the commit.

At the commit point, the Mercury execution algorithm throws away all the
remaining alternatives of the goal inside the commit. To reflect this, at (c2) we
need to restore the embedded disj stack to the state it had at (c1). This is why at
(c1), we save the current disj stack pointer in a fixed slot in the new commit frame,
and at (c2), we restore the disj stack pointer from there. The regions protected
by the disj frames thrown away by this action will be exactly the ones removed by
the code at (c2.b).

The layout of commit frames is shown in Figure 8.8, with the fixed and nonfixed
parts are separated by a thick line. The meaning of the first two fields should be

(saved sequence number)

prev_commit_frame

saved_seq_num

saved_disj_sp (disj stack pointer)

(previous commit frame)

...

prev_commit_slot (original commit slot of the saved region)

region_id (handle to a saved region)

num_saved_region (number of saved regions)

Figure 8.8: The structure of a commit frame.

clear. The third field contains the value of the disj stack pointer at the time when
the commit was entered. The last field gives the number of region handles and
saved commit slot fields actually stored by the code at (c1.d) in the nonfixed part.

8.6 Conclusion 75

8.6 Conclusion

In this chapter we have specified the design and implementation of the support
needed for backtracking in the runtime system of Mercury. In general the support
has two tasks. The first is to protect backward live regions and only reclaim them
when they are both forward and backward dead. The second is instant reclaiming,
namely reclaim new regions and new allocations into existing regions that have
happened in the backtracked-over computation.

One challenge for the design is that we do not want to pay for the backtrack-
ing support when we do not actually need it. This is significant to the overall
performance of the region-based system because only a small fraction of Mercury
program code is actually nondeterministic. By making use of determinism in-
formation we have been able to minimize this cost for semidet disjunctions and
if-then-elses. Our experimental results on runtime performance shown in Chap-
ter 9 confirm this claim.

76 Runtime Support for Backtracking

Chapter 9

Experimental Evaluation

We have implemented the region analysis and transformation, Chapters 4, 5, and 6,
as well as the runtime support, Chapters 7 and 8 in the Melbourne Mercury
compiler. The runtime support algorithms are implemented in the backend that
generates low-level C code. In this chapter we first show the results of evaluating
our region-based systems. We then provide an in-depth study of the relation
between sharing and RBMM, which reveals opportunities for improvements.

9.1 The Experimental Systems

In our experiments we use three RBMM systems. The first one, rbmm1 , is similar
to the RBMM system in (Phan, Somogyi, and Janssens 2008) in which we do not
track the regions that are allocated into. In rbmm1, while the region operations
(Section 7) are implemented as C functions the runtime support for backtracking
(Section 8) is implemented using C macros. The functionality of the second system,
rbmm2 , is exactly the same as that of the first one, however we consistently
implement the whole runtime support in functions. The runtime support in the
third system, rbmm3 , is also coded in functions. Moreover it contains the tracing
(Section 4.5) and use of allocated regions as presented in Chapter 8. Having these
differences, the three systems still have the same usage of the regions they create
and remove. However, they differ in other aspects such as compilation time, size
of object files, the runtime support needed, and hence runtime performance. The
idea of experimenting with rbmm1 and rbmm2 is to study the effects of using
macros and functions. Comparing the experimental results of rbmm2 and rbmm3
can reveal the impact of tracing allocated regions. For all three RBMM systems,
we use region pages of size 2,048 words, in which 2,047 are available to store
program data. When needed, we request blocks of 100 region pages from the OS.

We also compare the RBMM systems with a Mercury compiler that is the

77

78 Experimental Evaluation

same as the RBMM systems in all aspects except that it uses the Boehm garbage
collector (Boehm and Weiser 1988) instead of RBMM. We call this system heap.

The experiments were performed on a PC with two 2.8 GHz Pentium 4 CPUs,
1.5 GB of RAM, running Linux version 2.6.24-24-generic Ubuntu 4.2.4-1ubuntu4
SMP. The programs are compiled with the Mercury compilers described above and
with the gcc 3.4.4.

Next, we will present the benchmarks and then we will give the results of our
experiments. Finally we discuss the RBMM behaviour of the benchmarks in more
detail as we are interested in their memory (i.e., the use of the regions), their
runtimes and the kind of runtime support they need.

9.2 The Benchmark Programs

In the experiments, we used a set of relatively small benchmark programs. We
made a careful selection of the benchmarks, which are actually more like a collec-
tion of case studies that we use to illustrate the strong and weak points of RBMM.
When we do not give averages, it is because our benchmark collection contains sev-
eral cases known to be difficult for RBMM in terms of memory reuse. While we
would have liked to test our system with bigger, more realistic programs, we are
currently not able to do so because the region analysis and transformation do not
yet support higher order code and multi-module programs.

The benchmark programs in Table 9.1 are divided into three groups. The first
group contains benchmarks that do not need any run-time support for backtrack-
ing. The ones of the second group do need backtracking support. The third group
consists of manually modified versions of benchmarks that illustrate how programs
can be made more region-friendly (hence the r as prefix of the names).

In the first group, we have included some deterministic programs that use
some temporary data: dna computes subsequent similarities between sequences,
isort implements an insertion sort algorithm and works on a list of 10000 integers,
nrev reverses a list of 5000 integers, primes finds all the primes less than 20000,
qsort sorts a list of 100000 integers. The program dna is a difficult case for
RBMM (Makholm and Sagonas 2002; Phan and Janssens 2007). The benchmark
isort was mentioned in (Aspinall, Hofmann, and Konečný 2008). It creates sharing
between the input list and the sorted list. Therefore it is also difficult for RBMM.

The programs in the second group need runtime support for if-then-elses and/or
disjunctions. bigcatch and filrev are Mercury versions of programs used in (As-
pinall, Hofmann, and Konečný 2008). They manipulate lists of lists of integers and
introduce sharing between the input, the temporary data and the output and as
such they present difficult cases for RBMM. bsolver is a simple solver for systems
of binary linear equations and inequations over integers; boyer is a toy theorem
prover; crypt finds the unique answer to a cryptoarithmetic puzzle; healthy is a
nondeterministic variant of life that searches for a generation that after a certain

9.3 Experimental Results 79

Table 9.1: Information about the benchmarks.

Predicates # LOC if-then-else
disjunction

semidet nondet

dna 16 168 x
isort 6 84 x
nrev 5 41 x
primes 8 57 x
qsort 6 54 x

bigcatch 12 108 x
boyer 17 304 x
bsolver 41 531 x x
crypt 15 147 x x
filrev 12 100 x
healthy 24 335 x x
life 18 232 x
queens 9 90 x x
sudoku 22 274 x x

rdna 17 177 x
risort 7 68 x
rlife 19 300 x
rqueens 10 96 x x

number of reproductions (8) still has a number of live cells that is higher than
a threshold (80); life implements the Game of Life (known to be a difficult case
for RBMM); queens solves the 12-queen problem by first generating a permuta-
tion and then checking; sudoku finds the solution for a sudoku puzzle by doing
propagation on finite domains.

The programs rlife and rdna are the versions of life and dna that have been
manually made region-friendly as will be explained later by adding a copying
predicate. rqueens is modified from queens by changing the delete predicate
(called by permute) to copy the remaining list after deletion. Also risort copies
the remaining list when inserting an element into a sorted list. We come back to
this group of programs when discussing the benchmarks in detail.

9.3 Experimental Results

9.3.1 Compilation Times and Object File Sizes

We first compare the three RBMM systems and the heap system with respect to
their compilation times and the sizes of their object files. The compilation time
results in seconds are given in Table 9.2. There are always slowdowns during
compilation with the RBMM systems compared to the heap system. The cost of

80 Experimental Evaluation

Table 9.2: Compilation time.

heap rbmm1 rbmm2 rbmm3

dna 0.86 0.99 0.97 0.99
isort 0.59 0.60 0.59 0.59
nrev 0.56 0.59 0.60 0.59
primes 0.57 0.58 0.59 0.60
qsort 0.59 0.64 0.64 0.66

bigcatch 0.66 0.72 0.72 0.76
boyer 1.25 2.26 2.10 2.04
bsolver 1.77 2.68 2.54 2.31
crypt 0.88 1.07 0.98 0.99
filrev 0.66 0.71 0.72 0.74
healthy 1.04 1.54 1.37 1.32
life 0.90 1.18 1.11 1.08
queens 0.61 0.75 0.72 0.73
sudoku 1.39 1.92 1.89 1.84

rdna 0.88 1.00 1.00 0.99
risort 0.60 0.67 0.66 0.65
rlife 0.92 1.21 1.14 1.10
rqueens 0.67 0.76 0.74 0.75

including RBMM into the programs is reasonable: on average the slowdown for
rbmm1 is 23% and for the other two 20%. Compilation with the function-based
system rbmm2 is most of the time faster than with the partly macro-based system
rbmm1. (We subjectively consider only the differences large than 20 ms reliably
slower or faster.) It is likely because the runtime support functions in rbmm2 have
been compiled when the RBMM-enabled compiler was compiled while in rbmm1
the code from the macros is expanded and compiled when a benchmark program
is compiled. Compared to rbmm2, tracing and making use of the allocated regions
in rbmm3 sometimes help to reduce compilation time, but the effect is quite small.
This can be explained by the fact that the overhead of tracking is rather small and
the information about allocated regions often can lead to speedups because fewer
region arguments are passed and less runtime support code is added.

The sizes in bytes of the object files (their text sections) are given in Table 9.3.
The object files of the RBMM systems are, as expected, larger than those of the
heap system. The use of macros in rbmm1 can double the size as for bigcatch and
healthy. For programs in the first group as well as rdna and risort, those that do
not need runtime support for backtracking there is no difference in object file sizes
between rbmm1 and rbmm2. For the others rbmm2 produces objects with smaller
sizes as macros are no longer used, notably in healthy the reduction with respect
to rbmm1 is up to 25%. The function-based system with allocation tracking,
rbmm3, gives rise to a further reduction as by keeping trace of the allocated

9.3 Experimental Results 81

Table 9.3: Size of the object files.

heap rbmm1 rbmm2 rbmm3

dna 4,703 6,159 6,159 5,935
isort 920 1,160 1,160 1,160
nrev 880 1,168 1,168 1,168
primes 929 1,168 1,168 1,168
qsort 1,065 1,466 1,466 1,466

bigcatch 1,561 3,049 2,425 2,025
boyer 13,670 20,965 17,460 15,908
bsolver 15,800 26,424 23,338 19,434
crypt 5,560 9,296 6,960 6,912
filrev 1,490 2,465 2,209 2,049
healthy 7,837 16,109 11,759 10,269
life 5,492 9,203 7,843 6,867
queens 1,769 3,235 2,515 2,483
sudoku 7,586 12,226 11,586 10,722

rdna 4,752 6,304 6,304 6,080
risort 1,065 1,400 1,400 1,400
rlife 5,653 9,572 8,228 7,172
rqueens 2,058 3,573 2,869 2,837

regions we can reduce both the amount of supporting code for backtracking and
the number of region arguments of procedures: bsolver and filrev benefit the
most, while on average we gain 6% compared to rbmm2. The average increase
for rbmm3 with respect to heap is 30% which is acceptable. This shows that for
larger programs the systems with the functions are likely preferable.

9.3.2 Memory Usage

We measured the memory consumption of the regions for the RBMM systems.
Note also that the runtime support consumes some memory as will be discussed
later. Here we focus on the storage of program data. The results in Table 9.4
are the same in all three RBMM systems. For each benchmark, we give the
total number of regions created during its execution, and the maximum number
of regions coexisting during its run. We also include the total number of words
allocated and the maximum number of words that coexist. SLR is the Size of the
Largest Region and S (%) is the saving, calculated by 1 - Max words/Total words.

RBMM achieves optimum memory management in nrev (which reverses a list
of 5000 integers), in primes (which finds all primes less than 20000), and in qsort
(which sorts a list of 100000 integers). For nondeterministic programs, memory
savings can still be high, such as in crypt, healthy, queens, and sudoku. The

82 Experimental Evaluation

Table 9.4: Memory use in the region-based systems.

Regions Words used
SLR S (%)

Total Max Total Max

dna 2,082,005 8 18,926,797 4,590,797 4,096,000 75.74
isort 2 1 67,029,000 67,009,222 67,009,222 0.03
nrev 5,002 2 25,015,000 10,000 10,000 99.96
primes 2,264 1 5,221,386 39,998 39,998 99.23
qsort 200,002 21 5,865,744 200,000 200,000 96.59

bigcatch 2 2 25,015,000 25,015,000 25,005,000 0.00
boyer 12 3 430,683 143,561 143,505 66.67
bsolver 95 8 2,914,534 2,911,528 2,908,442 0.10
crypt 416 3 3,442 94 64 97.27
filrev 5 3 25,023,004 25,019,000 25,009,000 0.02
healthy 3,917,123 82 62,639,310 2,794 2,054 99.99
life 50,303 102 894,336 8,208 6,486 99.08
queens 4,545,702 2 121,453,230 114 90 99.99
sudoku 6,650 88 84,080 16,678 10,916 80.16

rdna 2,083,005 9 18,930,797 501,752 428,733 97.35
risort 373,213 1 289,968,666 2,000 2,000 99.99
rlife 50,354 102 894,394 1,856 1,722 99.79
rqueens 23,080,415 13 142,047,288 156 24 99.99

impact of instant reclaiming on memory reuse is different for these nondeterminis-
tic programs (Table 9.5). In crypt and queens, instant reclaiming helps to collect
most of the words while in healthy it contributes just a small part and it reclaims
none in sudoku.

For cases such as isort, bigcatch, bsolver and filrev we see that most of the
memory goes to the biggest region. Typically, this biggest region contains garbage
data but, as it also holds some live data, it cannot be reclaimed.

The heap system uses the Boehm garbage collector (Boehm and Weiser 1988)
for memory management. In our experiments, we just use the default configuration
of this collector as it is in the Mercury compiler distribution. It is a stop-the-
world, non-parallel mark-and-sweep collector that uses 1024-word pages. It starts
with a heap of 64k words and heuristically carries out collections of garbage or
expands the heap on demand. Data about memory use in the heap system is
shown in Table 9.6. In the first column, the benchmarks in which the Boehm
collector behaves the same are grouped into the same row. The second column
(# gc) shows the numbers of times the collector is run while the third column (#
expansions) tells the numbers of expansions of the heap. The maximal sizes of the
heap in kB and words are shown in the last two columns, respectively.

The numbers show that, in almost all of the benchmarks, the RBMM systems
can work within spaces that are smaller than requested by the collector. RBMM

9.3 Experimental Results 83

Table 9.5: Words reclaimed thanks to runtime support. The other words are
reclaimed by remove instructions. Only programs with some non-zero numbers
are shown.

New allocations New regions Start of then Commit point
Words % Words % Words % Words %

bigcatch 0 0.00 0 0.00 10,000 0.04 0 0.00
crypt 0 0.00 3,270 95.00 0 0.00 6 0.17
queens 12,356,378 10.17 109,096,776 89.83 52 0.00 0 0.00
rqueens 0 0.00 133,809,696 94.20 0 0.00 132 0.00
healthy 81,862 0.13 3,314 0.01 0 0.00 0 0.00
sudoku 0 0.00 0 0.00 0 0.00 6,480 7.71

Table 9.6: Memory use in the heap system.

gc # expansions max size (kB) max size (words)

dna 6 4 30,524 7,814,144
isort 19 4 30,524 7,824,144
nrev 8 4 30,524 7,824,144
primes, qsort 2 4 30,524 7,824,144
bigcatch, filrev 4 10 119,804 30,669,824
boyer, life, rlife 1 3 22,892 5,860,352
bsolver 1 4 30,524 7,824,144
crypt, sudoku 0 2 17,168 4,395,008
healthy 18 4 30,524 7,824,144
queens 35 4 30,524 7,824,144
rdna 6 4 30,524 7,824,144
risort 82 4 30,524 7,824,144
rqueens 41 4 30,524 7,824,144

84 Experimental Evaluation

Table 9.7: Runtime performance.

Iter
heap RBMM runtime

Saving
runtime gc time # gc’s rbmm1 rbmm2 rbmm3

dna 40 16.70 5.32 219 17.29 17.22 17.12 -2.51%
isort 20 27.52 8.82 380 12.65 12.54 12.55 54.40%
nrev 40 20.28 6.56 284 8.61 8.63 8.67 57.25%
primes 100 21.13 3.61 149 14.29 14.32 14.31 32.28%
qsort 80 13.80 4.08 140 7.89 7.94 7.95 42.39%
bigcatch 8 16.76 3.58 8 11.91 11.94 11.89 29.06%
boyer 2,000 14.86 2.07 89 14.57 19.83 19.85 -33.58%
bsolver 200 11.74 3.97 166 4.25 4.30 4.30 63.37%
crypt 100,000 16.70 2.31 98 14.66 15.97 16.11 3.53%
filrev 10 16.87 3.86 13 12.13 12.12 12.08 28.39%
healthy 4 7.97 1.64 72 10.73 16.30 6.46 18.95%
life 200 11.58 1.14 51 12.13 15.21 10.54 8.98%
queens 5 19.47 3.96 172 15.94 19.70 19.92 -2.31%
sudoku 5,000 9.68 2.36 103 8.28 8.23 7.93 18.08%
rdna 40 16.82 5.26 219 16.84 17.05 16.92 -0.59%
risort 8 47.60 15.10 656 16.01 16.79 16.03 66.32%
rlife 200 11.73 1.22 51 12.23 16.12 10.52 10.32%
rqueens 5 22.38 4.62 201 26.16 30.34 29.96 -33.87%

systems often need to request only 2048 x 100 words. The worst case for RBMM
is isort where a large amount of garbage is produced and RBMM is not able to
reuse memory efficiently. The heap system can work with ten times less memory
in this case.

9.3.3 Runtime Performance

We also studied the runtime performance of our benchmark programs in the heap
system and in the three RBMM systems because it is probably the most important
criterion for the practicality of RBMM. To eliminate the uncertainty involved in
measuring small times, we ran each program many times in a loop. Each bench-
mark has a row in Table 9.7 that gives the number of iterations, the actual execu-
tion times with the heap and with the three RBMM systems, the heap system’s gc
time (all in seconds, all for user mode only), the number of collections executed by
the Boehm collector, and the savings achieved by using rbmm3 instead of the heap
system (given by 1 - rbmm3 runtime / heap runtime). We present the savings only
for the rbmm3 system because firstly it is fair to compare the heap system with an
RBMM system that is also implemented using functions. Secondly, between the
two function-based RBMM systems, rbmm3 should always be the faster because
it contains more optimizations.

The rbmm3 system gets clearly better runtimes for 12 out of 18 benchmark pro-
grams including both deterministic and nondeterministic programs. The speedups
range from around 10% to more than 60% compared to the heap system. This
promising result can be explained by the fact that with RBMM we avoid the bur-
den of runtime garbage collection and that the overhead of supporting regions is

9.3 Experimental Results 85

Table 9.8: Runtime support information in rbmm1 and rbmm2 systems.

Disj frames Ite frames
Total M # Words Mw Sr Total M # Words Mw Sr P

bigcatch 0 0 0 0 0 5,045 1 35,499 11 5,091 46
boyer 0 0 0 0 0 115,884 2 814,392 14 116,952 0
bsolver 90 1 1,170 13 270 243 1 4,026 19 1,018 0
crypt 55 4 220 16 0 1 1 4 4 0 0
filrev 0 0 0 0 0 5,000 1 50,000 10 10,000 0
healthy 2,431 9 24,304 84 4,860 17,449,109 2 174,491,084 14 34,898,216 0
life 0 0 0 0 0 177,788 1 1,777,880 10 355,576 0
queens 12,356,498 12 86,495,486 84 12,356,498 1 1 5 5 0 1
sudoku 81 81 810 810 162 1 1 16 16 4 0
rlife 0 0 0 0 0 177,788 1 1,777,880 10 355,576 0
rqueens 12,356,498 12 86,495,486 84 12,356,498 1 1 5 5 0 1

Table 9.9: Runtime support information in rbmm3 system.

Disj frames Ite frames
Total M # Words Mw Sr Total M # Words Mw Sr P

bigcatch 0 0 0 0 0 46 1 230 5 0 46
boyer 0 0 0 0 0 114,813 1 803,682 7 114,810 0
bsolver 0 0 0 0 0 17 1 170 10 34 0
crypt 55 4 220 16 0 1 1 4 4 0 0
filrev 0 0 0 0 0 0 0 0 0 0 0
healthy 2,431 9 24,304 84 4,860 1 1 4 4 0 0
life 0 0 0 0 0 0 0 0 0 0 0
queens 12,356,498 12 86,495,486 84 12,356,498 1 1 5 5 0 1
sudoku 81 81 324 324 0 1 1 10 10 2 0
rlife 0 0 0 0 0 0 0 0 0 0 0
rqueens 12,356,498 12 86,495,486 84 12,356,498 1 1 5 5 0 1

reasonably modest. Moreover, the runtimes of eight out of these 12 programs are
still smaller than the corresponding runtimes in the heap system excluding col-
lection times, suggesting that RBMM may also provide better data locality. In
bigcatch and filrev, two difficult cases for RBMM, their memory-use pattern ac-
tually has adverse effects on the operation of the runtime collector. They all build
very large lists that are live data before producing any garbage. The collector
tries to collect the heap when some allocations happen. This behaviour, in the
situation where there is little garbage, causes the marking phase to take significant
time. These facts explain the large speedups from around 30% to 60% in several
programs.

Before discussing the results of the other programs we show the detailed infor-
mation about the disj frames and the ite frames that are used in the benchmark
programs in one iteration in Table 9.8 for rbmm1 and rbmm2 and in Table 9.9 for
rbmm3.

The information about commit frames is left out of the tables because each non-
deterministic program uses just one commit frame of four words and no dynamic
information is saved. Only programs that do use runtime support for backtracking
are included. The five columns related to disj frames are as follows. Total is the

86 Experimental Evaluation

total number of disj frames used in the whole run; M is the maximal number of
disj frames coexisting at some point; the third one, # Words, is the total number
of words used for all the disj frames; the fourth, Mw, is the maximal number of
words used at some point; the last, Sr, is the total number of size records saved.
No regions are protected at semidet disjunctions in these benchmarks. For ite
frames, the first five columns have similar meanings to those for disj frames. The
last is the total number of regions that are protected by the ite frames (i.e., their
handles are saved to the frames). The Mw columns show that the memory used by
these embedded frames is negligible in all benchmarks. All the total numbers here
must be multiplied with the corresponding numbers of iterations in Table 9.7 to
have the total numbers in the iterated programs used in the runtime experiment.

The rbmm3 system is only a little faster than the heap one in crypt. Despite
being a nondeterministic program, the runtime support for backtracking it needs
is rather cheap (see Table 9.9). However, we see that the program handles a rather
large number of small regions, more than 41M regions. The largest region of these
contains 64 words and on average it is only eight words per region. (The total
number of regions can be computed by multiplying the number of iterations in
Table 9.7 with the total number of regions in one iteration in Table 9.4). So the
gain due to no runtime collection is largely damaged by the overhead of handling
many regions, resulting in just a small overall speedup.

This adverse impact of handling many regions on performance shows as well
in other programs where the numbers of regions are substantial, more than ten
million. The overhead can be seen in the programs such as qsort, healthy,
life, sudoku, and rlife, where we still have clear speedups but they are not as
substantial as in those with much smaller numbers of regions. This should also
be the reason for the small slowdowns in dna and rdna. These two programs
do not suffer at all from any supporting code for backtracking, but all the gain is
cancelled out. The better performance of rdna compared to dna is because it can
reuse memory better with the help of the copying predicate. In this program, the
overhead of copying is rather low because it is just copying blocks of four words
one thousand times. The largest region in rdna does not need to be expanded
as much as the one in dna, thus the gain in speed. Compared to crypt, queens
is also nondeterministic but the runtime support in rbmm3 for it is rather costly
(again see Table 9.9). So besides the cost of handling many regions (22.5M) it also
has to pay for the runtime support for nondet disjunctions. The combined cost
results in the decrease in performance.

The two worst cases for rbmm3 are boyer and rqueens. For rqueens the
number of regions is excessively large, five time more than that in queens. This
can be seen as the negative side-effect of the copying predicate whose purpose is to
help distribute terms better. It does fulfill the purpose as we can see in Table 9.5
compared to queens almost all the words are now reused due to the reclamation
of new regions. We would have seen a better runtime if we had been able to

9.4 When is It Hard to Reuse Memory in RBMM? 87

disable the saving of size records at disj frames, which becomes useless while is
very expensive. The slowdown in boyer is mainly due to the cost of saving size
records (229.62M) at ite frames, which is also in vain. A closer look at boyer
reveals that it contains some semidet procedures that allocate into their input
regions. They are called in the conditions of if-then-elses. So the saving of size
records is needed if we want to have instant reclaiming. However for the specific
input used in our benchmark, the calls to such semidet predicates all succeed so
no words are (need to be) reclaimed.

Comparing the runtime results in rbmm2 and in rbmm3 gives us an idea about
the usefulness of tracking allocated regions. While the reduction in the number
of region arguments does not have a strong impact in these benchmarks, having
less supporting code for backtracking shows marked speedups in healthy and life
(rlife also) in rbmm3. This enhanced performance corresponds with the reductions
in Table 9.9 compared to Table 9.8. We can see that the main impact is on the
ite frames. For filrev and life we can get rid of them completely. For some
others we no longer have to save any size records to ite frames. This is very
important because while nondet code is the exception (because in practice almost
all Mercury predicates (98+%) have at most one solution), if-then-elses are very
popular in Mercury programs. Ensuring the efficiency of this specific construct is
vital to the efficiency of the Mercury language in general. However, tracking of
allocated regions cannot help in all cases, such as in the case of boyer. In that case
the trade-off between reclaiming the words allocated in conditions of if-then-elses
and efficiency would be worth considering.

We see that in the programs where the runtime support for backtracking is
needed using macros to implement the support may improve performance. Ta-
ble 9.7 shows that boyer, crypt, healthy, life, and queens (also rlife, rqueens)
are faster in rbmm1 than they are in rbmm2. It is because using macros can avoid
the cost of calling functions. More importantly, because these programs are small
using macros, which increases code size, likely does not adversely affect instruction
cache behaviour. However, for larger programs we conjecture that this will be the
case.

9.4 When is It Hard to Reuse Memory in RBMM?

It is arguable that sharing is the most basic and natural form of memory reuse.
However, sharing seems to conflict with RBMM because in RBMM we want terms
to be separated in different regions. In this section we study in detail some bench-
mark programs, which are selected on purpose, to have a clear view on the impact
of sharing on RBMM. Some of them are known difficult cases for RBMM such as
dna and life. Some others create sharing that make it hard for in-place updating
such as isort, bigcatch, and filrev (Aspinall, Hofmann, and Konečný 2008).

In our region points-to analysis we essentially put two program variables into

88 Experimental Evaluation

Gen
0

Gen
1

next_gen
Gen

2
Gen

n−1
Gen

n
:=next_gen

Figure 9.1: The computation of generations in life.

the same region in two cases: when there is an assignment between them or when
they are bound to a term and its same-type subterm in a recursive data structure
(Section 4). If the variables in a region have different lifetimes we will have a
memory leak because we cannot reclaim in time the memory of the ones with
shorter lifetimes but we will have to wait until the longest lived one is dead to
destroy the whole region.

One solution for this is to, at a certain point, copy the live data to a different
region so that the rest can be reclaimed. We experiment with this approach in
rdna, rlife, risort, and rqueens.

The life benchmark encodes the Game of Life in which a new generation is
generated from a previous one based on a set of production rules. From an initial
generation it uses a loop (in the life predicate) to produce several intermediate
ones before reaching the final generation, which is the wanted output. We rep-
resent a generation by a list of live cells, each cell is represented by its row and
column in a 20x20 board. To store a generation we need two regions, one for the
skeleton and the other for the cells. In the program the list skeletons of two suc-
cessive generations are independent while their cells may share. In the recursive
case of the predicate life, we first call next gen to compute a new intermediate
generation, whose skeleton could be in a different region, and then we call life
recursively with the new intermediate generation as input. While in its base case,
we assign the last intermediate generation to the output generation. The com-
putation is summarized in Figure 9.1. Due to the assignment in the base case,
which only creates the sharing between the last intermediate generation and the
output generation, our region points-to analysis decides that the skeletons of the
input and output generations in the life predicate are in the same region and
then enforces this for all the (recursive) calls to life. This eventually means that
the skeletons of all the generations are placed in one big region with a size of
6,486 words. In rlife we replace the assignment in the base case with a copying
predicate that does not create the sharing, thus helping to separate the skeleton of
each generation in a separate region, which then can be reclaimed in time. We see
in Table 9.4 that, compared to life, the maximal number of words used in rlife,
is reduced by 77% to 1,856 words. This is because the garbage consisting of the
skeletons of the old generations and of temporary data created during the process
of generating a new one is timely reclaimed.

The program dna simulates the matching of a given DNA sequence to each of
the DNA sequences in a predefined set. The matching degree of two sequences is
represented by a similarity, which is computed based on the similarities of their

9.4 When is It Hard to Reuse Memory in RBMM? 89

elements with respect to the spatial relation among them. The resulting similari-
ties (between two sequences) are calculated one by one and put in an ordered tree,
which is a recursive data structure. To store a tree we need two regions, one for
its left and right skeletons and the other for its nodes where all of the similarities
are stored. Other than that, in this program, there are assignments in several
predicates that establish sharing among the similarities in a way such that all the
ever-computed similarities end up in the same large region of 4M words. (This is
also the region of the nodes of the tree.) The maximal number of words in use
during a run of the program is about 4.6M. In the so-called region-friendly version
rdna, a similarity between two sequences is copied, just before it is added to the
tree. By doing this the region analysis can decide that the region to which the
similarity is copied is the region of the nodes of the tree and it can reclaim its
previous region containing all the temporary similarities involving in its computa-
tion. The size of the largest region now drops to 0.43M words. The biggest region
of rdna is the region of the skeleton of the tree.

In Chapter 10, we propose a more desirable solution, a more refined region
analysis that, by taking into account different execution paths, can keep apart the
regions of the variables in an assignment. An implementation of the improved
analysis should achieve the same effect as in rlife and rdna while it neither re-
quires manually rewriting programs nor incurs the cost of copying. The evidence
supporting this can be found in Section 10.6.1.

The problems with memory reuse in RBMM in isort and queens are typical for
programs that use recursive data structures and continuously update them, such
as adding/deleting an element to/from a list or tree. Because an updated structure
normally shares some part(s) with the original one they are stored in the same
regions. Therefore we cannot reclaim the obsolete parts of the original structure.
In risort and rqueens, we try to have better memory reuse by adding a predicate
to copy the modified structure so that the original region can be reclaimed after
the copying. In risort the copying happens after an integer is inserted and in
rqueens after a queen is deleted. With this manual modification, in risort where
a list of 1,000 integers is sorted, we obtain optimal memory management (see
Table 9.4). In rqueens, compared to queens, the maximal number of words used
is larger. We guess that this is due to region protection when there are some
disj-protected regions that are removed but not reclaimed and instant reclaiming
has not yet occurred. However, the size of largest region drops to 24 words,
which is the storage needed to represent a list of 12 queens. While memory reuse
can be improved by this copying approach the runtime overhead incurred is very
expensive. We see a 50% increase of runtime for rqueens in Table 9.7 and for
risort we have to reduce the input size ten times (from 10,000 integers in isort)
so that the program can finish in reasonable time. Similar problems with memory
reuse in the presence of recursive data structures can also be seen in dna and
rdna where similarities are inserted to trees; and in bsolver where the domains

90 Experimental Evaluation

of the integral variables, which are lists of integers, are reduced.
The problem in bigcatch and filrev is also related to recursive data structures.

In this case the structures are not updated but only part of them is used, i.e., is
live data. Because of that we have to keep the whole region alive. We believe that
this should also be overcome by the copying approach. We have no automatic
solution for the problems related to the use of recursive data structures yet.

9.5 Conclusion

The experimental results show that the cost of having region-based memory man-
agement in Mercury programs is bearable. The region analyses, which have not
been tuned, increase compilation time about 20%. Including the extra code for
region-based memory management also increases code size of object files of around
30%.

Region-based systems often achieve good memory reuse, in some cases we even
witness optimal memory use. Our in-depth study shows that programs in which
recursive data structures are updated make it difficult for region-based memory
management to reuse memory. In these cases combining region-based memory
management with compile-time or runtime garbage collection would be a good
idea.

The most practical experimental system, rbmm3, shows 20% speedup on aver-
age, which is very promising. The runtime results for programs containing nondet
code give evidence that the overhead to support backtracking is rather modest.
The huge speedups, up to 65%, in some programs seem to suggest that RBMM
may offer good data locality. In some benchmark programs, such as bigcatch
and bsolver, we experience that, in region-based systems, even when RBMM
cannot help with reusing memory at all, we still have better runtime performance
compared to using runtime garbage collection.

Chapter 10

Region Reuse

In Section 9.4 we mentioned the imprecision caused by the handling of assignments
in the region points-to analysis. In the view of assigning variables to regions,
we can say that the region points-to analysis (Chapter 4) sometimes too eagerly
groups variables into regions without taking into account different execution paths,
reducing reuse opportunities. In this chapter we describe an improvement of the
region analysis and transformation that have been described in Chapters 4, 5,
and 6. By distinguishing execution paths we obtain a more precise region allocation
that ultimately leads to better memory reuse. To model the memory effects of
different execution paths we need to keep the regions apart, which is achieved by
extending region points-to graphs with same-edges.

10.1 Motivation

As the imprecision that we try to remove is related to assignments, we will look at
their relation with regions in particular. Consider the assignment X := Y, which
binds the free variable X to the value of Y, which, for simplicity, is assumably stored
in one region. As after the assignment X and Y are bound to the same value in a
region, we can say that the two variables are in the same region.

The code in Figure 10.1 is a part of a Mercury program that manipulates
lists of integers. As normal, we associate a program point with every literal in
the body of a procedure. The procedure q has two execution paths: 〈(1), (2)〉
and 〈(3), (4)〉 in which different assignments for Z occur. Note that the program
point (1) does not belong to the second execution path because for an if-then-else
if C then T else E Mercury will first try C but if C fails, it will ensure that E

is executed as if C had never been tried. In the second execution path q invokes
produce that can assumably put its output argument Y in a region different from
that of X. The code of produce in Figure 10.1 follows this pattern. If after a call

91

92 Region Reuse

% (in, in, out). % (in, out).

q(N, X, Z) :- produce(X, Y) :-

(if (

(1) N > 0 (1) X => [],

then (2) Y <= []

(2) Z := X ;

else (3) X => [Xe | Xs],

(3) produce(X, Y), (4) produce(Xs, Ys),

(4) Z := Y (5) Y <= [Xe + 1 | Ys]

).).

Figure 10.1: The running example for region reuse.

q(N, X@R1, Z@R1) :- produce(X@R4, Y@R4) :-

(if (

(1) N > 0 (1) X => [],

then (2) Y <= [] in R4

(2) Z := X, ;

else (3) X => [Xe | Xs],

(3) produce(X@R1, Y@R1), (4) produce(Xs@R4, Ys@R4),

(4) Z := Y (5) Y <= [Xe + 1 | Ys] in R4

).).

Figure 10.2: Region-annotated version with the eager approach.

to produce its input is no longer needed, we can reclaim its memory by removing
its corresponding region, without affecting the output. The call to produce at (3)
in q is such a call. In q, after the assignment at (2) in the first execution path,
that Z is bound to the list bound to by X implies that these two variables are in
the same region. Similarly, at (4) in the second execution path we have that Z and
Y are in the same region. So it seems reasonable and is actually safe to put all X,
Y and Z in one region.

The region points-to analysis in Chapter 4 follows this “eager” approach. The
resulting annotated code for q and produce is in Figure 10.2. So if the program
follows the second execution path of q, the eager approach prohibits the reclama-
tion of the memory of X, even when it is dead after the call to produce (recall that
we assume that X and Y are independent). The memory for X could have been
reclaimed if it had been kept apart in a different region from that of Y and Z.

Let us explore the idea of keeping apart the regions for X, Y and Z in order to be
able to reclaim memory better. Thus we would like to keep X, Y and Z in different
regions. An assignment like Z := X could then involve the copying of the value

10.2 Region Points-to Graph with Same-Edges 93

q(N, X@R1, Z@R3) :- produce(X@R4, Y@R5) :-

(if (

(1) N > 0 (1) X => [],

then remove(R4),

(2) Z@R3 :== X@R1, create(R5),

else (2) Y <= [] in R5

(3) produce(X@R1, Y@R2), ;

(4) Z@R3 :== Y@R2, (3) X => [Xe | Xs],

). (4) produce(Xs@R4, Ys@R5),

(5) Y <= [Xe + 1 | Ys] in R5

).

Figure 10.3: Region-annotated version with region reuse.

of X into the region of Z. Although this allows us to reclaim the memory of X in
the else branch it incurs the overhead due to the copying, which is not desirable
as it is linear to the size of the value. We can do better by reusing the region of
X as the region of Z at (2) and the region of Y as the region of Z at (4), while the
memory of X is reclaimed in produce as shown in the region-annotated code in
Figure 10.3. We can view this as the result of distinguishing execution paths of
a procedure when dividing its variables into regions. In the first execution path,
X and Z are in the same region while in the second one, X is in a region different
from that of Y and Z.

In the region-annotated version, other than the region annotations that we
have seen so far, the special region-annotated assignment notation X@R1 :== Y@R2

means that R1 is bound to the region of R2, then Y is assigned to X, after that R2
is unbound. Its effect is that we reuse the region of R2 for R1. Then the behaviour
of the code is as follows. A caller of q prepares X in the region bound to by R1

and expects Z in some region bound to by R3. If the first execution path of q is
taken R3 will be bound to the region R1. If the second path is taken, the call to
produce removes R1 and creates R2 in its base case, then R3 is bound to R2.

10.2 Region Points-to Graph with Same-Edges

We have been using a region points-to graph to model the memory used by a
Mercury procedure. The graph represents both locations of the related terms and
the sharing of among them. One of the contributions of this chapter is a refinement
of the modelling of this sharing.

In Mercury, the instantiation of variables, therefore the sharing among them,
is caused by unifications. For the purpose of representing sharing more pre-
cisely, we divide the sharing into two groups. First, a construction unification

94 Region Reuse

X <= f(..., Y, ...) allocates new memory for storing the functor f (actually
the block of memory words corresponding to f) and creates sharing between X and
Y. Also in a deconstruction unification X => f(..., Y, ...) Y is instantiated
and Y shares with a subterm of X. The regions needed to store the values of X are
given by its type-based region graph in which the edges point into the regions of
subterms. This kind of sharing is modelled in the same way as before. That is the
sharing between X and Y, with Y the ith argument of X, is represented by having a
node nX with X ∈ vars(nX), an edge (nX , (f, i), nY) and another node nY with
Y ∈ vars(nY). Recall that the vars set of a node can contain either zero, one
or more variables. In the case where constructions and deconstructions involve
variables of recursive types such as lists, e.g., L <= [E | T] or L => [E | T], L
and T are forced to end up in the same vars set. All the program variables in the
vars set of a node may be allocated in the same region.

Second, an assignment unification X := Y binds X to Y and creates sharing
between X and Y. Previously (i.e., in Chapter 4), we did put the two variables in
the same region with the justification being that they actually point to the same
term after the assignment. In the new approach in this chapter we keep their
regions apart and just remember that they are candidates for reusing one for the
other after this point. We represent this in a region points-to graph by a new
kind of edges, called same-edges. The sharing created by X := Y is modelled by a
directed edge s(nY , i, nX) with i the program point where X := Y is found. Note
that the same-edge between nX and nY should propagate to the regions of their
corresponding subterms.

A region points-to graph G(N,E ,S) for a set of variables V consists of a set
of nodes, N , representing region variables, a set of directed edges, E , representing
references between the regions bound to by these region variables and a set of
directed same-edges, S , to model candidates for reuse. Whether the reuse can
safely be done depends on the liveness of the involved regions. This will become
clear later.

As before, the nodes are annotated with vars sets: we have V =
⋃

n∈N
vars(n).

The vars sets are disjoint. The function node(nX , (f, i)) returns the node m if
(nX , (f, i), m) ∈ E otherwise it is undefined.

The region points-to graphs of the procedures q and produce in our running
example are in Figure 10.4 in which same-edges are the “dashed” ones. With
same-edges we can keep the regions of X, Y, and Z separate, in contrast to the
eager approach where we would have only one node with these variables in its
vars set. Now we are still able to capture the fact that at some program points
(i.e., at (2) and (4)) they are the same. Note again that we assume no regions for
the integer elements of the list because they are stored right in the first word of a
cons cell.

All in all, sharing is represented in a region points-to graph in three ways.
Firstly, the directed edges in E represent sharing of subterms. Secondly, that a

10.3 Region Points-to Analysis 95

eager approach

([|],2)

q:

X

(2) (4)

R2R1([|],2)

q: keeping apart

X,Y,Z Z Y

([|],2) ([|],2)

R3

produce:

R4 R5

([|],2)
([|],2)X,Xs Y,Ys

Figure 10.4: Region points-to graphs of q and produce.

vars set of a node may contain more than one variable represents the fact that these
variables may be bound to the same term or to different subterms of a recursive
term. Finally, sharing due to assignments is represented by the same-edges in S .

10.3 Region Points-to Analysis

The region points-to analysis computes a region model for a procedure and the
whole program by capturing the locations and the sharing among variables. All
the algorithms are modified to work with same-edges. Other than that they are
rather similar to the ones in Chapter 4. We give the complete algorithms here and
mark the notable additions for the ease of reading. To capture sharing now we use
two operations: unify and same edge. The modified operation unify , Algorithm 8,
is extended to merge also the same-edges. Unifying two nodes n and m implies
that the variables in vars(n) and those in vars(m) are stored in the same region.
To ensure that there is only one out-edge with a specific label from one node to
another the operation is again recursive, i.e., unifying two nodes may cause more
nodes to be unified.

The novelty here (compared to Chapter 4) is the recording of sharing by us-
ing the same edge operation that is defined by Algorithm 9. When we record a
same-edge between two nodes we also need to recursively record same-edges for
the corresponding nodes reached from them through corresponding edges. Recall
that by s(k, i, k′) we mean to reuse the region bound to by the region variable
represented by k for the region variable represented by k′ at the program point i.

10.3.1 Intraprocedural Analysis of a Procedure

The intraprocedural analysis initializes Gp and then captures the sharing created
by the explicit unifications. Its definition is in Algorithm 10. The function pp(l)
returns the program point associated to the literal l.

96 Region Reuse

Algorithm 8 unify(n, m)

Require: G(N,E ,S), n, m ∈ N .
Ensure: G(N,E ,S) with n representing the unified node.

N = N \ {m}
vars(n) = vars(n) ∪ vars(m)
for all (m, (f, i), k) ∈ E do

E = E \ {(m, (f, i), k)}
if (n, (f, i), k) 6∈ E then

E = E ∪ {(n, (f, i), k)}
end if

end for
for all (k, (f, i), m) ∈ E do

E = E \ {(k, (f, i), m)}
if (k, (f, i), n) 6∈ E then

E = E ∪ {(k, (f, i), n)}
end if

end for

% Merging the related same-edges.
for all s(m, i, k) ∈ S do

S = S \ {s(m, i, k)}
if s(n, i, k) 6∈ S then

S = S ∪ {s(n, i, k)}
end if

end for
for all s(k, i, m) ∈ S do

S = S \ {s(k, i, m)}
if s(k, i, n) 6∈ S then

S = S ∪ {s(k, i, n)}
end if

end for
for all l, l′ ∈ N do

if (n, (g, j), l) ∈ E ∧ (n, (g, j), l′) ∈ E ∧ l 6= l′ then
unify(l, l′)

end if
end for

10.3 Region Points-to Analysis 97

Algorithm 9 same edge(n, m, i)

Require: G(N,E ,S), n, m ∈ N .
Ensure: G(N,E ,S) with same-edges between n and m and between any two corre-

sponding nodes reachable from them.
S = S ∪ {s(n, i, m)}
for all (n, (f, i), k) ∈ E ∧ (m, (f, i), k′) ∈ E do

if k 6= k′ ∧ s(k, i, k′) 6∈ S then
same edge(k, k′, i)

end if
end for

Algorithm 10 intraproc(p): intraprocedural analysis of a procedure p

Require: p is in superhomogeneous form.
Ensure: Sharing created by explicit unifications is represented in Gp.

Gp = (∅, ∅, ∅)
for all X ∈ p do

Gp = Gp ⊎ init rptg(X)
end for
for all unif ∈ p do

if unif ≡ (X := Y) then
% Recording same-edge at an assignment.
same edge(nY , nX , pp(unif))

else if unif ≡ (X => f(Y1, . . . , Yn) or X <= f(Y1, . . . , Yn)) then
for i = 1 to n do

unify(node(nX , (f, i)), nYi
)

end for
end if

end for

98 Region Reuse

Here the init rptg(X) function, which generates a region points-to graph for
X from the type-based region graph of the type of X , does one simple extra thing
compared to the one in Algorithm 2, namely it also initializes the set of same-
edges to empty. The intraprocedural analysis adds all the sharing created by the
unifications in the procedure to Gp. We ignore test unifications because they do
not create any sharing. For construction and deconstruction unifications we unify
the nodes corresponding with the sharing created by them. For an assignment we
say that at its program point the two variables are bound to the same term by
adding a same-edge from the node of the right-hand side variable to the node of
the left-hand side one. This leaves the possibility that in other execution paths
they are not necessarily bound to the same term, therefore they do not necessarily
have to be in the same region either.

10.3.2 Interprocedural Analysis

The interprocedural analysis, Algorithm 11, is almost the same as Algorithm 3. It
just builds the α functions and then integrates the relevant sharing information
from the region points-to graphs of the called procedures into Gp. Moreover,
Algorithm 11 has to export the same-edges by relying on the α function at the
call site. The program point of the same-edges is the program point of the call.

For a whole program, we can first do the intraprocedural analysis for every
procedure. Then given the fact that in the interprocedural analysis the analysis
information is only propagated from graphs of callees to those of callers, we can
do the interprocedural analysis for a program efficiently by decomposing the call-
dependency graph into a tree of strongly connected components, and analysing
the components in bottom-up order.

The result of the region points-to analysis for the example in Figure 10.1 has
been shown in Figure 10.4. In the graph for produce, that X and Xs are in
vars(R4) and that Y and Ys are in vars(R5) are due to the deconstruction at (3)
and the construction at (5), respectively. Analysing the recursive call at (4) records
α(R4) = R4 and α(R5) = R5 but makes no change to the shape of the graph.
In the graph for q, the two same-edges are due to the assignments at (2) and (4).
Processing the call to produce at (3) creates α(R4) = R1 and α(R5) = R2 .

10.4 Good Same-Edges

The same-edges in our new region points-to graphs indicate regions that are can-
didates for reuse. For a procedure q, we keep a same-edge s(R1 , i,R2) with the
intention that at the program point i we should reuse the region bound to by R1

for R2, i.e., we make R2 bound to the region currently bound to by R1 and R1 is
considered unbound after that. However, it is only safe to do that if R2 is not yet
bound before i, if R1 is not live after i, and if q is allowed to manipulate them.

10.4 Good Same-Edges 99

Algorithm 11 interproc(p): interprocedural analysis of a procedure p

Require: p is in superhomogeneous form.
Ensure: The sharing created by procedure calls is represented in Gp(Np,Ep,Sp).

repeat
for all call site in p, at the program point ip do

Assume that the call is q(Y1, . . . , Yn), with X1, . . . , Xn as corresponding for-
mal arguments, and that Gq is available.

% Build an α relation.

for k = 1 to n do
α(nXk

) = nYk

end for

% Ensure α is a function.

for all Xi, Xj do
if α(nXi

) = nYi
∧ α(nXj

) = nYj
∧ nXi

= nXj
∧ nYi

6= nYj
then

unify(nYi
, nYj

)
end if

end for

% Integrate sharing in Gq into Gp.

In the graph Gq , start from each nXi
, follow each edge once and apply the

rules P1 and P2 in Figure 4.2 when applicable.
for all s(nq , , mq) ∈ Sq do

if α(nq) = np ∧ α(mq) = mp ∧ np 6= mp then
% Exporting same-edge relation at this call site.
same edge(np, mp, ip)

end if
end for

end for
until There is neither change in Gp nor in any of the α functions.

100 Region Reuse

So to decide if the region reuse implied by a same-edge is safe or not we need the
liveness information of the involved region variables.

10.4.1 Region Liveness Information

In Section 5.2 we compute the region variables that are live before and after the
program points in a procedure. This can be considered the local liveness of the
region variables. Then in Section 5.3 we decide on the global liveness of the region
arguments of a procedure, which is expressed by the bornR, deadR, and outlivedR
sets. These computations are independent of same-edges therefore we still can use
the algorithms in Sections 5.2 and 5.3 to compute the region liveness information.

For our example in Figure 10.1, based on the region points-to graph in Fig-
ure 10.4, we can derive the region liveness information for produce as follows. The
local information is trivial in this example: in the first execution path 〈(1), (2)〉,
R4 is live before (1) and dead after that; R5 is not live before (2) and is life after
that. In the second execution path 〈(3), (4), (5)〉, R4 is live from before (3) to
before (4) and dead after that; R5 becomes live at (4) and stays live until the end.
Globally, produce is called in two calling contexts, We will look at how its bornR
and deadR sets are computed. Initially, bornR(produce) = {R5} because R5 is
reached from the output argument Y and deadR(produce) = {R4} because R4 is
reached from the input argument X. The first calling context is at (4) in produce,
where α(R4) = R4 and α(R5) = R5 . It should be straightforward to see that
R4, which is reached by X and Xs, is live before the call and is no longer live after
it. So it is safe that R4 ceases to be live in this call. For R5, which is reached
from Y and Ys, it is not yet live before (4) and is live after. So R5 can become
live in this call. The other calling context of produce is at (3) in q. Here we have
α(R4) = R1 and α(R5) = R2 . Again we can see that R1 is live before and not
live after (3), meaning that it can become dead in the call. R2 is not live before
and is live after (3) so it can become live in this call. Therefore finally, we have
bornR(produce) = {R5} and deadR(produce) = {R4}.

10.4.2 Safeness Conditions for Same-Edges

We define the safeness conditions for a same-edge s(R1 , i,R2) in terms of the
liveness information of the region variables as follows.

Definition 10.1 (Safeness conditions) A same-edge s(R1 , i,R2) in the region
points-to graph of a procedure q is good if the following conditions are all satisfied.

1. R1 ∈ LRbefore(i) \ LRafter (i),

2. R2 ∈ LRafter (i) \ LRbefore(i),

3. R1 ∈ deadR(q) ∪ localR(q),

10.4 Good Same-Edges 101

% Calling context 1. % Calling context 2.

q(N, X, Z) :- produce(X, Y) :- main(!IO) :- main(!IO) :-
(if ((1) X <= [1], (1) X <= [1],
(1) N > 0 (1) X => [], (2) q(2, X, Z), (2) q(2, X, Z),

then (2) Y <= [] (3) write(Z, !IO). (3) write(X, !IO),
(2) Z := X ; (4) write(Z, !IO).

else (3) X => [Xe | Xs],
(3) produce(X, Y), (4) produce(Xs, Ys),

(4) Z := Y (5) Y <= [Xe + 1 | Ys]
).).

Figure 10.5: The running example extended with calling contexts of q.

q(N, X@R1, Z@R3) :- produce(X@R4, Y@R5) :- main(!IO) :-

(if (create(R6),
(1) N > 0 (1) X => [], (1) X <= [1] in R6,
then remove(R4), (2) q(2, X@R6, Z@R7),

(2) Z@R3 :== X@R1, create(R5), (3) write(Z, !IO),
else (2) Y <= [] in R5 remove(R7).

(3) produce(X@R1, Y@R2), ;
(4) Z@R3 :== Y@R2, (3) X => [Xe | Xs],

). (4) produce(Xs@R4, Ys@R5),
(5) Y <= [Xe + 1 | Ys] in R5
).

Figure 10.6: Reuse region-annotated version for calling context 1.

4. R2 ∈ bornR(q) ∪ localR(q). 2

The first two conditions can be seen as the local liveness requirements, while the
global liveness requirements are in the last two. We call the same-edges that satisfy
the above conditions the good ones. Otherwise there is no point keeping them and
their regions can be unified after all.

In Figure 10.5 we extend the running example with two calling contexts for q
to show the effect of good and bad same-edges.

In the first calling context, X is no longer used after the call to q. So we have
deadR(q) = {R1}, bornR(q) = {R3}, and localR(q) = {R2} (the reader may want
to consult Figure 10.4 for the region variables). For produce, deadR(produce) =
{R4} and bornR(q) = {R5}. This program can be annotated as in Figure 10.6.
Its behaviour is that the region of X, namely R6, is removed in the call to q. This
is safe because X is no longer live after the call. R7 is bound either to the region
R6 or to a new region created by the call to produce in q depending on which
execution path is taken in q. But this does not matter because from outside of q
we can assume that R6 is dead and R7 becomes live. And we only need to reclaim
R7 afterwards.

102 Region Reuse

q(N, X@R1, Z@R3) :- produce(X@R4, Y@R5) :- main(!IO) :-

(if (create(R6),
(1) N > 0 (1) X => [], (1) X <= [1] in R6,
then create(R5), (2) q(0, X@R6, Z@R7),

(2) Z@R3 :== X@R1, (2) Y <= [] in R5 (3) write(X, !IO),
else ; remove(R6),

(3) produce(X@R1, Y@R2), (3) X => [Xe | Xs], (4) write(L, !IO),
(4) Z@R3 :== Y@R2, (4) produce(Xs@R4, Ys@R5), remove(R7).

). (5) Y <= [Xe + 1 | Ys] in R5
).

Figure 10.7: Wrong reuse region-annotated version for calling context 2.

q(N, X@R1, Z@R1) :- produce(X@R4, Y@R4) :- main(!IO) :-
(if (create(R6),

(1) N > 0 (1) X => [], (1) X <= [1] in R6,
then (2) Y <= [] in R4 (2) q(0, X@R6, Z@R6),

(2) Z := X, ; (3) write(X, !IO),

else (3) X => [Xe | Xs], (4) write(L, !IO),
(3) produce(X@R1, Y@R1), (4) produce(Xs@R4, Ys@R4), remove(R6).

(4) Z := Y (5) Y <= [Xe + 1 | Ys] in R4
).).

Figure 10.8: Region-annotated version with the eager approach (with main).

In the second calling context, because X is still live after the call to q, the call is
no longer allowed to remove R6. This means that R1 is eliminated from deadR(q)
(i.e., R1 is now in outlivedR(q)) and therefore R4 is excluded from deadR(produce).
The annotated version now is in Figure 10.7. In produce there is no remove(R4)

after (1) and in main remove(R6) is added after (4). If the program follows the
first execution path in q, R6 and R7 are bound to the same region. Therefore that
region will be wrongly removed twice in main. In general, we cannot guarantee
which execution path is taken at runtime. Therefore in this case it is not safe to
make use of the (bad) same-edges.

A safe way to handle this situation is to force X, Y, and Z in q into the same
region as in the eager approach in Chapter 4. The annotated program is in Fig-
ure 10.8. (The annotated code for q and produce has been shown in Figure 10.2,
we repeat it here with the annotated version of main for the ease of reading.) If
we used the eager version for the first calling context, we would miss the chance
to reuse the memory of X whenever the second execution path of q is taken.

So after the region liveness analysis we will re-examine the region points-to
graphs to eliminate the bad same-edges using the safeness conditions of Defini-
tion 10.1. If some same-edges are excluded from the region points-to graph of a
procedure q, it means that the region points-to graph of q changes. The change
will affect the region points-to graphs of the callers of q and the α mappings at

10.5 Transformation 103

the sites where q is called. Therefore we need to re-run the interprocedural region
points-to analysis for the callers of q, i.e., all procedures in the same SCC as q and
the ones in the SCCs that depend on q’s SCC. We again can reach the fixpoint for
each SCC in bottom-up order. The live variable analysis does not need to be run
again. However, the derivation of live region variables at the program points in q

is based on its region points-to graph and will need to be done again. The change
of the local region liveness in q likely causes changes to the global region liveness
of the procedures it calls, i.e., all procedures in the same SCC as q and the ones
in the SCCs on which the SCC of q depends. So we also need to recompute the
bornR and deadR sets of them.

We repeat the above process until no more same-edge is removed. At that
time, all the remaining same-edges imply that reuses can safely happen. The
whole algorithm is specified in Algorithm 12 in which safe(se) checks whether the
same-edge se satisfies the safeness conditions or not. dep(q) computes the strongly
connected component containing q and also the components that depend on the
SCC of q. invert dep(q) computes the strongly connected component containing q

and also the components on which the SCC of q depends. local region liveness(q)
computes the sets of live region variables before and after program points in q

(Section 5.2). global region liveness(q) applies the analysis in Section 5.3 to q to
re-calculate the bornR, deadR, and outlivedR of the procedures that q invokes.

10.5 Transformation

A region-annotated program is finally generated by a program transformation of
the original program taking into account the information derived by the region
points-to analysis and the liveness analysis.

The transformations for adding extra arguments for region arguments, for an-
notating construction unifications with region variables, and for introducing the
create and remove instructions are exactly the same as presented in Chapter 6.

A procedure can safely manipulate the region variables in its bornR, deadR, or
localR. Ones in localR are local to the procedure. For the non-local ones in bornR
and deadR we are sure that the global context of the procedure does not interfere
with them, as the liveness and region aliasing have been taken into account when
computing bornR and deadR. Consider a region variable R that the procedure can
manipulate. In general a create(R) is inserted before the program point where
R becomes live, i.e., it is not live before but live after the point and the literal at
the point does not create it. For removal, there are two cases. If R becomes dead
because it is live before but not live after the point, we add remove(R) after the
point if the literal at the point does not remove R. If R becomes dead since it is
live after the point but is not live before the next point in an execution path, we
add remove(R) before the next point.

For our new analysis we need to introduce the region-annotated assignment.

104 Region Reuse

Algorithm 12 Eliminating bad same-edges

Require: Happen after region liveness analysis: all region points-to graphs and region
liveness information are available.

Ensure: All remaining same-edges are good.
repeat

for all procedure q: Gq = (, , Sq) do
for all se = s(k, i, k′) ∈ Sq do

if !safe(se) then
unify(k, k′)
mark that Gq has changed.

end if
end for

end for

% Recompute related region points-to graphs and α mappings
% of the callers of q.
for all q whose Gq has changed do

re interproc SCCs = dep(q)
for all SCC ∈ re interproc SCCs do

repeat
for all q′ ∈ SCC do

interproc(q′)
end for

until nothing changed
end for

end for

% Recompute local region liveness in q.
for all q whose Gq has changed do

local region liveness(q)
end for

% Recompute global region liveness of the procedures q calls.
for all q whose Gq has changed do

re global liveness SCCs = invert dep(q)
for all SCC ∈ re global liveness SCCs do

repeat
for all q′ ∈ SCC do

global region liveness(q′)
end for

until nothing changed
end for

end for
until No more same-edge is removed.

10.6 Discussion 105

q(N, X@R1, Z@R3) :- produce(X@R4, Y@R5) :- main(!IO) :-

(if (create(R6),
(1) N > 0 (1) X => [], (1) X <= [1] in R6,
then remove(R4), (2) q(2, X@R6, Z@R7),

(2) Z@R3 :== X@R1, create(R5), (3) write(X, !IO),
else (2) Y <= [] in R5 remove(R6),

(3) produce(X@R1, Y@R2), ; (4) write(L, !IO),
(4) q(N - 1, Y@R2, Z@R3) (3) X => [Xe | Xs], remove(R7).

). (4) produce(Xs@R4, Ys@R5),
(5) Y <= [Xe + 1 | Ys] in R5
).

Figure 10.9: No explicit “reuse” after procedure calls.

Because all the remaining same-edges are good ones, if the literal at the program
point i of the same-edge s(R1 , i,R2) is an assignment X := Y where X is in R2 and
Y is in R1, we just replace it with X@R2 :== Y@R1 at i. If the literal is a procedure
call it means that the reuse happens inside the call and we do not need to make
any change.

We can see the effect of same-edges at procedure calls when changing the code
of q by replacing the assignment at (4) with a recursive call as in Figure 10.9.
Nothing other than region arguments is added at (4).

10.6 Discussion

10.6.1 Preliminary Experimental Results

So far we have not implemented region reuse in the Mercury compiler yet. The
problem for which region reuse offers a solution is revealed in our study of the
memory behaviour of the two benchmarks, dna and life (Section 9.4). To study
the memory behaviour of these programs with region reuse we mimic their memory
behaviour as if region reuse had been used by changing their source. Recall that
in Section 10.1 we introduced region reuse to avoid copying terms at the moment
of an assignment unification. Therefore we modify the benchmarks by adding an
explicit copying at the place where our new approach would introduce a region
reuse assignment. After that we can use the existing RBMM system, in particular
the rbmm3 system in Chapter 9, to execute them. By doing so we can study
the effects of region reuse on memory consumption. Note that for the discussion
here, we manually introduce copying procedures that make the desired copies. The
existing region analysis (in rbmm3) takes into account the copying procedure and
then can decide whether the original and the copied ones can be kept apart or
not. For example, for a list we copy both the list skeleton and the elements, the
region analysis decides for the program as a whole whether the old and the new
skeletons as well as the old elements and the new elements are in the same regions

106 Region Reuse

or not. In summary, we can check whether region reuse can be done and whether
it is beneficial for life and dna (and any other program) by adding explicitly the
copying and by using the existing RBMM system. The profiling information about
memory consumption of these programs allows us to measure the effects of region
reuse.

For life, the region reuse-mimicking program is exactly the same as rlife, which
we already experimented with in Chapter 9 and studied specifically in Section 9.4.
The effect of region reuse is that the maximal number of words used is reduced by
77% to 1856 words.

Interestingly for dna, we also can achieve the same effect as in rdna with re-
gion reuse. We manually replace the assignments that caused the harmful region-
sharing in the existing RBMM system with calls to a copying predicate. This
region reuse-mimicking program then confirms that in a system with region reuse,
all these “harmful” assignments would be replaced by our region-annotated as-
signments. This would result in a significant reduction of nearly 90% in the size
of the largest region.

In terms of runtime performance, we would reasonably expect that region reuse
can only lead to speedups in comparison with copying versions. It is because, with
region reuse, the memory effect is the same but we normally have a smaller number
of regions and virtually no copying overhead. (We would have the overhead of
the extra assignments between related (region) variables in the region-annotated
assignments but it would be negligible.) So the execution times of rlife and rdna
in Figure 9.7 can be considered as the upper bound for life and dna, respectively,
in the RBMM system with region reuse.

Last but not least, we would not need to manually study the logic of programs
to rewrite them with copying to have better memory reuse, at least for the popular
class of programs we are studying here . This practice has long been experienced as
a nontrivial and tedious task. We experienced it ourselves in this research and the
efforts to ease this pain can be found in (Tofte, Birkedal, Elsman, and Hallenberg
2004) (Sections 4 and 5).

10.6.2 Future Work

Implementing the improvement presented in this chapter is part of future work.
We believe that the runtime support for regions in Chapters 7 and 8 is able to
support region reuse with little change. Other than implementing the regions
themselves and the region instructions, the runtime support for regions has two
tasks in supporting backtracking. First, it provides protection for regions that
are removed during forward execution if they are still needed when backtracking
happens, ensuring that these regions will only be reclaimed when they are not used
in any future computation. Second, it allows instant reclaiming of new regions
and new allocations into old regions at choice points. The essential elements
in the support are the time-stamping of the regions when they are created in

10.6 Discussion 107

% Original procedure. % Region-annotated version.

qsort(L, A, S) :- qsort(L@R1, A@R2, S@R3) :-

((

(1) L => [], (1) L => [],

(2) S := A (2) S@R3 :== A@R2

; ;

(3) L => [Le | Ls], (3) L => [Le | Ls],

(4) split(Le, Ls, L1, L2), (4) split(Le, Ls@R1, L1@R4, L2@R5),

(5) qsort(L2, A, S2), (5) qsort(L2@R5, A@R2, S2@R6),

(6) A1 <= [Le | S2], (6) A1 <= [Le | S2] in R6,

(7) qsort(L1, A1, S) (7) qsort(L1@R4, A1@R6, S@R3)

).).

Figure 10.10: A chance for optimization.

order to distinguish old and new regions and the estimation of the sets of regions
that are created, removed and allocated into by a goal. The region reuse affects
none of these because the time-stamp of a reused region is intact when the reuse
happens and because of the fact that the region is reused the created, removed,
and allocated region sets of any goals are not changed.

The class of programs that potentially benefit from this novel extension includes
state transition programs in which a sequence of states are computed iteratively
and typically we are only interested in the last state. In the set of benchmark
programs used in this thesis, there are two typical examples of this for which the
region reuse improvement should be beneficial, namely life and dna.

The attentive reader might get worried about procedures such as qsort in
Figure 10.10. In the approach in (Phan and Janssens 2007) all the variables
involved with the accumulating parameter and the result are put in the same
region. This is perfect because the accumulator is gradually built up to become
the final result. Our new approach seems to be spoiling this. First notice that A1
and S2 are in the same region R6 due to the construction. In the first execution
path we have a same-edge at (2) from the region R2 of A to the region R3 of S.
In the second execution path we have a same-edge at (5) from R2 to R6 and a
same-edge at (7) from R6 to R3. All same-edges are “safe”. The resulting region-
annotated program has a region-annotated assignment at (2). When we mimic the
region-annotated assignment by a copying of the list skeleton, we see that region
reuse can be done and that the maximal number of words used is the same as
with the existing RBMM system, thus optimal. However, this instruction is sheer
overhead. It would be removed by the following optimization step. For qsort in all
execution paths we have a same-edge path from the region R2 of A to the region R3

of S. Thus, we could put all the involved variables again in one region. Note that
the optimization condition does not hold for e.g., q in Figure 10.9. More programs

108 Region Reuse

will also have to be studied in order to know the relevance and the impact of this
optimization step.

10.7 Conclusion

In this chapter we have presented an improvement for the region analysis and
transformation in Chapters 4, 5, and 6 that results in better memory reuse for a
certain class of programs. By making the region points-to analysis path-sensitive
(in the sense that it distinguishes different local execution paths in a procedure)
we achieve a more precise region model of memory use. This information then is
verified against the liveness information to make sure that the resulting transfor-
mation is sound. We formulated the local and global liveness safeness conditions
for this purpose. In terms of runtime performance we believe that region reuse
can only lead to faster code.

Chapter 11

Related Work

It is not our intention to give a detailed overview of the research on RBMM in
general. When we started our research on region-based memory management in
the context of Mercury around the year 2004, the RBMM research for functional
programming was already quite developed. An in-depth review of the RBMM
research for functional programming can be found in (Tofte, Birkedal, Elsman,
and Hallenberg 2004). In this chapter, we only discuss the publications that are
important and related to our work.

Region model. The research on automated region-based memory management
for programming languages started with the work of Tofte and Talpin (Tofte and
Talpin 1997) for functional programming, in particular for a simplified call-by-
value lambda calculus. They divide program terms into regions using a technique
similar to unification-based type inference in which the types have been annotated
with region variables. The lifetimes of the regions are computed based on the
lexical scope of the expressions and the regions themselves are forced to operate
in a stack-like manner in the sense that the last region created is the first one
destroyed. While lexically-scoped regions and stack discipline seem natural to the
evaluation of lambda expressions and simplify the task of deciding region lifetime
they, in certain cases, give the regions lifetimes that are longer than needed, limit-
ing the chances of reusing memory and spoil “tail call optimization”. There have
been several subsequent refinements (Birkedal, Tofte, and Vejlstrup 1996; Aiken,
Fähndrich, and Levien 1995) and new developments (Henglein, Makholm, and Niss
2001) in the functional programming paradigm. Birkedal et al. present Storage
Mode Analysis (Birkedal, Tofte, and Vejlstrup 1996) that mitigates the restrictions
by resetting regions. However, programs are often required to be rewritten in an
non-intuitive way so that region resetting is possible. In (Aiken, Fähndrich, and
Levien 1995), the authors, with the observation that forcing the stack-like relation
on the lifetimes of regions is too strict, have decoupled region creation and removal

109

110 Related Work

so that regions can have arbitrarily overlapping lifetimes. More prominently in this
decoupling direction, an imperative sublanguage on regions is proposed in (Hen-
glein, Makholm, and Niss 2001). In this imperative model, regions are allowed not
only to have arbitrary lifetimes but also to change their bindings. A region also
contains a reference counter that can give this system more flexibility in control-
ling the region’s lifetime. The most complete functional programming system with
RBMM is the MLKit (Tofte, Birkedal, Elsman, Hallenberg, Olesen, and Sestoft
2006) in which storage is managed solely by RBMM and whose performance can
compete with state-of-the-art SML compilers.

Our static region analysis and transformation for the logic programming lan-
guage Mercury are inspired by the work in (Cherem and Rugina 2004), which
abandoned the lexical scope and stack discipline of regions, allowing the regions
to have shorter, arbitrarily-overlapped lifetimes. The analyses in (Cherem and
Rugina 2004) take into account the data flow in a Java program in order to deter-
mine the regions and their lifetimes. Therefore the analyses had to be redefined
for Mercury to deal with unification and a control flow that are fundamentally
different from object manipulation and the control flow in Java. We have also
exploited the type declarations in Mercury to achieve a finite representation of
the storage of (recursive) structures in terms of regions using type-based region
graphs and region points-to graphs (Chapter 3). Using some kind of graphs to
model storage is not new in the research about structures of the heap (Chase,
Wegman, and Zadeck 1990; Steensgaard 1996). Our graphs share many features
with annotated types in which each type constructor is annotated with a location
or a region (e.g., in (Baker 1990; Tofte and Talpin 1997)). In particular Baker
in (Baker 1990) pointed out that such annotated types can give information about
sharing, very similar to the concept of region-sharing in Chapter 3.

The liveness information derived in Chapter 5 allows interprocedural creation
of regions which was not handled in (Cherem and Rugina 2004). This can give finer
lifetimes to regions, which can result in better memory reuse in certain situations.
For example, for a region like R1 in p in Figure 6.3, the system in (Cherem and
Rugina 2004) will force R1 to be live throughout p. If we had replaced the literal
at (4) with a recursive call to p (such as p(A - 1, B)) all the temporary memory
allocated at (1) would have built up in R1.

RBMM in logic programming. The first application of RBMM to logic pro-
gramming was reported by Makholm in (Makholm 2000b) and (Makholm 2000a)
for Prolog. He realized the idea that backtracking can be handled completely
by runtime support, which can keep the region inference simple. However, the
Prolog system (mostly the intermediate code) used in this work is not standard.
This shortcoming was fixed in (Makholm and Sagonas 2002) where Makholm and
Sagonas presented extensions to the WAM to enable region-based memory man-
agement. The main differences between their work and ours are that Mercury
supports if-then-elses with conditions that can succeed more than once, and the

111

Mercury implementation generates specialized code for many situations that Pro-
log handles with a more general mechanism (e.g., Mercury has separate imple-
mentations for nondet and semidet disjunctions). This also means that we make
use of declarations of determinism in Mercury. The first difference required new
algorithms, while the second posed an engineering challenge in keeping overheads
down, since any given overhead would hurt Mercury more than Prolog due to
Mercury’s higher speed.

Region Reuse. Storage Mode Analysis presented in (Birkedal, Tofte, and Vejl-
strup 1996) targets the same class of programs as our region reuse optimization.
Being an extra phase after the region inference in (Tofte and Talpin 1997) that
puts all such states into the same region, Storage Mode Analysis then aims to
reset the region before each iteration if it is safe to do so. The decision is also
based on liveness information. However for Game of Life, this analysis requires
manually rewriting the program with a copying function so that the resetting is
possible (Tofte, Birkedal, Elsman, Hallenberg, Olesen, and Sestoft 2006; Henglein,
Makholm, and Niss 2001). In (Henglein, Makholm, and Niss 2001) the authors
develop an expressive region type system that can accept several region-annotated
versions for a program. Their region inference based on that type system also can
produce an annotated version with the same region behaviour for Game of Life
as our proposal with region reuse, without requiring rewriting. One interesting
open problem with their region type system is to have a strong region inference
that, among a number of accepted annotated programs, can choose to generate an
optimal one. We start from an analysis algorithm that performs well generally and
extend it to obtain better results in a popular pattern of code, which is well known
to be difficult for RBMM. By mimicking region reuse using copying procedures,
we showed that it can effectively reduce memory consumption. In (Makholm and
Sagonas 2002) the authors use an adapted version of the region inference system
in (Henglein, Makholm, and Niss 2001) for SML to Prolog in a WAM-based sys-
tem. However, for the benchmark similar to our dna a region-friendly version is
still needed to reduce memory consumption.

112 Related Work

Chapter 12

Conclusion and Future Work

12.1 Conclusion

We have made region-based memory management available as an alternative stor-
age management technique in Mercury, which is a strongly typed and moded logic
programming language.

We have developed a region analysis and a program transformation, which
are based on a region model in terms of region points-to graphs. From a typical
Mercury program our system automatically produces a region-annotated program
that is augmented with region constructs for memory management. We have
proven that our analysis and transformation algorithms are always terminating
and that memory accesses in the annotated programs are safe in the absence of
backtracking.

We implemented the runtime support for region-based memory management in
the Mercury compiler (MMC). Other than providing the implementation of regions
and region operations the runtime support also guarantees the safeness of memory
accesses when backtracking happens by protecting resurrected regions, and only
reclaims them when they are both forward and backward dead. Moreover, we can
support instant reclaiming in our region system, which in some programs can help
reusing memory effectively. The main challenge for the runtime support is to sup-
port backtracking correctly without incurring significant overhead in deterministic
programs. Our experiments show that using RBMM instead of the Boehm collec-
tor yields remarkable speedups, from near 10% to more than 65%, for two third
of the benchmark programs. More notably, several of those with large speedups
are actually difficult cases for RBMM. This indicates that the runtime support we
provided for backtracking incurs very modest overhead in general, contributing to
the overall better performance. The memory use results of the benchmarks are
also positive, in some programs we obtain optimal memory consumption. Over all

113

114 Conclusion and Future Work

the benchmarks the average memory saving is about 73%, while if excluding the
region-friendly programs, it is above 65%. We also need to take into account the
fact that we have not yet included many optimizations that have been studied for
RBMM, such as stack allocation of regions (Birkedal, Tofte, and Vejlstrup 1996;
Cherem and Rugina 2004), merging regions that are removed at the same points,
i.e., having the same lifetimes (Makholm 2000a).

Finally, we provided an in-depth study of the relation between sharing and
memory reuse in region-based systems (Section 9.4). The study reveals two sources
of imprecision from which region-based systems usually suffer. They are the han-
dling of some kind of assignments (even though in declarative languages we do
not explicitly have assignments) and of recursive data. We propose an automated
solution for the first problem in (Phan and Janssens 2009). The second problem
with recursive types is well-known in the research about type systems and infer-
ence and heap structures where we have to accept the loss of precision to have a
finite model. To improve memory reuse in this case we can combine RBMM with
other techniques, such as runtime or compile-time garbage collection. The copying
approach as demonstrated in Chapters 9 and 10 can be viewed as the mimicking
of runtime copying garbage collection. Combining RBMM with copying garbage
collection has been realized in the MLKit (Hallenberg, Elsman, and Tofte 2002).

12.2 Future Work

12.2.1 Support the Whole Mercury Language

The main limitation of our work is that currently, the program analysis underlying
our system supports only a subset of Mercury and does not support higher-order
code, foreign language code and multi-module programs. These extensions to the
analysis should not require any changes to the runtime system we have presented
in this thesis. Being able to work with a larger subset of Mercury will allow us to
evaluate RBMM in bigger and more realistic programs.

Multi-Module Programs

A module system is a vital feature of a programming language as it facilitates the
development of large software applications. It offers several benefits, such as team
work where programmers can work independently on their modules, software reuse
by the use of library modules, less effort to maintain source code, just to name a
few.

A standard Mercury program uses modules and also some library modules from
a rich set provided by the language implementation. Therefore to have practical
use for Mercury, analysis and optimization techniques must work with modules.

The region analysis and transformation as we have described in this thesis are

12.2 Future Work 115

designed for monolithic Mercury programs, i.e., those written in just one module
in one file. In this section, we look at the possibilities of adapting them to support
modular programs.

There has been research on modular program analysis and optimization (Codish,
Debray, and Giacobazzi 1993; Vanhoof and Bruynooghe 2000; Puebla, Correas,
Hermenegildo, Bueno, de la Banda, Marriott, and Stuckey 2004). The consid-
erations for design and implementation such modular techniques were described
in (Puebla and Hermenegildo 2000) in which the authors discussed different sce-
narios for modular analysis and optimization when programs are decomposed into
modules. A generic modular analysis framework has been proposed in (Puebla,
Correas, Hermenegildo, Bueno, de la Banda, Marriott, and Stuckey 2004) for ab-
stract interpretation. The framework provides the machinery for context-sensitive
program analysis. We think that it can also be used for our region analyses in this
thesis. However, here we will not try to adapt our analyses following this frame-
work. Instead we would like to look at the characteristics of the specific analyses
in our RBMM system to study what needs to be done to make them modular.

We consider the scenario where our region analysis and transformation can
access the source code of all the modules in a program. We expect that one module
is analyzed at a time and it can also be analyzed more than once if needed. We
will discuss the handling of library modules later.

Region points-to analysis. We will sketch how we can adapt the region points-
to analysis to work with modules by exploiting its characteristics.

The first observation is that the intraprocedural region points-to analysis can
be applied to a procedure independently because it only analyzes (specialized)
unifications. Therefore we can do intraprocedural analysis for all the modules.

The second characteristic of the region points-to analysis is that the analysis
information in the interprocedural analysis only propagates from a callee to its
caller. If there is no mutually recursive calls among modules (i.e., if no circu-
lar dependencies among modules exist), we can do the interprocedural analysis
bottom-up in the dependency graph of the modules. Each leaf module, namely
one does not invoke procedures of other modules, can be analyzed in the way we
analyze the whole program in this thesis. That is, we divide the call dependency
graph of the procedures in the leaf module into strongly connected components
then analyze each component until a fixpoint is reached. We have already shown
that such analysis is terminating.

Then when a non-leaf module (i.e., a module that depends on other modules)
is analyzed the analysis information of all the procedures it calls, which do not
belong to the module being analyzed, is already available for use. In this situation,
each module needs to be analyzed just once and in the bottom-up order in the
dependency graph of modules.

If we admit circular dependencies, i.e., there are mutually recursive calls among
modules, then we may want to decompose the dependency graph of the modules

116 Conclusion and Future Work

into strongly connected components. For each component of modules, we need to
reach a fixpoint for all the modules. If we assume to have a call dependency graph
of all the procedures in these modules then the interprocedural analysis can again
be applied to each strongly connected component of this graph.

For library modules (or predefined modules), we can see that procedures in
library modules will normally be invoked in programs that use the modules. In
other words, they are callees and therefore, the information in their region points-to
graphs will only be propagated to programs that use them. Their region points-to
graphs will certainly not be invalidated due to the region analysis of the programs.
Hence, we can do region points-to analysis for all the library modules in advance.
The resulting region points-to graphs can be saved and used later on when ana-
lyzing the programs that invoke library procedures. This will require saving and
re-reading analysis information (in this case region points-to graphs) somehow but
should be feasible to do.

Region liveness information. After having the region points-to graph of a pro-
cedure, the local region liveness information of the procedure (i.e., region variables
that are live before and after program points) depends only on its source code.
So we can compute this information for each procedure separately. This local re-
gion liveness analysis has been described in Section 5.2 and can be run for each
procedure in each module without changes.

The global region liveness information of a procedure, the liveness of its region
arguments, depends on its calling contexts. With the assumption that we have
the source code of all modules, we can analyze all the call sites of the procedure.
Hence, it should be straightforward to adapt this to work with modules.

Handling global region liveness for procedures in library modules poses a bigger
problem because we normally cannot know in advance the contexts in which they
will be called. One simple and naive way to handle this is to compute and store
the global region liveness for the most pessimistic and the most optimistic cases.
The most pessimistic case means that all region arguments of a procedure are
considered outliving any calls to it. That means output region arguments are
created somewhere before the call and input ones are removed somewhere after
the call. This is always safe but at the same time can lead to inefficient memory
reuse because regions may be given longer lifetimes than they should be. The most
optimistic case means that all region variables in the initial deadR set are assumed
becoming dead, all in the initial bornR set becoming live in the call, and there is
no alias among them. This will lead to the generation of two specialized versions
for a library procedure. The most pessimistic one is always safe to use while the
most optimistic one can only be used if the assumptions are satisfied by a calling
context.

We conjecture that only experiments can give us more insights on whether the
above naive approach is good enough. A better but more complicated way would
be to figure out which specialized versions, other than the most pessimistic one, are

12.2 Future Work 117

worth being generated. There are several options to do this. Either we allow the
library module developers to specify them or we can use deep profiling information
(i.e., at the level of calls) on the usage of a library procedure for guidance.

Other features

Two other popular features of Mercury are higher-order programming and the
interface to foreign code.

A higher-order procedure in Mercury is represented by a higher-order term
that is a pointer to a memory block whose first two fields are used to store the
number of arguments and the address of the involved procedure. The other fields
in the block are for the arguments themselves. So it is possible to treat a higher-
order term like a normal data structure. That means we use one region to store
the memory block, the number of arguments and the address of procedure are
stored right in this region, i.e., do not require regions. Each argument then may
be stored in its own region depending on its type. The region points-to graph of
the procedure in the higher-order term can also be produced in the normal way.

It seems that the liveness analysis of variables having higher-order types and
their region variables can be the same as that for the program variables we have
been dealing with. At some point the higher-order term will be called, which
basically means that its procedure is called. These calling contexts will influence
what the procedure can do to its nonlocal region variables, i.e., whether any non-
local region variables can become live or become dead inside the procedure or not.
However, in the worst case we just end up at the most pessimistic but always
safe situation where the procedure does not create or remove any nonlocal region
variables, leaving this task to the calling contexts.

Interface to foreign code refers to procedures in Mercury that are written in a
different programming language, such as C. Several library procedures have been
implemented in this way. We probably can just ignore these procedures and let
the foreign code manage its memory. For a Mercury variable that refers to the
memory that is allocated by the foreign code we still assign a region for it, but the
allocation by the foreign code actually will not happen in the region. This region
can still safely be removed as decided by our region analysis when it is no longer
referred to.

12.2.2 Combining with Compile-Time Garbage Collection

In Section 9.4, we pointed out that RBMM does not reuse memory efficiently in
programs where recursive structures are updated, such as in isort and bsolver.
In such situations the integration of RBMM with compile-time garbage collection
(CTGC), which provides in-place updating, can be useful. In this formulation, the
dead memory cells in the long-lived region can be reused for the new allocations
into it.

118 Conclusion and Future Work

For Mercury, CTGC has been reported in (Mazur, Janssens, and Bruynooghe
2000; Mazur, Ross, Janssens, and Bruynooghe 2001; Mazur 2004). So the challenge
would be to combine in a correct way the two approaches that differ at the level
of granularity. RBMM works at the level of regions, i.e., all memory allocated at
an allocation site normally goes into one region, while CTGC tracks every single
allocation. Another major difference of the two approaches is that the CTGC
system in (Mazur 2004) takes into account backward execution when computing
liveness information, whereas our region liveness analysis (Chapter 5) only deals
with forward execution.

There are also situations in which RBMM can improve the performance of
CTGC. In CTGC, when there is a dead cell in a procedure but locally no new
memory needs to be allocated or the size of the dead cell is smaller than that
of the new cell that is going to be allocated (e.g., the motivational example in
Section 1.2), the dead cell is not reused and therefore it is potential a memory
leak. In (Mazur 2004) the author uses a global cache to keep track of such dead-
but-not-locally-reused cells for future allocations. It was reported in (Mazur 2004)
that using the global cache can reduce memory footprint but damages runtime
performance at the same time. The incurred overhead can be the maintenance
cost of the cache itself. The cost of each new allocation is also increased for having
to search for a matched cell in the cache. The operation of the cache may also
interfere with the runtime garbage collection. Combining with RBMM we can
hope that such cells are allocated into separate regions that can be released in
time.

We suggest a possible direction for combining the reuse analyses in CTGC
in (Mazur 2004) and the region analyses in this thesis. The ultimate decision
resulting from the analyses in (Mazur 2004) is that, locally inside a procedure, the
memory cell referred to by a procedure variable is reused for another procedure
variable. If CTGC decides so, in our region points-to analysis we can put these two
variables into the same region. In the split procedure in the quicksort example in
Figure 2.2, CTGC may decide that the memory cell referred to by L is dead after
the deconstruction at (4) and will be reused for either L1 or L2. Influenced by this
decision from CTGC, in our region points-to analysis we then can say that these
three variables should be in the same region. This results in in-place updating
inside a long live region, which should give us equally good memory reuse and
probably better runtime performance because there is less overhead of handling
regions.

12.2.3 Backward Region Liveness Analysis

In this thesis we chose to support backtracking by runtime support. This decision
was based on several factors. First, we have evidence that it can be done (Makholm
2000a; Makholm and Sagonas 2002). Second, from the experience in (Mazur 2004)
we know that taking into account backward execution can make program analysis

12.2 Future Work 119

p(...) :- q(..., R, ...) :-

..., (

create(R), ...,

..., (*) remove(R),

q(..., R, ...), ...

..., ;

...,

remove(R),

...

).

(a) Case 1.

p(...) :- q(...) :-

..., (

create(R), ...

..., ;

q(...), ...

...,).

(*) remove(R),

...

(b) Case 2.

Figure 12.1: Backward liveness of region variables.

much more complicated. Finally, we would certainly need more insights on the
interaction between regions and backtracking at runtime before trying to handle
it at compile-time.

So one direction for future work would be to consider backward liveness in
the region liveness analysis. Consider two procedures p and q as in Figure 12.1
in which q contains an explicit disjunction with two disjuncts. Assume that the
region R becomes live in p.

In the first case assume also that R is forward dead in q. When we only take into
account forward liveness, as in this thesis, a remove(R) instruction is added to each
disjunct. The one at (*) is executed but does not do anything because the region
is disj-protected. If we also consider backward liveness, we can see that at (*) R is
still backward live so we should not add the remove instruction at (*) anymore.
This optimization will certainly result in speedup. We think that this optimization
can be either integrated directly into the analysis and transformation algorithms
or implemented as a “post-processing” step on the region-annotated programs.

In the second case assume that R is live through q or does not relate to q at
all. There is a point, e.g., (*), where R is forward dead. However, we will not be
able to find out a point where R is both forward and backward dead. So in this
case the runtime support is still needed to reclaim R.

This shows that such an approach that also considers backward liveness of
region variables can reduce the runtime overhead of supporting backtracking but
the runtime support as we provided in this thesis may still be necessary. It would
be interesting to compare the effectiveness and complexity of this approach to
protecting backward live regions in this thesis.

120 Conclusion and Future Work

12.2.4 Further Optimizations

Region reuse. In Chapter 10 we propose a region reuse improvement, which is
very interesting, but has not been implemented yet. Its implementation should
be included in order to study whether runtime performance can also get improved
when memory use is more efficient or not.

Region merging. We often claim that we would like to put terms having the
same lifetimes into the same regions so that they can be reclaimed all at once when
their lives end. So when our transformation decides for example that two regions
are removed at the same point, i.e., their lives end at the same point, we should
“merge” them. Doing so will reduce the number of regions that a program has to
handle. In our experiments we have evidence that handling too many regions can
damage runtime performance therefore merging regions that are dead at the same
time seems to be a good idea. This practice has been mentioned in (Makholm
2000a) but the author did not report any related experimental result in the work.

Stack allocations. It has been reported that allocating finite regions, i.e., ones
whose size are known at compile-time, on the stack can lead to speedup (Birkedal,
Tofte, and Vejlstrup 1996). In our region analysis, for a procedure we already
detect local regions whose scopes are the same as that of the procedure. We can
also try to determine their sizes and then allocate those with finite sizes on the
stack. In (Birkedal, Tofte, and Vejlstrup 1996) the finite regions are ones that
are allocated into exactly one time. Basically they are regions that contain just
one memory cell. The regions containing higher-order terms, for example, should
often be finite because they typically contain only one closure. There are cases
where this is not true. For examples, programs may build lists of closures, but we
conjecture that such situations are not very popular.

Appendix A

Using the region-based

systems

This appendix describes the installation and usage of the region-based systems.
The systems are available as part of the Release of the Day of the Mercury com-
piler, which can be downloaded at this address:
http://www.cs.mu.oz.au/research/mercury/download/rotd.html.

Installation

During the description we assume that the compiler will be installed on a ma-
chine running Linux with a compatible GNU C compiler gcc and GNU make as
instructed on the above site. In this thesis we used gcc version 3.3.5 and make

version 3.81.

1. Download and decompress the compiler package into a folder.

You should get used to the installation process of the Mercury compiler,
which is explained in the INSTALL CVS file that comes inside the package.

2. Create a file named Mmake.params, add this text GRADE=asm fast.gc.rbmm

and save it. If the file exists, just edit it and make sure the string is there.
This is to ensure that the Mercury compiler that we are compiling can pro-
duce the region-annotated programs.

3. At the command prompt, execute the following command:

./configure --prefix=path --enable-libgrades=asm_fast.gc.rbmm,

asm_fast.gc.rbmmd,asm_fast.gc.rbmmp,asm_fast.gc.rbmmdp

121

122 Using the region-based systems

in which path is the path to the folder where the compiler will be installed.

4. Follow the next two steps after ./configure as written in the INSTALL CVS

file:

mmake depend

mmake

After this step the Mercury compiler has been produced and can be used.
You can check this by looking for the executable mercury compile in the
subfolder compiler.

Now if we want to bootcheck that compiler we can follow the last two steps.
Otherwise we can just execute:

make install

After this the Mercury compiler and libraries are installed in the folder specified
in path.

Usage

After making sure that your system knows about the installed compiler (normally
by exporting path to the PATH environment variable), we can use the compiler as
follows, e.g., for compiling the program nrev in the file nrev.m.

1. To produce the executable nrev, which uses region-based memory manage-
ment:

mmc --grade=asm_fast.gc.rbmm --region-analysis nrev.m

2. To also write out the intermediate program with region annotations (i.e.,
one obtained after the region analysis and transformation) in the file whose
name contains 240.

mmc --grade=asm_fast.gc.rbmm --region-analysis --dump-hlds=240 nrev.m

3. To get profiling information, like in Table 9.4, add the call to
print rbmm profiling info(!IO) to the main procedure, then:

mmc --grade=asm_fast.gc.rbmmp --region-analysis nrev.m

This will produce the executable nrev that can report on profiling informa-
tion about regions after it finishes.

123

4. To print out debugging information while running:

mmc --grade=asm_fast.gc.rbmmd --region-analysis nrev.m

The grade asm fast.gc.rbmmdp is the combination of both debugging and
profiling purposes.

5. By defaults the runtime system in the region-based system is function calls.
To use the macros system we need to provide one extra flag, -DMR RBMM USE MACROS,
such as:

mmc --grade=asm_fast.gc.rbmm --region-analysis --cflags -DMR_R

BMM_USE_MACROS nrev.m

124 Using the region-based systems

Bibliography

Aiken, A., Fähndrich, M., and Levien, R. 1995. Better static memory manage-
ment: Improving region-based analysis of higher-order languages. In Proceedings
of the ACM SIGPLAN 1995 Conference on Programming Language Design and
Implementation. ACM Press, 174–185.

Aı̈t-Kaci, H. 1999. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT
Press.

Aspinall, D., Hofmann, M., and Konečný, M. 2008. A type system with usage
aspects. The Journal of Functional Programming 18(2), 141–178.

Baker, H. G. 1990. Unify and conquer. In LFP ’90: Proceedings of the 1990 ACM
conference on LISP and functional programming. ACM, New York, NY, USA,
218–226.

Birkedal, L., Tofte, M., and Vejlstrup, M. 1996. From region inference to
von Neumann machines via region representation inference. In Proceedings of
the 23rd ACM SIGPLAN Symposium on Principles of Programming Languages.
ACM Press, 171–183.

Boehm, H. and Weiser, M. 1988. Garbage collection in an uncooperative envi-
ronment. Software – Practice and Experience 18, 807–820.

Chase, D. R., Wegman, M., and Zadeck, F. K. 1990. Analysis of pointers and
structures. In PLDI ’90: Proceedings of the ACM SIGPLAN 1990 conference
on Programming language design and implementation. ACM, New York, NY,
USA, 296–310.

Cherem, S. and Rugina, R. 2004. Region analysis and transformation for Java
programs. In Proceedings of the 4th International Symposium on Memory Man-
agement. ACM Press., 85–96.

Cherem, S. and Rugina, R. 2006. Compile-time deallocation of individual ob-
jects. In ISMM ’06: Proceedings of the 5th international symposium on Memory
management. ACM, New York, NY, USA, 138–149.

Chin, W., Craciun, F., Qin, S., and Rinard, M. 2004. Region inference for
an object-oriented language. In PLDI ’04: Proceedings of the ACM SIGPLAN

125

126 BIBLIOGRAPHY

2004 conference on Programming language design and implementation. ACM,
New York, NY, USA, 243–254.

Codish, M., Debray, S., and Giacobazzi, R. 1993. Compositional analysis of
modular logic programs. In In Proc. Twentieth Annual ACM Symp. on Princi-
ples of Programming Languages. ACM Press, 451–464.

Gay, D. and Aiken, A. 1998. Memory management with explicit regions. In
SIGPLAN Conference on Programming Language Design and Implementation.
ACM Press., 313–323.

Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., and Cheney,

J. 2002. Region-based memory management in Cyclone. In Proceedings of the
ACM Conference on Programming Language Design and Implementation. ACM
Press., 282–293.

Guyer, S. Z., McKinley, K. S., and Frampton, D. 2006. Free-me: a static
analysis for automatic individual object reclamation. In PLDI ’06: Proceedings
of the 2006 ACM SIGPLAN conference on Programming language design and
implementation. ACM, New York, NY, USA, 364–375.

Hallenberg, N., Elsman, M., and Tofte, M. 2002. Combining region inference
and garbage collection. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and implementation. ACM, New
York, NY, USA, 141–152.

Henglein, F., Makholm, H., and Niss, H. 2001. A direct approach to control-
flow sensitive region-based memory management. In Principles and Practice of
Declarative Programming. ACM Press., 175–186.

Hudak, P. and Bloss, A. 1985. The aggregate update problem in functional
programming systems. In POPL ’85: Proceedings of the 12th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. ACM, New
York, NY, USA, 300–314.

Jones, S. B. and Le Métayer, D. 1989. Compile-time garbage collection by
sharing analysis. In FPCA ’89: Proceedings of the fourth international confer-
ence on Functional programming languages and computer architecture. ACM,
New York, NY, USA, 54–74.

Makholm, H. 2000a. A region-based memory manager for Prolog. In Proceedings
of the 2nd International Symposium on Memory Management. ACM Press.,
25–34.

Makholm, H. 2000b. Region-based memory management in Prolog. M.S. thesis,
University of Copenhagen.

Makholm, H. and Sagonas, K. 2002. On enabling the WAM with region sup-
port. In Proceedings of the 18th International Conference on Logic Program-
ming. Springer Verlag.

BIBLIOGRAPHY 127

Mazur, N. 2004. Compile-time garbage collection for the declarative language
Mercury. Ph.D. thesis, Department of Computer Science, Katholieke Univer-
siteit Leuven.

Mazur, N., Janssens, G., and Bruynooghe, M. 2000. A module based analysis
for memory reuse in Mercury. In Proceedings of Computational Logic. Lecture
Notes in Artificial Intelligence, vol. 1861. Springer-Verlag, 1255–1269.

Mazur, N., Ross, P., Janssens, G., and Bruynooghe, M. 2001. Practical
aspects for a working compile time garbage collection system for Mercury. In
Proceedings of the 17th International Conference on Logic Programming. Lec-
ture Notes in Computer Science, vol. 2237. Springer, 105–119.

McCarthy, J. 1960. Recursive functions of symbolic expressions and their com-
putation by machine, part I. Commun. ACM 3, 4, 184–195.

Mercury. 2009. The Mercury programming language reference.
http://www.cs.mu.oz.au/mercury/information/doc-latest/mercury ref.

Nielson, F., Nielson, H. R., and Hankin, C. 1999. The Principles of Program
Analysis. Springer.

Phan, Q. and Janssens, G. 2007. Static region analysis for Mercury. In Pro-
ceedings of the 23rd International Conference on Logic Programming. Springer,
317–332.

Phan, Q. and Janssens, G. 2009. Path-sensitive region analysis for Mercury
programs. In Proceedings of the 11th International ACM SIGPLAN Symposium
on Principles and Practice of Declarative Programming. ACM Press.

Phan, Q., Somogyi, Z., and Janssens, G. 2008. Runtime support for region-
based memory management in Mercury. In Proceedings of the 7th International
Symposium on Memory Management. ACM Press, 61–70.

Puebla, G., Correas, J., Hermenegildo, M. V., Bueno, F., de la Banda,

M. G., Marriott, K., and Stuckey, P. J. 2004. A generic framework for
context-sensitive analysis of modular programs. In Program Development in
Computational Logic, A Decade of Research Advances in Logic-Based Program
Development, number 3049 in LNCS. Springer-Verlag, 234–261.

Puebla, G. and Hermenegildo, M. 2000. Some issues in analysis and specializa-
tion of modular ciao-prolog programs. In In Special Issue on Optimization and
Implementation of Declarative Programming Languages, volume 30 of Electronic
Notes in Theoretical Computer Science. Elsevier - North.

Sastry, A. V. S., Clinger, W., and Ariola, Z. 1993. Order-of-evaluation anal-
ysis for destructive updates in strict functional languages with flat aggregates. In
FPCA ’93: Proceedings of the conference on Functional programming languages
and computer architecture. ACM, New York, NY, USA, 266–275.

128 BIBLIOGRAPHY

Somogyi, Z., Henderson, F., and Conway, T. 1996. The execution algorithm
of Mercury, an efficient purely declarative logic programming language. The
Journal of Logic Programming 29(1-3), 17–64.

Steensgaard, B. 1996. Points-to analysis in almost linear time. In Proceedings of
the 23rd ACM SIGPLAN Symposium on Principles of Programming Languages.
ACM Press, 32–41.

Tofte, M., Birkedal, L., Elsman, M., and Hallenberg, N. 2004. A ret-
rospective on region-based memory management. Higher-Order and Symbolic
Computation 17, 245–265.

Tofte, M., Birkedal, L., Elsman, M., Hallenberg, N., Olesen,

T., and Sestoft, P. 2006. Programming with Regions in the MLKit.
http://www.it.edu/research/mlkit/dist/mlkit-4.3.0.pdf.

Tofte, M. and Talpin, J.-P. 1997. Region-based memory management. Infor-
mation and Computation. 132(2), 109–176.

Vanhoof, W. and Bruynooghe, M. 2000. Towards modular binding-time anal-
ysis for first-order Mercury. In In Special Issue on Optimization and Implemen-
tation of Declarative Programming Languages, volume 30 of Electronic Notes in
Theoretical Computer Science. Elsevier - North.

Wilson, P. R. 1995. Uniprocessor garbage collection techniques.

Wilson, P. R., Johnstone, M. S., Neely, M., and Boles, D. 1995. Dynamic
storage allocation: A survey and critical review. In IWMM ’95: Proceedings of
the International Workshop on Memory Management. Springer-Verlag, London,
UK, 1–116.

INDEX 129

Index

quicksort, 12
annotated, 16

allocated regions in procedure, 32
α mapping, 25
analysis, 15
assignment unification, 14, 20, 91, 92,

94
atom, 11, 13

backtracking, 3, 6, 59
support, 3

backward
execution, 15, 59, 118
liveness, 15, 59, 119

benchmark programs, 78
body, 11
Boehm garbage collector, 78, 82, 84,

85

call, 13
clause, 11
commit, 15, 59

failure point, 72
commit frame, 73
compilation time, 79
compile-time, 2
compile-time garbage collection, 2, 117
conjunction, 11, 13
construction unification, 14, 20, 32,

52, 93
contributions, 8

deconstruction unification, 14, 20, 94

determinism, 8, 12
det, 12
multi, 12, 63
nondet, 12, 63
semidet, 12, 66

disj frame, 64
disj-protecting, 65
disjunction, 11, 13, 59

edge
region points-to graph, 20
type-based graph, 19

execution path, 35, 91
existential quantification, 15

commit, 15
experimental systems, 77

finite regions, 120
forward

execution, 15
liveness, 15

functional programming, 7
functions, 12

garbage, 2, 6
collection, 2
collector, 2

goal, 11
good same-edge, 101

heap
cell, 6
memory, 17

heap system, 78–82, 84

130 INDEX

higher-order programming, 13

if-then-else, 11, 59
condition, 14, 67

in-memory representation, 4
in-place updating, 2, 6, 117
instant reclaiming, 61
instantly-dead variables, 47
interprocedural analysis, 25

example, 27
ite frame, 69
ite-protecting, 69

keeping apart regions, 92

latency, 7
library, 13, 116
lifetime, 3

region, 3, 6–8, 15, 38, 41, 55, 59,
109

lifetime of region variables, 35
literal, 11, 13
live analysis, 103
live region variable, 35, 36

analysis, 37
live variable, 36
liveness

global, 35, 37, 100
local, 35, 100

liveness analysis
region, 8

locality, 2, 7, 85
logic programming, 3

language, 3
languages, 7

manual memory management, 1
memory allocation, 1
memory cell, 4
memory leak, 1, 88, 118
memory location, 17
memory management, 1
memory reuse, 1, 37

memory use
embedded frames, 86
heap system, 82
region-based systems, 81

memory word, 4, 17
Mercury, 3, 11

language reference, 13
mode, 8

input, 12
output, 12

modular programs, 115
modular region liveness analysis, 116
modular region points-to analysis, 115
module system, 13, 114
monolithic programs, 114

negation, 14
node

region points-to graph, 20
type-based graph, 19

nondeterministic, 3

object file size, 80
overhead, 3

pointer, 5
tagged pointer, 17

predicates, 11
principal functor, 17, 19
procedure, 12
program

analysis, 3, 6
program point, 35
program transformation, 8, 15, 103
Prolog, 7
proof

region points-to graph, 29
safeness of region-annotated pro-

grams, 49
protect backward live regions, 60

RBMM, 3, 7
RBMM advantages, 7

INDEX 131

rbmm1, 77, 79, 80, 85, 87
rbmm2, 77, 80, 81, 85, 87
rbmm3, 77, 80, 81, 84–87, 90, 105
region, 3, 35

data structure, 56
implementation, 56
new, 61
old, 61
sequence number, 61

region alias, 39, 103
region analysis, 3
region annotated program, 15
region argument, 15, 103

actual, 44
formal, 44

region header, 56, 61, 69, 71, 73, 74
region inference, 3
region instruction

create, 15, 44, 103
remove, 15, 44, 103
creation, 44
insertion algorithm, 48
removal, 45

region list, 61
region liveness analysis, 15, 35

backward, 118
goal, 35

region merging, 119
region modelling, 17

type-based, 19
region operations, 6

implementation, 56
region page, 56, 77
region points-to

analysis, 15, 23, 103
eager approach, 92
interprocedural, 25
intraprocedural, 23

graph, 20
region reuse, 91, 93, 98, 119
region size record, 56, 62
region variable, 15, 19, 35, 103

non-local, 103
region-annotated assignment, 93, 105
region-annotated program, 103
region-based memory management, 3
region-sharing, 21, 25, 28, 29, 106

example, 21
rules

interprocedural analysis, 26
region liveness, 39
transformation, 44

runtime, 2
support, 6, 15

runtime garbage collection, 2
runtime performance, 77, 84, 106
runtime support

commit, 72
disjunction, 63
if-then-else, 67

nondet condition, 70
purposes, 15
semidet disjunction, 67

runtime support in functions, 77
runtime support in macros, 77

same-edge, 93, 94, 98
safeness conditions, 100, 102

sharing, 20
modelling, 94
representation, 20, 94

singleton variables, 47
stack allocation, 120
storage

unit, 4
superhomogeneous form, 13
support higher-order programming, 117

temporary data, 3
term, 4, 17

representation, 17
storage

region, 18
transformation, 15
type, 8, 12

132 INDEX

declaration, 12
type-based region graph, 19
typed-based region graph

recursive type, 19

unification, 11, 13
unify operation, 23

void variables, 47

WAM, 7

LIST OF PUBLICATIONS 133

List of Publications

Contributions at international conferences

Quan Phan and Gerda Janssens. Path-sensitive region analysis for Mercury.
The International Conference on Principles and Practice of Declarative Program-
ming (PPDP 2009), Coimbra, Portugal, 1–9.

Quan Phan, Zoltan Somogyi and Gerda Janssens. Runtime support for
region-based memory management in Mercury. The International Symposium on
Memory Management (ISMM 2008), Tucson, AZ, USA, 61–70.

Quan Phan and Gerda Janssens. Static Region Analysis for Mercury. The
23rd International Conference on Logic Programming (ICLP 2007), Porto, Portu-
gal, 317–332.

Quan Phan. Static Memory Management for Logic Programming Languages.
The 22nd International Conference on Logic Programming, Doctoral Consortium
(ICLP 2006), Seattle, WA, USA, 465–466.

Quan Phan and Gerda Janssens. Towards Region-Based Memory Manage-
ment for Mercury Programs (Abstract). The 22nd International Conference on
Logic Programming (ICLP 2006), Seattle, WA, USA, 433–435.

Contributions at international workshops

Quan Phan and Gerda Janssens. More Precise Region-Based Memory Man-
agement for Mercury Programs. The 9th International Colloquium on Implemen-
tation of COnstraint Logic Programming Systems (CICLOPS 2009), Pasadena,
CA, USA, 1–15.

Quan Phan and Gerda Janssens. Towards Region-Based Memory Manage-
ment for Mercury Programs. The 6th International Colloquium on Implementation
of COnstraint Logic Programming Systems (CICLOPS 2006), Seattle, WA, USA,
1–15.

134 LIST OF PUBLICATIONS

Technical reports (K.U.Leuven, Dept. Computer Science)

Quan Phan and Gerda Janssens. Region-based memory management for
Mercury programs. Part 1: Static analysis and transformation. Report CW540,
April 2009, 1–32.

Quan Phan and Gerda Janssens. A proposal for runtime region support for
Mercury programs. Report CW482, March 2007, 1–16.

Quan Phan and Gerda Janssens. A proposal for region-based memory man-
agement for deterministic Mercury programs. Report CW424, September 2005,
1–22.

BIOGRAPHY 135

Biography

Quan Phan was born on the 5th of June, 1977 in Hanoi, Vietnam. He got the
degree of Engineering in Information Technology at Hanoi University of Technolo-
gies, Vietnam in the year 2000. He then moved to the south of Vietnam, during
the next three years working as a software developer in Saigon.

In 2003, he got married and then went to Katholieke Universiteit Leuven
(KUL), Belgium for the program Master in Artificial Intelligence and graduated
cumme laude in June 2004. In October 2004, he joined the research group ”Declar-
ative Languages and Artificial Intelligence” (DTAI) at the Department of Com-
puter Science in the same university, pursuing a PhD degree under the supervision
of Professor Gerda Janssens. He was supported financially by various research
projects of DTAI.

From May to July 2007, he visited the Mercury research and development team
at the University of Melbourne, Australia, under the guidance of Professor Zoltan
Somogyi.

