
Path-Sensitive Region Analysis for Mercury Programs

Quan Phan Gerda Janssens

Department of Computer Science, K.U.Leuven
Celestijnenlaan, 200A, B-3001 Leuven, Belgium

{quan.phan,gerda.janssens}@cs.kuleuven.be

Abstract

Dividing the heap memory of programs into regions is the starting
point of region-based memory management. In our existing work
of enabling region-based memory management for Mercury, a pro-
gram analysis was used to distribute data over the regions. An im-
portant goal of the analysis is to decide which program variables
should end up in the same region. For a popular class of programs,
it covetously puts program variables in the same region, while more
memory could have been reused if they had been kept in separate
ones. In this paper we define a new refined region analysis that is
keen to keep program variables in separate regions by taking into
account the different execution paths of a procedure. With the more
precise, path-sensitive analysis we can reduce the memory footprint
for several programs.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers, Memory management (garbage collection)

General Terms Languages, Performance

Keywords Region analysis, region-based memory management,
region reuse, logic programming, Mercury

1. Introduction

Logic programming languages have a long tradition of freeing pro-
grammers from procedural chores such as manual memory man-
agement. A recent approach to automated memory management
apart from runtime reference-tracing garbage collection is to rely
on static analysis and program transformation that can approximate
lifetime of program data and instruct the program to reuse dead
memory at runtime. Region-based memory management (RBMM)
follows this approach. It is based on statically dividing the heap
memory into different parts, called regions, in which program terms
are stored. Then the aim is to arrange this in such a way that the
memory occupied by dead terms can simply be released by re-
claiming their region as a whole. Recently region-based memory
management has been made available in several mainstream logic
programming systems, such as the WAM-based Prolog system re-
ported in [3] and the Melbourne Mercury Compiler in [4, 6].

In [4] and [6] we have developed an RBMM system for Mer-
cury. The static region analysis and transformation were given
in [4], which annotate programs with region instructions that take

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’09 September 7–9, 2009, Coimbra, Portugal.
Copyright c© 2009 ACM 978-1-60558-568-0/09/09. . . $10.00

care of the timely creation and removal of regions and also of the
adequate distribution of the terms over the regions. In [6] we de-
scribed the runtime support needed for RBMM that could also han-
dle backward execution. Although the system gave very promis-
ing results, in terms of memory consumption as well as runtime
speedup, for almost all of the benchmarks [6], the static region
analysis in [4] sometimes too eagerly grouped variables into re-
gions without taking into account different execution paths, reduc-
ing reuse opportunities. Our contribution in this paper is the im-
provement of the region analysis and transformation in [4]. By dis-
tinguishing execution paths we obtain a more precise region allo-
cation that ultimately leads to better memory reuse.

Section 2 motivates our new approach of dealing with different
execution paths. Section 3 describes how we use, just as in [5],
type-based graphs to model the regions of types. The concept
of region points-to graphs and its extension with same-edges to
keep apart regions are in Section 4. The region points-to analysis,
Section 5, computes a safe region model and now is linked up with
region liveness analysis in Section 6 to ensure the safety of same-
edges. This link is described in Section 7. In Section 8 we show
the impact of same-edges on the program transformation. Section 9
discusses and concludes.

2. Motivation

We assume the reader is familiar with Mercury [7]. The explicit
declarations of types and modes in Mercury enable its compiler to
convert all predicate definitions into procedures in superhomoge-
neous form in which unifications are specialized into <= for con-
struction unifications, => for deconstruction unifications, == for
equality tests, and := for assignments.

We will look at the relation between assignments and regions in
particular. Consider the assignment X := Y, which binds the free
variable X to the value of Y. For now we assume that the value of
the variable Y is simply stored in one region. (We come back to
the issue of storage of variables later in Section 3). As after the
assignment X and Y are bound to the same value in a region, we can
say that the two variables are in the same region.

The code in Figure 1 is a part of a Mercury program that
manipulates lists of integers. We associate a program point with
every literal (i.e., a specialized unification or a procedure call)
in the body of a procedure. An execution path is a sequence of
program points, such that at runtime the literals associated with
these program points are performed in sequence. The procedure q
has two execution paths: 〈(1), (2)〉 and 〈(3), (4)〉 in which different
assignments for Z occur. Note that the program point (1) does not
belong to the second execution path because for an if-then-else
if C then T else E Mercury will first try C but if C fails, it
will ensure that E is executed as if C had never been tried. In
the second execution path q invokes produce that can assumably
put its output argument Y in a region different from that of X.

% (in, in, out). % (in, out).
q(N, X, Z) :- produce(X, Y) :-

(if (
(1) N > 0 (1) X => [],

then (2) Y <= []
(2) Z := X ;

else (3) X => [Xe | Xs],
(3) produce(X, Y), (4) produce(Xs, Ys),
(4) Z := Y (5) Y <= [Xe + 1 | Ys]

).).

Figure 1: The running example.

The code of produce in Figure 1 follows this pattern. If after a
call to produce its input is no longer needed, we can reclaim its
memory by removing its corresponding region, without affecting
the output. The call to produce at (3) in q is such a call. In q, after
the assignment at (2) in the first execution path, that Z is bound to
the list bound to by X implies that these two variables are in the
same region. Similarly, at (4) in the second execution path we have
that Z and Y are in the same region. So it seems reasonable and is
actually safe to put all X, Y and Z in one region.

The region points-to analysis in [4] follows this “eager” ap-
proach. So if the program follows the second execution path of q,
the eager approach prohibits the reclamation of the memory of X,
even when it is dead after the call to produce (recall that we as-
sume that X and Y are independent). The memory for X could have
been reclaimed if it had been kept apart in a different region from
that of Y and Z.

Let us explore the idea of keeping apart the regions for X, Y and
Z in order to be able to reclaim memory better. Thus we would like
to keep X, Y and Z in different regions. An assignment like Z :=
X could then involve the copying of the value of X into the region
of Z. Although this allows us to reclaim the memory of X in the
else branch it incurs the overhead due to the copying, which is not
desirable as it is linear to the size of the value. We can do better by
reusing the region of X as the region of Z at (2) and the region of
Y as the region of Z at (4), while the memory of X is reclaimed
in produce as shown in the region-annotated code in Figure 2.
We can view this as the result of distinguishing execution paths

q(N, X@R1, Z@R3) :- produce(X@R4, Y@R5) :-
(if (
(1) N > 0 (1) X => [],

then remove(R4),
(2) Z@R3 :== X@R1, create(R5),

else (2) Y <= [] in R5
(3) produce(X@R1, Y@R2), ;
(4) Z@R3 :== Y@R2, (3) X => [Xe | Xs],

). (4) produce(Xs@R4, Ys@R5),
(5) Y <= [Xe + 1 | Ys] in R5

).

Figure 2: Region-annotated version.

of a procedure when dividing its variables into regions. In the first
execution path, X and Z are in the same region while in the second
one, X is in a region different from that of Y and Z.

In the region-annotated version, we use region variables R’s to
refer to regions. The region instruction create(R) creates a re-
gion and makes R bound to it while remove(R) removes the region
that R is bound to. The special region-annotated assignment nota-
tion X@R1 :== Y@R2 means that R1 is bound to the region of R2,
then Y is assigned to X, after that R2 is unbound. Its effect is that
we reuse the region of R2 for R1. We use @R to illustrate the pass-
ing of regions as arguments and annotate construction unifications

with in R, the region into which the allocation happens. Then the
behaviour of the code is as follows. A caller of q prepares X in the
region bound to by R1 and expects Z in some region bound to by
R3. If the first execution path of q is taken R3 will be bound to the
region R1. If the second path is, the call to produce removes R1
and creates R2 in its base case, then R3 is bound to R2.

3. Modelling the Regions Based on Types

In this section we explain the relationship between types and the
storage of program variables in regions.

We use the type of a variable, which determines its values, to
distribute such a value (i.e., the term bound to by the variable) over
several regions. A list is stored in two regions: one for the list-
skeleton and one for the elements of the list. The benefit of such a
distribution is that a program, such as quicksort and naive reverse
on lists, often creates several temporary lists but the elements of the
input list are needed throughout. When a temporary list is no longer
needed, its list-skeleton as a whole can be freed by one single action
namely by removing its region.

The scheme of regions used to store terms of a type can be de-
rived systematically from the type declaration [5]. Consider the fol-
lowing type declarations in which int is a builtin type in Mercury.

:- type list_elem ---> []; [elem | list_elem].
:- type elem ---> f; g(int); h(list_int, int).
:- type list_int ---> []; [int | list_int].

The type list elem has two principal functors, []/0 and [|]/2.
We store these principal functors in a region r1 . This means that the
memory block needed to represent e.g., [|]/2 is allocated into r1 .
The block contains tagged pointers to the arguments of [|]/2. The
first argument is of type elem different from list elem, therefore
it is stored into a different region r2 . The second argument is again
of type list elem and we also store it in the region r1 . In this
way the list skeleton as a whole is in one region. The type elem
has three principal functors: f/0, g/1 and h/2. Suppose L has type
list elem and is bound to [f,g(1),h([1,2],2)]. To represent
this list L, we need three regions shown by the dash boxes in
Figure 3. In the first we store the principal functors of list elem,

[|]

L [|]

21

[]

[|] []

1

[|]

[|]

g h

2

f

Figure 3: Region storage of the term bound to by L.

the so-called list skeleton. The elements of the list are stored in
the second region, in particular the principal functors of the elem
terms. Some arguments of the principal functors of elem have type
int that does not require extra memory so they are in the memory
blocks of the g/1 and h/2 functors. The first argument of h/2 is a
list of int’s and needs one more region.

For each type we define a memory-storage scheme modelled
by a type-based region graph TG(N, E) with N a set of nodes
and E a set of directed edges. A node stands for a region variable.
Just as program variables get bound to ordinary Mercury terms
during the execution of a program, region variables will get bound
to (physical) regions. A directed edge from one node to another
represents the fact that the region bound to by the region variable
represented by the former node contains references into (points-to)

the region bound to by the region variable represented by the latter
one. The reference relation represented by the edges is actually
defined by the type.

The type-based region graph for the type list elem is shown in
Figure 4. The [|] principal functor is stored in Rlist elem . Actually
we need a block of two memory words. [|] has two arguments,
the first having the type elem and the second having the same type
list elem. Thus we have two edges from Rlist elem , one pointing
to Relem where the principal functors of elem (g/1 and h/2) are
stored and the other is a self-edge. The edge labelled (h,1) is due
to the first argument of the functor h/2.

R
list_elem elem

([|],2)

([|],1) (h,1)

([|],2)

R
list_int

R

Figure 4: The type-based region graph of the type list elem.

Consider the following type:

:- type t ---> ...; f(t1,..., ti,..., tn);

If Rt is represented by the node n, then we have for each type
ti that needs heap storage a node m representing Rti and exactly
one edge (n, (f, i), m) with the label (f, i). We refer to n as the
principal node of TGt.

Mercury has polymorphic types but we can safely just ignore
type variables in our region model because procedures that work
with polymorphic types will never actually manipulate the concrete
terms corresponding to the type variables.

During the execution of the program, the regions used to allo-
cate terms belonging to a type t, will be an instance of the memory-
storage scheme modelled by TGt, the type-based region graph for
t.

4. Region Points-to Graph

We use the notion of a region points-to graph to model the memory
used by a Mercury procedure. We use the set of type-based region
graphs, one for each variable of the procedure, to adequately model
the memory locations of the procedure’s terms, However, we also
need to model the sharing of (sub)terms among the program vari-
ables, which is created during the execution of the procedure. One
of the contributions of this paper is the modelling of this sharing.

In Mercury, the instantiation of variables, therefore the shar-
ing among them, is caused by unifications. We divide the sharing
into two groups. First, a construction unification X <= f(..., Y,
...) allocates new memory for storing the functor f (actually the
block of memory words corresponding to f) and creates sharing be-
tween X and Y. Also in a deconstruction unification X => f(...,
Y, ...) Y is instantiated and Y shares with a subterm of X. The re-
gions needed to store the values of X are given by its type-based re-
gion graph in which the edges point into the regions of subterms. In
order to represent this sharing between X and Y, we do as follows.
A node n is associated with a set of program variables, vars(n),
whose principal functors are stored in the region that is bound to
by the region variable that is represented by n. The sharing be-
tween X and Y (with Y the ith argument of X) is then represented by
having a node nX with X ∈ vars(nX), an edge (nX , (f, i), nY)
and Y ∈ vars(nY). The vars set of a node can contain either zero,
one or more variables. In the case where constructions and decon-
structions involve variables of recursive types such as lists, e.g., L
<= [E | T] or L => [E | T], L and T are forced to end up in the
same vars set. All the program variables in the vars set of a node
may be allocated in the same region.

Second, an assignment unification X := Y binds X to Y and
creates sharing between X and Y. Previously in [4], we did put
the two variables in the same region because they actually point
to the same term after the assignment. In the new approach in
this paper we keep their regions apart and just remember that they
are candidates for reusing one for the other after this point. We
represent this in a region points-to graph by a new kind of edges,
called same-edges. The sharing created by X := Y is modelled by
a directed edge s(nY , i, nX) with i the program point where X :=
Y is found. Note that normally the same-edge between nX and nY

should propagate to the regions of their corresponding subterms.
A region points-to graph G(N,E ,S) for a set of variables V

consists of a set of nodes, N , representing region variables, a set
of directed edges, E , representing references between the regions
bound to by these region variables and a set of directed same-edges,
S , to model candidates for reuse. The nodes are annotated with
vars sets: we have V =

S

n∈N
vars(n). The vars sets are disjoint.

The node nX denotes the node such that X ∈ vars(nX). The
function node(nX , (f, i)) returns the node m if (nX , (f, i), m) ∈
E otherwise it is undefined. The edges in S model regions that are
possible candidates for reuse. Whether the reuse can safely be done
depends on the liveness of the involved regions. This will become
clear later.

The region points-to graphs of the procedures q and produce in
our running example are in Figure 5. With same-edges we can keep

eager approach

([|],2)

q:

X

(2) (4)

R2R1([|],2)

q: keeping apart

X,Y,Z Z Y

([|],2) ([|],2)

R3

produce:

R4 R5

([|],2)
([|],2)X,Xs Y,Ys

Figure 5: Region points-to graphs of q and produce.

the regions of X, Y, and Z separate, in contrast to the eager approach
where we would have only one node with these variables in its vars
set. Now we are still able to capture the fact that at some program
points (i.e., at (2) and (4)) they are the same. Note again that we
assume no regions for the integer elements of the list because they
are stored right in the first word of a cons cell.

All in all, sharing is represented in a region points-to graph in
three ways. Firstly, the directed edges in E represent sharing of
subterms. Secondly, that a vars set of a node may contain more
than one variable represents the fact that these variables may be
bound to the same term or to different subterms of a recursive term.
Finally, sharing due to assignments is represented by the same-
edges in S .

5. Region Points-to Analysis

The region points-to analysis computes a region model for a pro-
cedure and the whole program by capturing the locations and the
sharing among variables. To capture sharing we use two operations:
unify and same edge . The operation unify is defined in Algo-
rithm 1. Unifying two nodes n and m implies that the variables
in vars(n) and those in vars(m) are stored in the same region. To
ensure that there is only one out-edge with a specific label from one
node to another the operation is recursive, i.e., unifying two nodes
may cause more nodes to be unified.

Algorithm 1 unify(n, m)

Require: G(N, E ,S), n, m ∈ N .
Ensure: G(N, E ,S) with n representing the unified node.

N = N \ {m}
vars(n) = vars(n) ∪ vars(m)
for all (m, (f, i), k) ∈ E do

E = E \ {(m, (f, i), k)}
if (n, (f, i), k) 6∈ E then

E = E ∪ {(n, (f, i), k)}
end if

end for

for all (k, (f, i), m) ∈ E do
E = E \ {(k, (f, i), m)}
if (k, (f, i), n) 6∈ E then

E = E ∪ {(k, (f, i), n)}
end if

end for

for all s(m, i, k) ∈ S do

S = S \ {s(m, i, k)}
if s(n, i, k) 6∈ S then

S = S ∪ {s(n, i, k)}
end if

end for

for all s(k, i, m) ∈ S do

S = S \ {s(k, i, m)}
if s(k, i, n) 6∈ S then

S = S ∪ {s(k, i, n)}
end if

end for
for all l, l′ ∈ N do

if (n, (g, j), l) ∈ E ∧ (n, (g, j), l′) ∈ E ∧ l 6= l′ then
unify(l, l′)

end if
end for

The novelty in this paper (compared to [4]) is the recording
of sharing by using the same edge operation that is defined by
Algorithm 2. When we record a same-edge between two nodes we

Algorithm 2 same edge(n, m, i)

Require: G(N, E ,S), n, m ∈ N .
Ensure: G(N, E ,S) with same-edges between n and m and between any
two corresponding nodes reachable from them.
S = S ∪ {s(n, i, m)}
for all (n, (f, i), k) ∈ E ∧ (m, (f, i), k′) ∈ E do

if k 6= k′ ∧ s(k, i, k′) 6∈ S then
same edge(k, k′, i)

end if

end for

also need to recursively record same-edges for the corresponding
nodes reached from them through corresponding edges. Recall that
by s(k, i, k′) we mean to reuse the region bound to by the region
variable represented by k for the region variable represented by k′

at the program point i.

5.1 Intraprocedural Analysis of a Procedure

The intraprocedural analysis initializes Gp and then captures the
sharing created by the explicit unifications. Its definition is in Al-
gorithm 3. The function pp(l) returns the program point associated
to the literal l.

As we know the type of each variable in p, we initialize Gp

by using the type-based region graphs (TG) of the variables. In
Algorithm 3, we use the function init rptg(X) that generates a
region points-to graph for X from the type-based region graph of
the type of X, TG type(X), by copying all the nodes and edges, but
initializing the vars set of the node corresponding to the principal

Algorithm 3 intraproc(p): intraprocedural analysis of a procedure
p

Require: p is in superhomogeneous form.
Ensure: Sharing created by explicit unifications is represented in Gp.

Gp = (∅, ∅, ∅)
for all X ∈ p do

Gp = Gp ⊎ init rptg(X)
end for
for all unif ∈ p do

if unif ≡ (X := Y) then
same edge(nY , nX , pp(unif))

else if unif ≡ (X => f(Y1, . . . , Yn) or X <=
f(Y1, . . . , Yn)) then

for i = 1 to n do

unify(node(nX , (f, i)), nYi
)

end for

end if

end for

node in TG type(X) with {X} and those of the other nodes with an
empty set, generating a fresh region variable for each node in the
region points-to graph, and setting the set of same-edges to empty.
The region points-to graph returned by init rptg(L), with L of the
type list elem (Figures 3 and 4) is shown in Figure 6 with the
assumption that the region variables are fresh.

([|],2)

([|],1) (h,1)

([|],2)L

R1 R2 R3

Figure 6: The resulting region points-to graph of init rptg(L).

The intraprocedural analysis adds all the sharing created by the
unifications in the procedure to Gp. We ignore test unifications be-
cause they do not create any sharing. For construction and decon-
struction unifications we unify the nodes corresponding with the
sharing created by them. For an assignment we say that at its pro-
gram point the two variables are bound to the same term by adding
a same-edge from the node of the right-hand side variable to the
node of the left-hand side one. This leaves the possibility that in
other execution paths they are not necessarily bound to the same
term, therefore they do not necessarily have to be in the same re-
gion either.

5.2 Interprocedural Analysis

The interprocedural analysis, Algorithm 4, updates Gp by inte-
grating the relevant sharing information from the region points-to
graphs of the called procedures into Gp.

For a call q(Y1, . . . , Yn), the head of the defining procedure is
assumed to be q(X1, . . . , Xn). The sharing among Xi’s in Gq may
not have been present in Gp as sharing among Yi’s. The interproce-
dural analysis makes sure that this will be the case. Firstly, it builds
the function α : Nq → Np that maps the nodes of the formal ar-
guments (Xi’s) to the nodes of the corresponding actual arguments
(Yi’s). Then these nodes are the starting points for the integration of
the remaining sharing. This is done by following the relevant edges
in Gq to extend the α function to all the relevant nodes in Gq (rule
P2) and to unify the relevant nodes in Gp (rule P1). Then we export
the same-edges by relying on the α function at the call site. The
program point of the same-edges is the program point of the call.

For a whole program, we can first do the intraprocedural analy-
sis for every procedure. Then given the fact that in the interprocedu-
ral analysis the analysis information is only propagated from graphs
of callees to those of callers, we can do the interprocedural analy-
sis for a program efficiently by decomposing the call-dependency

Algorithm 4 interproc(p): interprocedural analysis of a procedure
p

Require: p is in superhomogeneous form.
Ensure: The sharing created by procedure calls is represented in

Gp(Np, Ep,Sp).
repeat

for all call site in p, at the program point ip do

Assume that the call is q(Y1, . . . , Yn), with X1, . . . , Xn as
corresponding formal arguments, and that Gq is available.

% Build an α relation.

for k = 1 to n do
α(nXk

) = nYk

end for

% Ensure α is a function.

for all Xi, Xj do

if α(nXi
) = nYi

∧ α(nXj
) = nYj

∧ nXi
=

nXj
∧ nYi

6= nYj
then

unify(nYi
, nYj

)

end if
end for

% Integrate sharing in Gq into Gp .

In the graph Gq , start from each nXi
, follow each edge once

and apply the rules P1 and P2 in Figure 7 when applicable.
for all s(nq , , mq) ∈ Sq do

if α(nq) = np ∧ α(mq) = mp ∧ np 6= mp then

same edge(np, mp, ip)
end if

end for

end for
until There is neither change in Gp nor in any of the α functions.

(nq, (f, i), mq) ∈ Eq

α(nq) = np

(np, (f, i), m
′

p) ∈ Ep

α(mq) = mp 6= m
′

p

unify(mp, m
′

p)
(P1)

(nq, (f, i), mq) ∈ Eq

α(nq) = np

(np, (f, i), mp) ∈ Ep

α(mq) undefined

α(mq) = mp

(P2)

Figure 7: Interprocedural analysis rules.

graph into a tree of strongly connected components, and analysing
the components in bottom-up order.

The result of the region points-to analysis for the running ex-
ample in Figure 1 has been shown in Figure 5. In the graph for
produce, that X and Xs are in vars(R4) and that Y and Ys are in
vars(R5) are due to the deconstruction at (3) and the construc-
tion at (5), respectively. Analysing the recursive call at (4) records
α(R4) = R4 and α(R5) = R5 but makes no change to the shape
of the graph. In the graph for q, the two same-edges are due to the
assignments at (2) and (4). Processing the call to produce at (3)
creates α(R4) = R1 and α(R5) = R2 .

6. Region Liveness Analysis

After the region points-to analysis we know the region variables of
each procedure and how the program variables are distributed over
the regions to which these region variables are bound. As regions
may need to exist through a sequence of procedure calls, e.g., a call
may allocate memory into an existing region, we do pass region
variables as arguments of procedures. We use the existing region
liveness analysis [4, 5] to decide which region variables are live
at each program point and which region arguments become live or
stop to be live in each procedure. In this section we summarize the

relevant notions. Within the scope of a procedure we determine the
local liveness of (program) variables and region variables in Section
6.1. The global liveness is discussed in Section 6.2.

6.1 Live Variables and Live Region Variables

We use the notions before and after a program point. Before a
program point means right before the associated literal is going
to be executed; while after a program point means its literal has
just been completed. A program variable is live before a program
point if it has been instantiated before the point and may be used
in the future. A program variable is live after a program point if
it has been instantiated before or at the point and may be used in
the future. The live variable analysis computes for each program
point i the set of variables that are live before i, LV before(i), and
the set of variables that are live after i, LV after (i) . The LV before

of the first program point(s) in a procedure p is defined to be the set
of input arguments of p, in args(p), while the LV after of the last
program point(s) in a procedure p is defined to be the set of output
arguments of p, out args(p).

A region variable being live means that it should be bound to a
region and that the region variable is possibly used in future (for-
ward) execution. A region variable is live before (after) a program
point if its node is reachable from a variable that is live before (af-
ter) the program point.

The set of nodes that are reachable from a variable is defined as
follows.

Reach(X) = {nX} ∪ {m | ∃(nX , m) ∈ E∗(X)},

in which E∗(X) is defined:

E∗(X) = {(nX , ni) | ∃(nX , label0, n1), . . . , (ni−1, label i−1, ni) ∈
E}.

The live region variables sets before and after a program point i are
defined:

LRbefore(i) =
S

X∈LV before(i)
Reach(X).

LRafter (i) =
S

X∈LV after (i)
Reach(X).

6.2 Lifetime of Regions across Procedure Boundary

Region arguments are used to pass regions among procedure calls
in order to achieve better memory reuse by keeping the lifetime of
regions short. Therefore, the global liveness analysis part derives
which region variables become live or cease to be live inside a
procedure.

Consider a procedure q that is called by some procedure p, we
define:

• bornR(q) is the set of region variables of q that are mapped
(by the α function at the call site) to region variables of p
that definitely become live inside q, i.e., in q or in one of the
procedures it calls.

• deadR(q) is the set of region variables of q that are mapped to
region variables of p that definitely cease to be live (or become
dead) inside q.

• outlivedR(q) is the set of region variables of q that are mapped
to region variables of p that outlive the call to q. They are live
before the call and still live after the call.

The motivation is that, in the region-annotated program, the region
variables of p that are mapped to by those in bornR(q) will get
bound to a region during q and are still bound after q, the ones
mapped to by those in deadR(q) are bound before the call to q and
are safely removed during q, and the ones mapped to by those in
outlivedR(q) are bound before the call and maintain their bindings
throughout the call.

We call the set of the region variables that are local to p (not
reachable from input or output variables), localR(p). The calling
contexts of a procedure influence what a procedure can do to its
non-local region variables. Therefore when analysing a procedure
p, region variables that need to be live after the call to q in p
are not allowed in deadR(q) but are put in outlivedR(q): the
regions should not be reclaimed during the call. Similarly, regions
already live before the call to q should not be in bornR(q) but
in outlivedR(q): the regions already exist before the call. Also
region alias has its impact. A typical case is when a procedure,
e.g., q(X1, X2), with RX1

6= RX2
is called as q(Y1, Y2), with

RY1
≡ RY2

. Then RX1
and RX2

are neither in deadR(q) nor in
bornR(q).

Each procedure has exactly one bornR set and one deadR set
that are suited for the most restrictive context. If the procedure is
called in a less restrictive context, it will be the case that creation
and removal will happen outside the call.

In our running example, produce is called in two calling con-
texts, so we will look at how its bornR and deadR sets are com-
puted. Initially, bornR(produce) = {R5} because R5 is reached
from the output argument Y and deadR(produce) = {R4} be-
cause R4 is reached from the input argument X. The first calling
context is at (4) in produce, where α(R4) = R4 and α(R5) =
R5 . It should be straightforward to see that R4, which is reached by
X and Xs, is live before the call and is no longer live after it. So it is
safe that R4 ceases to be live in this call. For R5, which is reached
from Y and Ys, it is not yet live before (4) and is live after. So R5 can
become live in this call. The other calling context of produce is at
(3) in q. Here we have α(R4) = R1 and α(R5) = R2 . Again
we can see that R1 is live before and not live after (3), meaning that
it can become dead in the call. R2 is not live before and is live af-
ter (3) so it can become live in this call. Therefore finally, we have
bornR(produce) = {R5} and deadR(produce) = {R4}.

7. Good Same-Edges

The same-edges in our new region points-to graphs indicate regions
that are candidates for reuse. For a procedure q, we keep a same-
edge s(R1 , i, R2) with the intention that at the program point i we
should reuse the region bound to by R1 for R2, i.e., we make R2
bound to the region currently bound to by R1 and R1 is considered
unbound after that. However, it is only safe to do that if R2 is not
yet bound before i, if R1 is not live after i, and if q is allowed to
manipulate them. This implies the following safeness conditions
for a same-edge s(R1 , i,R2).

DEFINITION 7.1. [Safeness conditions] A same-edge s(R1 , i,R2)
in the region points-to graph of a procedure q is good if the follow-
ing conditions are satisfied.

1. R1 ∈ LRbefore(i) \ LRafter (i),
2. R2 ∈ LRafter (i) \ LRbefore(i),
3. R1 ∈ deadR(q) ∪ localR(q),
4. R2 ∈ bornR(q) ∪ localR(q). �

The first two conditions can be seen as the local liveness require-
ments, while the global liveness requirements are in the last two.
We call the same-edges that satisfy the above conditions the good
ones. Otherwise there is no point keeping them and their regions
can be unified after all.

In Figure 8 we extend the running example with two calling
contexts of q to show the effect of good and bad same-edges.

In the first calling context, X is no longer used after the call
to q. So we have deadR(q) = {R1}, bornR(q) = {R3}, and
localR(q) = {R2} (the reader may want to consult Figure 5 for the
region variables). For produce, deadR(produce) = {R4} and
bornR(q) = {R5}. This program can be annotated as in Figure 9.

q(N, X, Z) :- produce(X, Y) :-
(if (

(1) N > 0 (1) X => [],
then (2) Y <= []

(2) Z := X ;
else (3) X => [Xe | Xs],

(3) produce(X, Y), (4) produce(Xs, Ys),
(4) Z := Y (5) Y <= [Xe + 1 | Ys]
).).

% Calling context 1. % Calling context 2.

main(!IO) :- main(!IO) :-
(1) X <= [1], (1) X <= [1],
(2) q(2, X, Z), (2) q(2, X, Z),

(3) L <= [Z], (3) L <= [X, Z],
(4) write(L, !IO). (4) write(L, !IO).

Figure 8: The running example extended with calling contexts of q.

Its behaviour is that the region of X, namely R6, is removed in the

q(N, X@R1, Z@R3) :- produce(X@R4, Y@R5) :-
(if (
(1) N > 0 (1) X => [],

then remove(R4),
(2) Z@R3 :== X@R1, create(R5),

else (2) Y <= [] in R5
(3) produce(X@R1, Y@R2), ;
(4) Z@R3 :== Y@R2, (3) X => [Xe | Xs],

). (4) produce(Xs@R4, Ys@R5),
(5) Y <= [Xe + 1 | Ys] in R5

).

main(!IO) :-
create(R6),

(1) X <= [1] in R6,

(2) q(2, X@R6, Z@R7),
create(R8),

(3) L <= [Z] in R8,
(4) write(L, !IO),

remove(R7),
remove(R8).

Figure 9: Reuse region-annotated version for calling context 1.

call to q. This is safe because X is no longer live after the call. R7 is
bound either to the region R6 or to a new region created by the call
to produce in q depending on which execution path is taken in q.
But this does not matter because from outside of q we can assume
that R6 is dead and R7 becomes live. And we only need to reclaim
R7 afterwards.

In the second calling context, because X is still live after the call
to q, the call is no longer allowed to remove R6. This means that
R1 is eliminated from deadR(q) (i.e., R1 is now in outlivedR(q))
and therefore R4 is excluded from deadR(produce). The annotated
version now is in Figure 10. In produce there is no remove(R4)
after (1) and in main remove(R6) is added after (4). If the program
follows the first execution path in q, R6 and R7 are bound to the
same region. Therefore that region will be wrongly removed twice
in main. In general, we cannot guarantee which execution path is
taken at runtime. Therefore in this case it is not safe to make use of
the (bad) same-edges.

A safe way to handle this situation is to force X, Y, and Z in q
into the same region as in the eager approach in [4]. The annotated
program is in Figure 11. If we used the eager version for the first
calling context, we would miss the chance to reuse the memory of
X whenever the second execution path of q is taken.

So after the region liveness analysis we will re-examine the
region points-to graphs to eliminate the bad same-edges based on

q(N, X@R1, Z@R3) :- produce(X@R4, Y@R5) :-
(if (

(1) N > 0 (1) X => [],
then create(R5),

(2) Z@R3 :== X@R1, (2) Y <= [] in R5
else ;

(3) produce(X@R1, Y@R2), (3) X => [Xe | Xs],
(4) Z@R3 :== Y@R2, (4) produce(Xs@R4, Ys@R5),
). (5) Y <= [Xe + 1 | Ys] in R5

).

main(!IO) :-
create(R6),

(1) X <= [1] in R6,

(2) q(0, X@R6, Z@R7),
create(R8),

(3) L <= [X, Z] in R8,
(4) write(L, !IO),

remove(R6),
remove(R7),
remove(R8).

Figure 10: Wrong reuse region-annotated version for calling con-
text 2.

q(N, X@R1, Z@R1) :- produce(X@R4, Y@R4) :-

(if (
(1) N > 0 (1) X => [],

then (2) Y <= [] in R4
(2) Z := X, ;

else (3) X => [Xe | Xs],

(3) produce(X@R1, Y@R1), (4) produce(Xs@R4, Ys@R4),
(4) Z := Y (5) Y <= [Xe + 1 | Ys] in R4

).).

main(!IO) :-
create(R6),

(1) X <= [1] in R6,

(2) q(0, X@R6, Z@R6),
create(R8),

(3) L <= [Z] in R8,
(4) write(L, !IO),

remove(R6),

remove(R8).

Figure 11: Region-annotated version with the eager approach.

the above safeness conditions. If some same-edges are excluded
from the region points-to graph of a procedure q, it means that
the region points-to graph of q changes. The change will affect
the region points-to graphs of the callers of q and the α mappings
at the sites where q is called. Therefore we need to re-run the
interprocedural region points-to analysis for the callers of q, i.e.,
all procedures in the same SCC as q and the ones in the SCCs
that depend on q’s SCC. We again can reach the fixpoint for each
SCC in bottom-up order. The live variable analysis does not need
to be run again. However, the derivation of live region variables
at the program points in q is based on its region points-to graph
and will need to be done again. The change of the local region
liveness in q likely causes changes to the global region liveness of
the procedures it calls, i.e., all procedures in the same SCC as q and
the ones in the SCCs on which the SCC of q depends. So we also
need to recompute the bornR and deadR sets of them.

We repeat the above process until no more same-edge is re-
moved. At that time, all the remaining same-edges imply that reuses
can safely happen. The whole algorithm is specified in Algorithm 5
in which safe(se) checks whether the same-edge se satisfies the
safeness conditions or not. dep(q) computes the strongly con-

nected component containing q and also the components that de-
pend on the SCC of q. invert dep(q) computes the strongly con-
nected component containing q and also the components on which
the SCC of q depends. local region liveness(q) computes the sets
of live region variables before and after program points in q (Sec-
tion 6.1). global region liveness(q) applies the analysis in Sec-
tion 6.2 to q to re-calculate the bornR, deadR, and outlivedR of
the procedures q invokes.

Algorithm 5 Eliminating bad same-edges

Require: Happen after region liveness analysis: all region points-to graphs
and region liveness information are available.

Ensure: All remaining same-edges are good.
repeat

for all procedure q: Gq = (, , Sq) do
for all se = s(k, i, k′) ∈ S do

if !safe(se) then
unify(k, k′)
mark that Gq has changed.

end if
end for

end for

% Recompute related region points-to graphs and α mappings
% of the callers of q.
for all q whose Gq has changed do

re interproc SCCs = dep(q)
for all SCC ∈ re interproc SCCs do

repeat

for all q′ ∈ SCC do

interproc(q′)
end for

until nothing changed
end for

end for

% Recompute local region liveness in q.
for all q whose Gq has changed do

local region liveness(q)
end for

% Recompute global region liveness of the procedures q calls.
for all q whose Gq has changed do

re global liveness SCCs = invert dep(q)
for all SCC ∈ re global liveness SCCs do

repeat

for all q′ ∈ SCC do

global region liveness(q′)
end for

until nothing changed
end for

end for

until No more same-edge is removed.

8. Transformation

A region-annotated program is finally generated by a program
transformation of the original program taking into account the in-
formation derived by the region points-to analysis and the liveness
analysis.

The transformations for adding extra arguments for region ar-
guments, for annotating construction unifications with region vari-
ables, and for introducing the create and remove instructions are
exactly the same as presented in [5].

A procedure can safely manipulate the region variables in its
bornR, deadR, or localR. Ones in localR are local to the proce-
dure. For the non-local ones in bornR and deadR we are sure that
the global context of the procedure does not interfere with them, as

q(N, X@R1, Z@R3) :- produce(X@R4, Y@R5) :-
(if (

(1) N > 0 (1) X => [],
then remove(R4),

(2) Z@R3 :== X@R1, create(R5),
else (2) Y <= [] in R5

(3) produce(X@R1, Y@R2), ;
(4) q(N - 1, Y@R2, Z@R3) (3) X => [Xe | Xs],
). (4) produce(Xs@R4, Ys@R5),

(5) Y <= [Xe + 1 | Ys] in R5
).

main(!IO) :-
create(R6),

(1) X <= [1] in R6,

(2) q(2, X@R6, Z@R7),
create(R8),

(3) L <= [Z] in R8,
(4) write(L, !IO),

remove(R7),
remove(R8).

Figure 12: No explicit “reuse” after procedure calls.

the liveness and region aliasing have been taken into account when
computing bornR and deadR. Consider a region variable R that
the procedure can manipulate. In general a create(R) is inserted
before the program point where R becomes live, i.e., it is not live
before but live after the point and the literal at the point does not
create it. For removal, there are two cases. If R becomes dead be-
cause it is live before but not live after the point, we add remove(R)
after the point if the literal at the point does not remove R. If R be-
comes dead since it is live after the point but is not live before the
next point in an execution path, we add remove(R) before the next
point.

For our new analysis we need to introduce the region-annotated
assignment. Because all the remaining same-edges are good ones,
if the literal at the program point i of the same-edge s(R1 , i,R2)
is an assignment X := Y where X is in R2 and Y is in R1, we just
replace it with X@R2 :== Y@R1 at i. If the literal is a procedure call
it means that the reuse happens inside the call and we do not need
to make any change.

We can see the effect of same-edges at procedure calls when
changing the code of q by replacing the assignment at (4) with a
recursive call as in Figure 12. Nothing other than region arguments
is added at (4).

9. Discussion and Concluding Remarks

In the paper we have presented an improvement for the region
analysis and transformation in [4] that results in better memory
reuse for a certain class of programs. By making the region points-
to analysis path-sensitive (in the sense that it distinguishes different
local execution paths in a procedure) we achieve a more precise
region model of memory use. This information then is verified
against the liveness information to make sure that the resulting
transformation is sound. We formulate the local and global liveness
safeness conditions for this purpose.

Implementing the improvement presented in this paper is part of
future work. We believe that the runtime support for regions in [6]
is able to support region reuse with little change. Other than im-
plementing the regions themselves and the region instructions, the
runtime support for regions has two tasks in supporting backtrack-
ing. First, it provides protection for regions that are removed during
forward execution if they are still needed when backtracking hap-
pens, ensuring that these regions will only be reclaimed when they
are not used in any future computation. Second, it allows instant
reclaiming of new regions and new allocations into old regions at

choice points. The essential elements in the support are the time-
stamping of the regions when they are created in order to distin-
guish old and new regions and the estimation of the sets of regions
that are created, removed and allocated into by a goal. The region
reuse affects none of these because the time-stamp of a reused re-
gion is intact when the reuse happens and because of the fact that
the region is reused the created, removed, and allocated region sets
of any goals are not changed.

The class of programs that potentially benefit from this novel
extension includes state transition programs in which a sequence of
states are computed iteratively and typically we are only interested
in the last state. In the set of benchmark programs used in [6],
there are two typical examples of this for which the region reuse
improvement should be beneficial, namely life and dna. We discuss
these two programs in detail but before that we will explain how the
experiments have been done.

As we do not have an implementation of region reuse yet, we
mimic the memory behaviour of the two programs as if region reuse
had been used by changing their source. Recall that in Section 2 we
introduced region reuse to avoid copying terms at the moment of
an assignment unification. Therefore we modify the benchmarks
by adding an explicit copying at the place where our new approach
would introduce a region reuse assignment. After that we can use
the existing RBMM system in [6] to execute them. By doing so
we can study the effects of region reuse on memory consumption.
Note that for the discussion here, we manually introduce copying
procedures that make the desired copies. The existing region anal-
ysis [6] takes into account the copying procedure and then can de-
cide whether the original and the copied ones can be kept apart or
not. For example, for a list we copy both the list skeleton and the
elements, the region analysis decides for the program as a whole
whether the old and the new skeletons as well as the old elements
and the new elements are in the same regions or not. In summary,
we can check whether region reuse can be done and whether it is
beneficial for life and dna by adding the copying and by using the
existing RBMM system. The profiling information about memory
consumption of these programs allows us to measure the effects of
region reuse.

The life benchmark encodes the program Game of Life in which
a new generation is generated from a previous one based on a set of
production rules. Its code follows the pattern of q and produce in
Figure 12 in which produce implements the production rules and
q is the loop for computing next generations and in the base case of
the loop there is an assignment between the input and output gener-
ations. A generation is represented by a list of live cells, each cell is
represented by its row and column in a 20x20 board. To store a gen-
eration we need two regions, one for the skeleton and the other for
the cells. In the program the list skeletons of two successive gen-
erations are independent while their cells may share. The program
creates 50 generations from a starting one of 100 live cells. As re-
ported in [6], without region reuse, the program needs maximally
8208 words to run. A closer look into the program reveals that the
skeletons of all the generations are stored in one region with a size
of 6486 words, which is the biggest region of the program. The re-
lated cells are stored in another region. Because they are actually
shared among the generations, region reuse cannot help separate
them into different regions. However, region reuse can help with
splitting the skeletons and then reclaiming them. We mimic region
reuse for life by replacing the assignment between two generations
(like the one at (2) in q) with a call to a procedure that copies the
list skeleton. By evaluating the region reuse-mimicking program
we measure that the maximal number of words used is reduced by
77% to 1856 words because the garbage consisting of the skele-
tons of the old generations and of temporary data created during
the process of generating a new one is timely reclaimed.

% Original procedure. % Region-annotated version.
qsort(L, A, S) :- qsort(L@R1, A@R2, S@R3) :-

((
(1) L => [], (1) L => [],

(2) S := A (2) S@R3 :== A@R2
; ;

(3) L => [Le | Ls], (3) L => [Le | Ls],
(4) split(Le, Ls, L1, L2), (4) split(Le, Ls@R1, L1@R4, L2@R5),
(5) qsort(L2, A, S2), (5) qsort(L2@R5, A@R2, S2@R6),

(6) A1 <= [Le | S2], (6) A1 <= [Le | S2] in R6,
(7) qsort(L1, A1, S) (7) qsort(L1@R4, A1@R6, S@R3)

).).

Figure 13: A chance for optimization.

The dna computes the similarities of a given DNA sequence
against each sequence from a test set of 1000 DNA sequences. The
similarity between two sequences is derived from the similarity of
each element in one sequence against each element in the other
sequence. All the ever-computed similarities are put into one region
that is actually the biggest region in the program consisting of more
than 4M words. The maximal number of words in use during a run
of the program is about 4.6M.

The procedure to compute the similarity between two sequences
again has a pattern similar to the code in Figure 12. The base case
has an assignment between the input and output similarities. The
question is whether region reuse could be done here. Our region
analysis of the changed program in which the region-annotated
assignment is mimicked by a call to a procedure that copies the
input similarity to the output one decides that the similarities still
cannot be put in two different regions. Looking in detail at the
program we see that the reason is because the output similarity
is also accumulated into a temporary list for future computations.
All the elements of the list have to be in one region (due to our
treatment of recursive types) and this forces the potential reuse
candidates to be in one region too. With that in mind, to make
use of region reuse, we have to modify the mimicking program
by adding more copying, i.e., a copy of the output similarity is
added to the list. We call the resulting program dnacrow. After this
nontrivial modification, the region analysis of dnacrow can keep
the similarities in different regions. Running the program shows
that the maximal number of words used goes down 89% to less than
0.5M words, and that the size of the biggest region is now of less
than 0.43M words. The biggest region is the region of the skeleton
of the tree data structure used to store the resulting similarities.

In [3] a so-called region-friendly version of dna, rdna, has
been proposed. In rdna, a similarity between two DNA sequences
is copied before it is put in the tree. The maximal number of
words used in rdna, more than 0.5M, is a little bigger than that
in dnacrow. However, as less copying happens in rdna, we can
expect less runtime overhead due to copying. This shows that
copying can be done at several places with different impact on
memory consumption and runtime performance.

The attentive reader might get worried about procedures such
as qsort in Figure 13. In the approach in [4] all the variables
involved with the accumulating parameter and the result are put
in the same region. This is perfect because the accumulator is
gradually built up to become the final result. Our new approach
seems to be spoiling this. First notice that A1 and S2 are in the
same region R6 due to the construction. In the first execution path
we have a same-edge at (2) from the region R2 of A to the region
R3 of S. In the second execution path we have a same-edge at (5)
from R2 to R6 and a same-edge at (7) from R6 to R3. All same-
edges are “safe”. The resulting region-annotated program has a
region-annotated assignment at (2). When we mimic the region-

annotated assignment by a copying of the list skeleton, we see that
region reuse can be done and that the maximal number of words
used is the same as with the existing RBMM system, thus optimal.
However, this instruction is sheer overhead. It would be removed by
the following optimization step. For qsort in all execution paths
we have a same-edge path from the region R2 of A to the region
R3 of S. Thus, we could put all the involved variables again in one
region. Note that the optimization condition does not hold for e.g.,
q in Figure 12. More programs will also have to be studied in order
to know the relevance and the impact of this optimization step.

Birkedal et al. [1] present Storage Mode Analysis that targets
the same class of programs. Being an extra phase after the region
inference in [8] that puts all such states into the same region, the
analysis then aims to reset the region before each iteration if it is
safe to do so. The decision is also based on liveness information.
However for Game of Life, it requires manually rewriting the pro-
gram with a copying function so that the resetting is possible [2].
Henglein et al. [2] develop an expressive region type system that
can accept several region-annotated versions for a program. Their
region inference based on that type system also can produce an an-
notated version with the same region behaviour for Game of Life
as ours, without requiring rewriting. One interesting open problem
with their region type system is to have a strong region inference
that, among a number of accepted annotated programs, can choose
to generate an optimal one. We start from an analysis algorithm
that performs well generally and extend it to obtain better results in
a popular pattern of code, which is well known to be difficult for
RBMM. By mimicking region reuse using copying procedures, we
showed that it can effectively reduce memory consumption how-
ever there exist cases where the programs need to be made more
region-friendly before it can be done. Whether this change can also
be automated is an open problem.

Acknowledgments

We would like to thank the referees for the constructive comments.
Quan Phan is supported by FWO project G.0221.07.

References

[1] L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to von
Neumann machines via region representation inference. In Principles

of Programming Languages., pages 171–183. ACM Press., 1996.

[2] F. Henglein, H Makholm, and H. Niss. A direct approach to control-
flow sensitive region-based memory management. In Principles and

Practice of Declarative Programming., pages 175–186. ACM Press.,
2001.

[3] H. Makholm and K. Sagonas. On enabling the WAM with region
support. In Proceedings of the 18th International Conference on Logic
Programming. Springer Verlag., 2002.

[4] Q. Phan and G. Janssens. Static region analysis for Mercury. In Pro-
ceedings of the 23rd International Conference on Logic Programming,
pages 317–332. Springer, 2007.

[5] Q. Phan and G. Janssens. Region-based memory management for
Mercury programs. Part 1: Region analysis and transformation. Tech-
nical Report CW540, Department of Computer Science, Katholieke
Universiteit Leuven, 2009.

[6] Q. Phan, Z. Somogyi, and G. Janssens. Runtime support for region-
based memory management in Mercury. In Proceedings of the

2008 International Symposium on Memory Management, pages 61–
70. ACM Press., 2008.

[7] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm
of Mercury, an efficient purely declarative logic programming lan-
guage. The Journal of Logic Programming, 29(1-3):17–64, October-
December 1996.

[8] M. Tofte and J.-P. Talpin. Region-based memory management. Infor-
mation and Computation., 132(2):109–176, February 1997.

