
Constraint-Based Mode Analysis of Mercury

David Overton ∗ †

dmo@cs.mu.oz.au

Zoltan Somogyi ∗

zs@cs.mu.oz.au

Peter J. Stuckey ∗

pjs@cs.mu.oz.au

∗ University of Melbourne
† Monash University

1 Motivation

Mercury is a strongly-moded logic programming language. This
means that the compiler must have precise information about the
state of instantiation of each variable at each program point.

The compiler must decide which parts of a procedure produce
which variables, and how conjuncts in a predicate body should be
re-ordered to ensure that producers come before consumers.

The task of a mode system is to determine this information, either
by mode inference or by checking declarations supplied by the
programmer.

1.1 The Current Mercury Mode System

The current Mercury mode system has several limitations:

• it is not accurate enough to allow partially instantiated data
structures to be useful;

• it is not accurate enough to fully support destructive update;

• it doesn’t reorder conjuncts while doing mode inference, in
order to avoid combinatorial explosion; and

• the algorithm is quite complicated since it attempts to do
several conceptually different things in one pass.

1.1 The Current Mercury Mode System

The current Mercury mode system has several limitations:

• it is not accurate enough to allow partially instantiated data
structures to be useful;

• it is not accurate enough to fully support destructive update;

• it doesn’t reorder conjuncts while doing mode inference, in
order to avoid combinatorial explosion; and

• the algorithm is quite complicated since it attempts to do
several conceptually different things in one pass.

1.1 The Current Mercury Mode System

The current Mercury mode system has several limitations:

• it is not accurate enough to allow partially instantiated data
structures to be useful;

• it is not accurate enough to fully support destructive update;

• it doesn’t reorder conjuncts while doing mode inference, in
order to avoid combinatorial explosion; and

• the algorithm is quite complicated since it attempts to do
several conceptually different things in one pass.

1.1 The Current Mercury Mode System

The current Mercury mode system has several limitations:

• it is not accurate enough to allow partially instantiated data
structures to be useful;

• it is not accurate enough to fully support destructive update;

• it doesn’t reorder conjuncts while doing mode inference, in
order to avoid combinatorial explosion; and

• the algorithm is quite complicated since it attempts to do
several conceptually different things in one pass.

1.1 The Current Mercury Mode System

The current Mercury mode system has several limitations:

• it is not accurate enough to allow partially instantiated data
structures to be useful;

• it is not accurate enough to fully support destructive update;

• it doesn’t reorder conjuncts while doing mode inference, in
order to avoid combinatorial explosion; and

• the algorithm is quite complicated since it attempts to do
several conceptually different things in one pass.

:- pred length(list(int), int).

:- mode length(out(list_skel(free)), in) is det.

length(L, N) :-

(L = [], N = 0

; L = [_ | T], M = N - 1, length(T, M)

).

:- pred iota(list(int), int).

:- mode iota(list_skel(free) >> ground, in) is det.

iota(L, X) :-

(L = []

; L = [H | T], H = X, Y = X + 1, iota(T, Y)

).

?- length(L, 10), iota(L, 3).

1.2 A Constraint-Based Approach

We have developed an alternative two-step algorithm which
attempts to solve these problems.

1. Determine producers for each node of the type tree of each
variable. In each mode:

• each node should have at most one producer; and

• each node that has consumers should have exactly one
producer.

2. Find an execution order that ensures that producers are
executed before consumers if the implementation doesn’t
support coroutining.

2 Deterministic Regular Tree Grammars

2.1 Types

We must be able to talk about each of the individual parts of the
terms which a program variable will be able to take as values.

We do this with a regular tree, expressed as a tree grammar.

E.g. from type declarations

:- type list(T) ---> [] ; [T | list(T)].

:- type abc ---> a ; b ; c.

and type list(abc) we get the grammar

list(abc) → [] ; [abc|list(abc)]

abc → a ; b ; c

2.2 Expanded Grammars

Need to expand the grammar (by “unrolling” the type tree) to be
able to differentiate, where necessary, between different nodes that
share the same non-terminal in the original grammar. It may also
be necessary to introduce new unifications and rename variables.

L

H

L

H

E

TH

[|][|]

[|][]

[] []

E.g. append/3 is transformed as follows

append(A, B, C) :-

A = [],

B = C.

append(A, B, C) :-

A = [H | AT],

C = [H | CT],

append(AT, B, CT).

=⇒

append(A, B, C) :-

A = [],

B = C.

append(A, B, C) :-

A = [AH | AT],

C = [CH | CT],

AH = CH,

append(AT, B, CT).

and the original and the expanded grammars are

A → [] ; [H|AT]

B → [] ; [BE|B]

C → [] ; [H|CT]

A → [] ; [AH|AT]

AT → [] ; [AE|AT]

B → [] ; [BE|B]

C → [] ; [CH|CT]

CT → [] ; [CE|CT]

2.3 Reachable and Corresponding Nodes

Reachable:

ρI(X) = the set of nodes reachable from X in the grammar I

Corresponding:

χI(X, Y) = the set of pairs of corresponding nodes reachable from
X and Y in the grammar I

E.g. if I is the expanded grammar for append/3 :

ρI(C) = {C,CH,CT,CE}

and

χI(B,C) = {〈B,C〉, 〈BE,CH〉, 〈B,CT〉, 〈BE,CE〉}

3 Goal Paths

In order to describe where a part of a variable becomes bound, we
need to be able to uniquely identify each subgoal of a predicate
body.

• A goal path consists of a sequence of path components.

• The empty goal path λ denotes the entire procedure body.

• If the goal at path p is a conjunction, then p.cn denotes its nth
conjunct.

• If the goal at path p is a disjunction, then p.dn denotes its nth
disjunct.

• If the goal at path p is an if-then-else, then p.c denotes its
condition, p.t denotes its then-part, and p.e denotes its
else-part.

3 Goal Paths

In order to describe where a part of a variable becomes bound, we
need to be able to uniquely identify each subgoal of a predicate
body.

• A goal path consists of a sequence of path components.

• The empty goal path λ denotes the entire procedure body.

• If the goal at path p is a conjunction, then p.cn denotes its nth
conjunct.

• If the goal at path p is a disjunction, then p.dn denotes its nth
disjunct.

• If the goal at path p is an if-then-else, then p.c denotes its
condition, p.t denotes its then-part, and p.e denotes its
else-part.

3 Goal Paths

In order to describe where a part of a variable becomes bound, we
need to be able to uniquely identify each subgoal of a predicate
body.

• A goal path consists of a sequence of path components.

• The empty goal path λ denotes the entire procedure body.

• If the goal at path p is a conjunction, then p.cn denotes its nth
conjunct.

• If the goal at path p is a disjunction, then p.dn denotes its nth
disjunct.

• If the goal at path p is an if-then-else, then p.c denotes its
condition, p.t denotes its then-part, and p.e denotes its
else-part.

3 Goal Paths

In order to describe where a part of a variable becomes bound, we
need to be able to uniquely identify each subgoal of a predicate
body.

• A goal path consists of a sequence of path components.

• The empty goal path λ denotes the entire procedure body.

• If the goal at path p is a conjunction, then p.cn denotes its nth
conjunct.

• If the goal at path p is a disjunction, then p.dn denotes its nth
disjunct.

• If the goal at path p is an if-then-else, then p.c denotes its
condition, p.t denotes its then-part, and p.e denotes its
else-part.

3 Goal Paths

In order to describe where a part of a variable becomes bound, we
need to be able to uniquely identify each subgoal of a predicate
body.

• A goal path consists of a sequence of path components.

• The empty goal path λ denotes the entire procedure body.

• If the goal at path p is a conjunction, then p.cn denotes its nth
conjunct.

• If the goal at path p is a disjunction, then p.dn denotes its nth
disjunct.

• If the goal at path p is an if-then-else, then p.c denotes its
condition, p.t denotes its then-part, and p.e denotes its
else-part.

3 Goal Paths

In order to describe where a part of a variable becomes bound, we
need to be able to uniquely identify each subgoal of a predicate
body.

• A goal path consists of a sequence of path components.

• The empty goal path λ denotes the entire procedure body.

• If the goal at path p is a conjunction, then p.cn denotes its nth
conjunct.

• If the goal at path p is a disjunction, then p.dn denotes its nth
disjunct.

• If the goal at path p is an if-then-else, then p.c denotes its
condition, p.t denotes its then-part, and p.e denotes its
else-part.

3 Goal Paths

In order to describe where a part of a variable becomes bound, we
need to be able to uniquely identify each subgoal of a predicate
body.

• A goal path consists of a sequence of path components.

• The empty goal path λ denotes the entire procedure body.

• If the goal at path p is a conjunction, then p.cn denotes its nth
conjunct.

• If the goal at path p is a disjunction, then p.dn denotes its nth
disjunct.

• If the goal at path p is an if-then-else, then p.c denotes its
condition, p.t denotes its then-part, and p.e denotes its
else-part.

3 Goal Paths

In order to describe where a part of a variable becomes bound, we
need to be able to uniquely identify each subgoal of a predicate
body.

• A goal path consists of a sequence of path components.

• The empty goal path λ denotes the entire procedure body.

• If the goal at path p is a conjunction, then p.cn denotes its nth
conjunct.

• If the goal at path p is a disjunction, then p.dn denotes its nth
disjunct.

• If the goal at path p is an if-then-else, then p.c denotes its
condition, p.t denotes its then-part, and p.e denotes its
else-part.

4 Constraint Domain

We associate a set of constraint variables with each non-terminal
V in the expanded grammar for the predicate.

• Vin is the proposition that V is produced outside the predicate.

• Vout is the proposition that V is produced somewhere (either
inside or outside the predicate).

• Vp is the proposition that V is produced by the goal at goal
path p.

4 Constraint Domain

We associate a set of constraint variables with each non-terminal
V in the expanded grammar for the predicate.

• Vin is the proposition that V is produced outside the predicate.

• Vout is the proposition that V is produced somewhere (either
inside or outside the predicate).

• Vp is the proposition that V is produced by the goal at goal
path p.

4 Constraint Domain

We associate a set of constraint variables with each non-terminal
V in the expanded grammar for the predicate.

• Vin is the proposition that V is produced outside the predicate.

• Vout is the proposition that V is produced somewhere (either
inside or outside the predicate).

• Vp is the proposition that V is produced by the goal at goal
path p.

4 Constraint Domain

We associate a set of constraint variables with each non-terminal
V in the expanded grammar for the predicate.

• Vin is the proposition that V is produced outside the predicate.

• Vout is the proposition that V is produced somewhere (either
inside or outside the predicate).

• Vp is the proposition that V is produced by the goal at goal
path p.

5 Mode Inference Constraints

5.1 Structural Constraints

For all nodes V in the grammar:

(Vout ↔ Vin ∨ Vλ) ∧ ¬(Vin ∧ Vλ)

For all nodes V in the grammar which are not reachable from the
head variables:

¬Vin

For all nodes D, V such that D ∈ ρI(V)

(Din → Vin) ∧ (Dout → Vout)

5.2 Goal Constraints

For each goal path p:

For each node reachable from a variable local to p:

Vp ↔ Vout

For each node reachable from a variable that is non-local to the
parent of p but does not occur in p:

¬Vp

5.3 Compound Goals

If the goal at p is a conjunction (G1, . . . , Gn), for all nodes
reachable from a variable in the goal:

(Vp ↔ Vp.c1 ∨ . . . ∨ Vp.cn
) ∧

n∧
i=1

i−1∧
j=1

¬(Vp.ci
∧ Vp.cj

)

If the goal at p is a disjunction (G1; . . . ;Gn), for all nodes reachable
from a variable in the goal:

Vp ↔ Vp.di

An if-then-else (Gc → Gt;Ge) is semantically equivalent to
(Gc, Gt); (¬∃Gc, Ge).

If the goal at p is an if-then-else (Gc → Gt;Ge), for all nodes
reachable from a variable in the goal:

(Vp ↔ Vp.c ∨ Vp.t ∨ Vp.e) ∧ ¬(Vp.c ∧ Vp.t)

For nodes reachable from variables non-local to the if-then-else we
also need:

¬Vp.c ∧ (Vp.t ↔ Vp.e)

5.4 Atomic Goals

For a unification X = Y for each pair 〈V,W 〉 ∈ χI(X, Y)

Vout ∧Wout ∧ ¬(Vp ∧Wp)

For a unification X = f(Y1, . . . , Yn):

Xout

and for each node V reachable from Yi:

¬Vp

For a call q(Y1, . . . , Yn) where 〈X1, . . . , Xn〉 are the formal
parameters of q/n.

Recursive call. ∧
〈V,W 〉∈χI(〈X1,...,Xn〉,〈Y1,...,Yn〉)

(Vλ ↔ Wp) ∧ (Vin → Wout)

(assumes that the recursive call is in the same mode).

Non-recursive call.

∃ρI({X1, . . . , Xn}). CInf(I, q/n)

∧
∧

〈V,W 〉∈χI(〈X1,...,Xn〉,〈Y1,...,Yn〉)

(Vλ ↔ Wp) ∧ (Vin → Wout)

where CInf(I, q/n) is the constraint inferred for q/n.

5.5 Example

Each of the following rows gives one solution of the constraints we
build for append/3 , projected onto {Vin|V ∈ ρI({A,B,C})}:

Ain AHin ATin AEin Bin BEin ¬Cin ¬CHin ¬CTin ¬CEin

¬Ain ¬AHin ¬ATin ¬AEin ¬Bin ¬BEin Cin CHin CTin CEin

Ain AHin ATin AEin Bin BEin Cin ¬CHin CTin ¬CEin

Ain ¬AHin ATin ¬AEin Bin ¬BEin Cin CHin CTin CEin

Ain AHin ATin AEin Bin BEin Cin CHin CTin CEin

Each solution corresponds to a different mode of append/3 . The
first two solutions are the principal modes. The other solutions are
implied modes.

6 Selecting Execution Order

• Each solution of the constraints specifies which goals produce
which nodes and which goals consume which nodes and thus
specifies the modes of the arguments.

• We need to ensure that each node is produced before it is
consumed so we build a directed graph and do a topological
sort.

• If the graph has a cycle, there is no viable sequential execution
order.

6 Selecting Execution Order

• Each solution of the constraints specifies which goals produce
which nodes and which goals consume which nodes and thus
specifies the modes of the arguments.

• We need to ensure that each node is produced before it is
consumed so we build a directed graph and do a topological
sort.

• If the graph has a cycle, there is no viable sequential execution
order.

6 Selecting Execution Order

• Each solution of the constraints specifies which goals produce
which nodes and which goals consume which nodes and thus
specifies the modes of the arguments.

• We need to ensure that each node is produced before it is
consumed so we build a directed graph and do a topological
sort.

• If the graph has a cycle, there is no viable sequential execution
order.

6 Selecting Execution Order

• Each solution of the constraints specifies which goals produce
which nodes and which goals consume which nodes and thus
specifies the modes of the arguments.

• We need to ensure that each node is produced before it is
consumed so we build a directed graph and do a topological
sort.

• If the graph has a cycle, there is no viable sequential execution
order.

7 Experimental Evaluation

• Our implementation uses Reduced Ordered Binary Decision
Diagrams (ROBDDs).

• Preliminary results suggest that analysis time is considerably
slower (typically between 7 and 50 times slower) than the
current system.

• For this reason we anticipate only using it for predicates for
which the current system doesn’t work.

• It may also be worth trying alternative constraint solvers.

8 Conclusion and Future Work

• Our new system is not as efficient as the current system, but it
is able to check and infer more complex modes, and decouples
reordering of conjuncts from determining producers.

• The implementation handles all Mercury constructs, including
higher-order.

Future work:

• Support for sub-typing and uniqueness modes, including more
complicated uniqueness modes than the current system can
handle.

• Polymorphic modes, where Boolean variables represent a
pattern of mode usage.

• Circular modes needed for coroutining.

