
Automatic Parallelism for Mercury

Automatic Parallelism for Mercury

Paul Bone

The University of Melbourne
National ICT Australia

Ph.D. Completion Seminar

May 2nd, 2012

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 1 / 49

Automatic Parallelism for Mercury Introduction

Motivation — Multicore computing

Computing has traditionally seen a logarithmic increase in CPU clock
speeds. However, due to physical limitations this trend no-longer
continues.

Manufacturers now ship multicore processors to continue to deliver
better-performing processors without increasing clock speeds.

Programmers who want to take advantage of the extra cores on these
processors must write parallel programs.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 2 / 49

Automatic Parallelism for Mercury Introduction

Motivation — Threaded programming

Threads are the most common method of parallel programming. When
using threads, programmers use critical sections to protect shared
resources from concurrent access.

Critical sections are normally protected by locks, but it is easy to make
errors when using locks.

Forgetting to use locks can put the program into an inconsistent
state, corrupt memory and crash the program.

Using multiple locks in different orders in different places can lead to
deadlocks.

Critical sections are not composable, nesting critical sections may
acquire locks in different orders in different places.

Misplacing lock operations can lead to critical sections that are too
wide (causing poor performance) or too narrow (causing data
corruption and crashes).

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 3 / 49

Automatic Parallelism for Mercury Introduction

Automatic parallelism

A good compiler performs many optimisations on behalf of the
programmer. Programmers rarely think about:

register allocation,

inlining,

simplification such as constant propagation & strength reduction.

We believe that parallelisation is just another optimisation, and it would
be best if the compiler handled it for us; so that, like any other
optimisation, we wouldn’t need to think of it.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 4 / 49

Automatic Parallelism for Mercury Introduction

About Mercury

Mercury is a pure logic/functional language designed to support the
creation of large, reliable, efficient programs.

It has a syntax similar to Prolog’s, however the operational semantics
are very different.

It is strongly typed using a Hindley Milner type system.

It also has mode and determinism systems.

:- pred map(pred(T, U), list(T), list(U)).

:- mode map(pred(in, out) is det, in, out) is det.

map(_, [], []).

map(P, [X | Xs], [Y, Ys]) :-

P(X, Y),

map(P, Xs, Ys).

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 5 / 49

Automatic Parallelism for Mercury Introduction

Effects in Mercury

In Mercury, all effects are explicit, which helps programmers as well as the
compiler.

main(IO0, IO) :-

write_string("Hello ", IO0, IO1),

write_string("world!\n", IO1, IO).

The I/O state represents the state of the world outside of this process.
Mercury ensures that only one version is alive at any given time.

This program has three versions of that state:

IO0 represents the state before the program is run

IO1 represents the state after printing Hello

IO represents the state after printing world!\n.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 6 / 49

Automatic Parallelism for Mercury Introduction

Data dependencies

qsort([], []).

qsort([Pivot | Tail], Sorted) :-

partition(Pivot, Tail, Bigs0, Smalls0), %1

qsort(Bigs0, Bigs), %2

qsort(Smalls0, Smalls), %3

Sorted = Smalls ++ [Pivot | Bigs]. %4

1

2 3

4

Bigs0 Smalls0

Bigs Smalls

Steps 2 and 3 are independent.

This is easy to prove because
there are never any side effects.

They may be executed in
parallel.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 7 / 49

Automatic Parallelism for Mercury Introduction

Explicit Parallelism

Mercury allows explicit, deterministic parallelism via the parallel
conjunction operator &.

qsort([], []).

qsort([Pivot | Tail], Sorted) :-

partition(Pivot, Tail, Bigs0, Smalls0),

(

qsort(Bigs0, Bigs)

&

qsort(Smalls0, Smalls)

),

Sorted = Smalls ++ [Pivot | Bigs].

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 8 / 49

Automatic Parallelism for Mercury Introduction

Why make this automatic?

We might expect parallelism to yield a speedup in the quicksort example,
but it does not.

The above parallelisation creates N parallel tasks for a list of length N.
Most of these tasks are trivial and the overheads of managing them slow
the program down.

Programmers rarely understand the performance of their programs, even
when they think they do.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 9 / 49

Automatic Parallelism for Mercury Runtime system changes

Runtime system changes

Before we can automatically parallelise programs effectively we need to be
able to manually parallelise them effectively. This meant making several
improvements to the runtime system.

The RTS has several objects used in parallel Mercury programs.

Engines represent abstract CPUs, the RTS will create as many
engines as there are processors in the system, and control
each one from a POSIX Thread.

Contexts represent a computation in progress, they contain the stacks
for that computation, and a copy of the engine’s registers
when the context is suspended.

Sparks are a very small structure representing a computation that
has not yet been started, and therefore has no allocated
stack space.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 10 / 49

Automatic Parallelism for Mercury Runtime system changes

Work stealing

Peter Wang introduced sparks and a partial work stealing implementation.

Work stealing reduces contention on a global queue of work by allowing
each context to maintain its own work stack. Contexts can:

Push a spark onto their own stack.

Pop a spark off their own stack.

Steal a spark from the cold end of another’s stack.

All of these operations are lock free, the first two operations are wait free
and do not use any atomic operations. The stealing operation uses an
atomic compare-and-swap that may busy-wait.

Credit: 80% Peter Wang, 20% myself, excluding the queue data structure.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 11 / 49

Automatic Parallelism for Mercury Runtime system changes

Dependent Parallelism

Mercury can handle dependencies between parallel conjuncts. Shared
variables are produced in one conjunction and consumed in another.

map foldl(, , [], Acc, Acc).

map foldl(M, F, [X | Xs], Acc0, Acc) :-

(

M(X, Y),

F(Y, Acc0, Acc1)

) &

map foldl(M, F, Xs, Acc1).

Acc1 will be replaced with a future, If the second conjunct attempts to
read from the future before the first conjunct writes the future, its context
will be blocked and resumed once the first conjunct has placed a value into
the future.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 12 / 49

Automatic Parallelism for Mercury Runtime system changes

Right-recursive parallel code

Mode correctness requires that all producers of variables occur before
consumers in conjunctions.

Programmers are encouraged to make their code tail-recursive. This
means that the recursive call is placed lasted in a conjunction so that it
can become a tail call.

A parallel conjunction G1 & G2 & . . . & GN will be executed by spawning
off G2 & . . . & GN , then executing G1 immediately. In the common case
that the forked-off task is not taken up by another engine then, a
dependency between the tasks does not require a context switch.

However, if the forked-off task was taken by another engine, the original
context must be suspended until that task completes. When the last
conjunct is a tail call, it often takes far longer to execute than the other
conjuncts. Causing the original context to be blocked for a long time.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 13 / 49

Automatic Parallelism for Mercury Runtime system changes

Decomposing a parallel conjunction

Pseudo compiler output:

case label:

SyncTerm st;

init sync term(&st);

spawn off(spawn off label, &st);

M(X, Y);

F(Y, Acc0, Acc1);

join and continue(resume label, &st);

spawn off label:

map foldl(M, F, Xs, Acc1, Acc);

join and continue(resume label, &st);

resume label:

return;

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 14 / 49

Automatic Parallelism for Mercury Runtime system changes

Execution of right-recursive parallel code

Blocking the original context can create a pathological worst-case
behaviour: the same behaviour will occur at each level of recursion.

This will cause it to use a number of contexts linear in the depth of the
recursion.

Time

Number of Contexts

If each context contains 4MB of stack space, a loop only of 256 iterations
will consume 1GB!

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 15 / 49

Automatic Parallelism for Mercury Runtime system changes

Workaround — Reorder conjuncts

The compiler understands recursion including mutual recursion. Therefore,
it can move conjuncts with recursive calls to the left of those without.
This avoids the problem above.

map(P, [X | Xs], [Y, Ys]) :-

map(P, Xs, Ys) &

P(X, Y).

However, where dependencies exist conjuncts cannot be moved without
violating the program’s mode-correctness. Therefore, this solution only
works in the rare cases that parallel conjunctions are independent.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 16 / 49

Automatic Parallelism for Mercury Runtime system changes

Workaround — The max-contexts limit

To reduce the impact of this, Peter added a maximum limit on the number
of contexts that could be in memory at the same time.

When the limit is reached no context can be created to handle the
spawned off computation.

This limit trades memory usage for sequential execution.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 17 / 49

Automatic Parallelism for Mercury Runtime system changes

Management of work queues

Work queues where originally owned by contexts, if there where 100’s of
contexts active then there where 100’s of work queues to steal work from,
most of which are usually empty. This makes work stealing slower.

Furthermore, as contexts are created and destroyed the number of work
queues changes. This required a global lock to manage the set of work
queues,

Work queues are now owned by engines, which means that there are a
small fixed number of queues. Greatly simplifying the work stealing code.

More importantly it is faster in the pathological right-recursive case.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 18 / 49

Automatic Parallelism for Mercury Automatic parallelism

Our approach

Profile the program to find the expensive parts.

Analyse the program to determine what parts can be run in parallel.

Select only the parts that can be parallelised profitably. This may
involve trial and error when done by hand.

Continue introducing parallel evaluation until the all processors are
fully utilised or there is no profitable parallelism left.

source
compile

prof
profile analyse feedback

compile
par

result

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 19 / 49

Automatic Parallelism for Mercury Automatic parallelism

Deep profiler call graphs

The deep profiler records profiling data not just for a call, but for a
call-chain. The chain is an alternating list of call and call-site objects.

main

g map f

map f

The two calls to f are recorded separately as the first one goes via g and
the second does not.

This even works with higher order calls such as the one in map.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 20 / 49

Automatic Parallelism for Mercury Automatic parallelism

Deep profiler call graphs

Because recursive calls are included in this chain, multiple calls to the
same procedure from a single procedure will have their profiling data
recorded separately.

main main.cs1 g

g.cs1

g.cs2

f

f

If g contains two call sites that both call f , then these also record separate
profiling data for f and its descendants.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 21 / 49

Automatic Parallelism for Mercury Automatic parallelism

Deep profiler call graphs

This is very powerful and helps to collect a lot of very useful data about a
programs performance. However, it does not separate recursions or mutual
recursions.

The call tree:

main g f f f

Is actually recorded as:

main g f

This creates a tree of strongly connected components (SCCs).
Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 22 / 49

Automatic Parallelism for Mercury Automatic parallelism

Recursion types

Recursion type % of procedures % of runtime

Not recursive 78.04% 57.53%
Single recursion 12.91% 28.96%
Mutual recursion (3 procs) 2.52% 4.78%
Mutual recursion (2 procs) 1.09% 2.20%
Divide & Conquer 0.51% 3.27%
Mutual recursion (4 procs) 0.29% 1.39%
Mutual recursion (5 procs) 0.28% 1.10%

Recursion with levels 0, 2, 3, 4 0.15% 1.04%

Unclassified/unknown 3.09% 0.26%

Taken from an analysis on the mercury compiler.

Unclassified/unknown recursions include builtin code and code with
determinisms the analysis cannot handle.

Most recursions with multiple levels such as 0, 2, 3, 4 are in the tree234
module of the standard library.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 23 / 49

Automatic Parallelism for Mercury Automatic parallelism

Cost of recursive calls

For a singlely-recursive procedure we know:

no. of outside calls no. of inside (recursive) calls
cost of base case cost of recursive case (minus recursive call)
cost of shared code

We can calculate:

MaxDepth =
NumInsideCalls

NumOutsideCalls

AvgDepth =
MaxDepth

2
RecCost(Depth) = Shared + Base + Depth(Shared + RecBranch)

Depending on the situation, we can calculate the cost of a recursive call at
any depth.

Different equations can be derived for each recursion type.
Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 24 / 49

Automatic Parallelism for Mercury Automatic parallelism

Finding parallelisation candidates

The deep profiler’s call graph is a tree of strongly connected components
(SCCs). Each SCC is a group of mutually recursive calls. The automatic
parallelism analysis follows the following algorithm:

Recurse depth-first down the call graph from main/2.

Analyse each procedure of each SCC, identify conjunctions that have
two or more goals whose cost is greater than a configurable threshold.

Stop recursing into children if either:

the child’s cost is below another configurable threshold; or
there is no free processor to exploit any parallelism the child may have.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 25 / 49

Automatic Parallelism for Mercury Overlap analysis

Overlap

Dependencies between variables can greatly effect the amount of
parallelism that can be gained.

map_foldl(_, _, [], Acc, Acc).

map_foldl(M, F, [X | Xs], Acc0, Acc) :-

M(X, Y),

F(Y, Acc0, Acc1),

map_foldl(M, F, Xs, Acc1, Acc).

F needs Y from M, and the recursive call needs Acc1 from F.

There are 3 ways to parallelise the conjunction in map foldl.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 26 / 49

Automatic Parallelism for Mercury Overlap analysis

Parallelising map foldl

Y is produced at the very end of M and consumed at the very start of F, so
the execution of these two calls cannot overlap.

Acc1 is produced at the end of F, but it is not consumed at the start of
the recursive call, so some overlap is possible.

map_foldl(_, _, [], Acc, Acc).

map_foldl(M, F, [X | Xs], Acc0, Acc) :-

(

M(X, Y),

F(Y, Acc0, Acc1)

) &

map_foldl(M, F, Xs, Acc1, Acc).

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 27 / 49

Automatic Parallelism for Mercury Overlap analysis

map foldl overlap

The recursive call needs Acc1 only when it calls F. The calls to M can be
executed in parallel.

M F

Acc1

M F

Acc1’Acc1

M F

Acc1’

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 28 / 49

Automatic Parallelism for Mercury Overlap analysis

Simple overlap example

We conceptually split each task split into sections, each section ended by
the production or consumption of a shared variable. pR and qR denote
the time that the tasks take to compute any non-shared variables needed
after the conjunction.

Sequential

pA pR qA qR

produce A consume A

Seq Time

Parallel

pA pR

qA qR

consume A

Par Time
Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 29 / 49

Automatic Parallelism for Mercury Overlap analysis

Pessimal overlap example

If variables are produced or consumed at different times within goals, then
the overlap can vary greatly.

Sequential

pA pR qA qR

produce A consume A

Seq Time

Parallel

pA pR

qA qR

consume A

Par Time

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 30 / 49

Automatic Parallelism for Mercury Overlap analysis

Overlap with more than one dependency

We calculate the execution time of q by iterating over its sections. In this
case, that means iterating over the variables it consumes in the order that
it consumes them.

p pB + pA + pR

AB

pB pA pR

q qA qB + qR

A B

qA qB qR

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 31 / 49

Automatic Parallelism for Mercury Overlap analysis

Overlap algorithm — Loop over variables

find_conjunct_par_time(Goal, SeqTime,

inout CurParTime, inout ProdTimeMap):

ProdConsList := get_sorted_var_uses(Goal)

CurSeqTime := 0

forall (Var_j, Time_j) in ProdConsList:

Duration_j := Time_j - CurSeqTime

CurSeqTime := CurSeqTime + Duration_j

if Goal produces Var_j:

CurParTime := CurParTime + Duration_j + ...

ProdTimeMap[Var_j] := CurParTime

else Goal must consume Var_j:

ParWantTime := CurParTime + Duration_j + ...

CurParTime := max(ParWantTime, ProdTimeMap[Var_j]) + ...

DurationRest := SeqTime - CurSeqTime

CurParTime := CurParTime + DurationRest

The ...s represent estimates of overheads.
Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 32 / 49

Automatic Parallelism for Mercury Overlap analysis

Overlap of more than two tasks

A task that consumes a variable can occur only on the right of the task
that generates its value. Therefore, we process conjuncts from left to right.

p pA + pR

A

pA pR

q qA qB + qR

A

qA qB qR

B

r rB rR

B

rB rR

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 33 / 49

Automatic Parallelism for Mercury Overlap analysis

Overlap algorithm — Loop over conjuncts

find_par_time(Conjs, SeqTimes) returns TotalParTime:

N := length(Conjs)

ProdTimeMap := empty

TotalParTime := 0

for i in 1 to N:

CurParTime := 0 + ...

find_conjunct_par_time(Conjs[i], SeqTimes[i],

CurParTime, ProdTimeMap)

TotalParTime := max(TotalParTime, CurParTime)

TotalParTime := TotalParTime + ...

The ...s represent estimates of overheads.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 34 / 49

Automatic Parallelism for Mercury Overlap analysis

Results

mandelbrot raytracer matrixmult
seq 19.6 (0.95) 17.8 (1.26) 7.7 (1.43)

thread-safe seq 18.6 (1.00) 22.4 (1.00) 11.0 (1.00)
thread-safe p1

Indep only 18.6 (1.00) 22.3 (1.00) 11.0 (1.00)
Naive 18.6 (1.00) 22.4 (1.00) 11.0 (1.00)
Overlap 18.5 (1.01) 22.4 (1.00) 11.0 (1.00)

thread-safe p2
Indep only 18.6 (1.00) 22.4 (1.00) 5.5 (1.99)
Naive 9.4 (1.98) 13.0 (1.72) 11.0 (1.00)
Overlap 9.5 (1.96) 12.8 (1.75) 5.5 (1.99)

thread-safe p4
Indep only 18.7 (0.99) 22.6 (0.99) 2.9 (3.85)
Naive 4.8 (3.88) 7.9 (2.84) 11.0 (1.00)
Overlap 4.8 (3.88) 7.8 (2.87) 2.9 (3.85)

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 35 / 49

Automatic Parallelism for Mercury Loop control

Execution of right-recursive parallel code

Recall the problem with parallel right recursion.

Time

Number of Contexts

If each context contains 4MB of stack space, a loop only of 256 iterations
will consume 1GB!

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 36 / 49

Automatic Parallelism for Mercury Loop control

Loop control structure

Our solution of this problem associates a loop control structure with each
loop. This structure contains a fixed number of slots, each of which has a
pointer to a single context.

Once a context is allocated to a slot, the context is not released until the
loop has finished. Instead, it is reused for later iterations.

We replace the original looping procedure with code that creates the loop
control structure, before calling a renamed and transformed version of its
old self.

map foldl(M, F, Xs, Acc0, Acc) :-

create loop control(LC),

map foldl lc(LC, M, F, Xs, Acc0, Acc).

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 37 / 49

Automatic Parallelism for Mercury Loop control

Loop control transformation

map foldl lc(LC, M, F, [X | Xs], Acc0, Acc) :-

LCS = lc wait for free slot(LC),

lc spawn off(LC, LCS, spawn off label),

map foldl lc(LC, M, F, Xs, Acc1, Acc). % Tail call

spawn off label:

M(X, Y);

F(Y, Acc0, Acc1);

lc free slot(LC, LCS);

map foldl lc(LC, , , [], Acc, Acc).

lc finish(LC).

Only as many iterations of the loop can be active as there are slots in the
loop control structure.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 38 / 49

Automatic Parallelism for Mercury Loop control

Execution of loop controlled code

The first time each slot is used, we create a context for that slot. After
the initial rampup period, the loop always uses the configured number of
contexts, never more. After the loop terminates, we free the contexts.

Time

Number of Contexts

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 39 / 49

Automatic Parallelism for Mercury Loop control

Memory usage results: contexts and megabytes

mandelbrot raytracer spectral
seq 1 0.62 1 0.62 1 0.62
par, no & 1 0.62 1 0.62 1 0.62
par, &, 1c, nolc, c128 1 0.62 1 0.62 1 1.12
par, &, 1c, nolc, c512 1 0.62 1 0.62 1 1.12
par, &, 1c, lc1 2 1.25 2 1.25 2 1.75
par, &, 1c, lc2 3 1.88 3 1.88 3 2.38
par, &, 1c, lc4 5 3.12 5 3.12 5 3.62
par, &, 2c, nolc, c128 257 160.62 257 160.62 257 161.12
par, &, 2c, nolc, c512 601 375.62 1025 640.62 1025 641.12
par, &, 2c, lc1 4 2.50 4 2.50 3 2.38
par, &, 2c, lc2 6 3.75 6 3.75 5 3.62
par, &, 2c, lc4 10 6.25 10 6.25 9 6.12
par, &, 4c, nolc, c128 513 320.62 513 320.62 513 321.12
par, &, 4c, nolc, c512 601 375.62 1201 750.62 2049 1281.12
par, &, 4c, lc1 6 3.75 6 3.75 5 3.62
par, &, 4c, lc2 10 6.25 10 6.25 9 6.12
par, &, 4c, lc4 18 11.25 18 11.25 17 11.12

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 40 / 49

Automatic Parallelism for Mercury Loop control

Time results: seconds and speedups

mandelbrot raytracer spectral
seq 19.37 (1.00, 0.97) 19.50 (1.00, 1.21) 16.07 (1.00, 1.19)
par, no & 18.75 (1.03, 1.00) 23.55 (0.83, 1.00) 19.07 (0.84, 1.00)
1c, nolc, c128 18.74 (1.03, 1.00) 23.46 (0.83, 1.00) 19.30 (0.83, 0.99)
1c, nolc, c512 18.74 (1.03, 1.00) 23.43 (0.83, 1.00) 19.30 (0.83, 0.99)
1c, lc2 18.74 (1.03, 1.00) 23.54 (0.83, 1.00) 19.30 (0.83, 0.99)
1c, lc2, tr 18.74 (1.03, 1.00) 23.79 (0.82, 0.99) n/a
2c, nolc, c128 17.82 (1.09, 1.05) 25.68 (0.76, 0.92) 19.25 (0.83, 0.99)
2c, nolc, c512 9.60 (2.02, 1.95) 20.34 (0.96, 1.16) 18.54 (0.87, 1.03)
2c, lc2 9.69 (2.00, 1.94) 14.14 (1.38, 1.67) 9.96 (1.61, 1.91)
2c, lc2, tr 9.78 (1.98, 1.92) 14.04 (1.39, 1.68) n/a
4c, nolc, c128 8.35 (2.32, 2.25) 26.93 (0.72, 0.87) 18.91 (0.85, 1.01)
4c, nolc, c512 4.84 (4.01, 3.88) 14.12 (1.38, 1.67) 16.83 (0.95, 1.13)
4c, lc2 4.74 (4.09, 3.96) 9.35 (2.09, 2.52) 4.98 (3.23, 3.83)
4c, lc2, tr 4.76 (4.07, 3.94) 9.41 (2.07, 2.50) n/a

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 41 / 49

Automatic Parallelism for Mercury Conclusion

Conclusion

We’re able to find and exploit profitable parallelism in small programs.

The analysis explores only the parts of the call graph that might be
profitably parallelised.

Our novel overlap analysis allows us to estimate how dependencies
affect parallel execution.

Our loop control transformation eliminates excessive memory usage
and maintain tail recursion

Several modifications to the runtime system have improved efficiently.

We have adapted the ThreadScope parallel profile visualisation system
for use with Mercury (not shown).

Thank you

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 42 / 49

Automatic Parallelism for Mercury Spare slides

Old engine wakeup code

When a new context is created or an existing one becomes runnable and
an engine is sleeping, the engine is woken up.

If the context must be executed on a particular engine (because foreign
code needs to use the C-stack owned by that engine) then all the engines
are woken up so that the correct one can execute the context.

Engines sleep using a POSIX condition variable associated with the
runqueue lock. Sleeping engines wakeup periodically to attempt to steal
sparks.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 43 / 49

Automatic Parallelism for Mercury Spare slides

New engine wakeup code

In the new system each engine has a semaphore, Engines wait on the
semaphore when they are idle.

When a context becomes runnable and an engine is sleeping the runtime
system wakes the engine by posting to the semaphore. This prevents races
that could occur in the previous system.

Individual engines can be targeted specifically, so if a context has only one
valid engine, then only that engine will be woken.

We can also pass contexts directly to engines, avoiding the runqueue and
synchronisation in many cases.

When a spark is created a sleeping engine is woken and told which spark
queue contains a spark it can execute.

The hew code is much more responsive.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 44 / 49

Automatic Parallelism for Mercury Choosing how to parallelise

Choosing how to parallelise

g1, g2, g3

g1 & (g2, g3)

(g1, g2) & g3

g1 & g2 & g3

Each of these is a parallel conjunction of sequential conjunctions, with
some of the conjunctions having only one conjunct.

If there is a g4, you can (a) execute it in parallel with all the other parallel
conjuncts, or (b) execute it in sequence with the goals in the last
sequential conjunction.

There are thus 2N−1 ways to parallelise a conjunction of N goals.

If you allow goals to be reordered, the search space would become larger
still.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 45 / 49

Automatic Parallelism for Mercury Choosing how to parallelise

Even simple code can have many conjuncts.

X = (-B + sqrt(pow(B, 2) - 4*A*C)) / 2 * A

Flattening the above expression gives 12 small goals, each executing one
primitive operation:

V1 = 0 V5 = 4 V9 = sqrt(V8)

V2 = V1 - B V6 = V5 * A V10 = V2 + V9

V3 = 2 V7 = V6 * C V11 = V3 * A

V4 = pow(B, V3) V8 = V4 - V7 X = V9 / V11

Primitive goals are not worth spawning off. Nonetheless, they can appear
between goals that should be parallelised against one another, greatly
increasing the value of N.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 46 / 49

Automatic Parallelism for Mercury Choosing how to parallelise

Reducing the search space.

Currently we do two things to reduce the size of the search space from
2N−1:

Remove whole subtrees of the search tree that are worse than the
current best solution (a variant of “branch and bound”).

During search we always follow the most promising-looking branch
before backtracking to the alternative branch.

If the search is still taking to long, then switch to a greedy search
that is approximately linear.

This allows us to fully explore the search space when it is small, while
saving time by exploring only part of the search space when it is large.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 47 / 49

Automatic Parallelism for Mercury Push-into-goal transformation

Expensive goals in different conjunctions

The call to typecheck and the call to typecheck preds are expensive
enough to be worth parallelising. But the if-then-else that contains the call
to typecheck has a typical cost 1/10th of the cost of typecheck. It is
not worth parallelising the if-then-else against typecheck preds.

typecheck_preds([], [], ...).

typecheck_preds([Pred0 | Preds0], [Pred | Preds], ...) :-

(if should_typecheck(Pred0) then

10 typecheck(Pred0, Pred, ...)

else

90 Pred = Pred0

),

100 typecheck_preds(Preds0, Preds, ...).

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 48 / 49

Automatic Parallelism for Mercury Push-into-goal transformation

Push later goals into earlier compound goals

We can push the call to typecheck preds into the if-then-else and
parallelise only the then-part:

typecheck_preds([], [], ...).

typecheck_preds([Pred0 | Preds0], [Pred | Preds], ...) :-

(if should_typecheck(Pred0) then

typecheck(Pred0, Pred, ...) &

typecheck_preds(Preds0, Preds, ...)

else

Pred = Pred0,

typecheck_preds(Preds0, Preds, ...)

).

Our analysis can perform this transformation as part of deciding whether
this parallelisation is worthwhile.

Paul Bone (UoM & NICTA) Automatic Parallelism for Mercury May 2nd, 2012 49 / 49

	Automatic Parallelism for Mercury
	Introduction
	Runtime system changes
	Automatic parallelism
	Overlap analysis
	Loop control
	Conclusion
	Spare slides
	Choosing how to parallelise
	Push-into-goal transformation

