
Controlling search space materialization

in a practical declarative debugger

Ian MacLarty1 and Zoltan Somogyi1,2

1 Department of Computer Science and Software Engineering,
University of Melbourne, Australia

2 NICTA Victoria Laboratory
maclarty@csse.unimelb.edu.au zs@csse.unimelb.edu.au

Abstract. While the idea of declarative debugging has been around
for a quarter of a century, the technology still hasn’t been adopted by
working programmers, even by those working in declarative languages.
The reason is that making declarative debuggers practical requires so-
lutions to a whole host of problems. In this paper we address one of
these problems, which is that retaining a complete record of every step
of the execution of a program is infeasible unless the program’s runtime
is very short, yet this record forms the space searched by the declarative
debugger. Most parts of this search space therefore have to be stored
in an implicit form. Each time the search algorithm visits a previously
unexplored region of the search space, it must decide how big a part of
the search space to rematerialize (which it does by reexecuting a call
in the program). If it materializes too much, the machine may start to
thrash or even run out of memory and swap space. If it materializes too
little, then materializing all the parts of the search space required by a
debugging session will require too many reexecutions of (parts of) the
program, which will take too long. We present a simple algorithm, the
ideal depth strategy, for steering the ideal middle course: minimizing re-
executions while limiting memory consumption to what is feasible. We
show that this algorithm performs well even when used on quite long
running programs.

1 Introduction

The aim of the Mercury project is to bring the benefits of declarative
programming languages to the software industry. Mercury is designed
explicitly to support teams of programmers working on large application
programs. It has a modern module system, detects a large fraction of
program errors at compile time, and has an implementation that is both
efficient and portable. To ensure that programmers can actually enjoy the
benefits claimed for logic programs, Mercury has no non-logical constructs
that could destroy the declarative semantics that gives logic programs
their power.

As part of the project, we have built a declarative debugger for Mer-
cury. We have ample motivation to make this declarative debugger work



well because many parts of the Mercury implementation (including the
compiler and most of the declarative debugger itself) are written in Mer-
cury. Using the Mercury declarative debugger to debug the Mercury im-
plementation requires us to confront and solve all the problems that would
face anyone attempting to use a declarative debugger to debug large, long-
running programs. In previous work, we addressed some usability issues
such as how to support the browsing of large (possibly multi-megabyte)
terms [3], and implemented search strategies that are effective even for
very large search spaces [4].

The problem we address in this paper is how to manage the storage
of very large search spaces in the first place. The problem exists because
the space searched by a declarative debugger is equivalent to a complete
record of every step of the execution of a program, and given today’s CPU
speeds, describing the actions of a program that runs for just a second or
two requires gigabytes of storage. This makes storing the record in its en-
tirety clearly infeasible. We must store only a part, and recreate the other
parts on demand. But how should the system decide exactly what parts of
the record to materialize when? We give some algorithms for making that
decision in sections 4 and 5, together with some experimental evaluation.
But first, section 2 introduces the Mercury declarative debugger, and sec-
tion 3 gives our general approach. We assume familiarity with standard
logic programming terminology.

2 Background: the Mercury declarative debugger

When the Mercury compiler is asked to generate debuggable code (with
a flag similar to gcc’s -g), it includes callbacks to the runtime system at
significant events in the program. These events fall into two categories:
interface events and internal events. Interface events record transfers of
control between invocations of predicates and functions. While Mercury
supports functions as well as predicates, the distinctions between them are
only syntactic, so we call each predicate or function a procedure. (Strictly
speaking, it is possible for a predicate or function to have multiple modes
of usage, and a procedure corresponds to just one mode of a predicate or
function, but this distinction is not relevant to this paper.) There are five
kinds of interface events, the first four of which correspond to the four
ports of the Byrd box model [2]:

call A call event occurs just after a procedure has been called, and
control has just reached the start of the body of the procedure.

exit An exit event occurs when a procedure call has succeeded, and
control is about to return to its caller.

2



redo A redo event occurs when all computations to the right of a pro-
cedure call have failed, and control is about to return to this call
to try to find alternative solutions.

fail A fail event occurs when a call has run out of alternatives, and
control is about to return to the rightmost computation to its left
that has remaining alternatives which could lead to success.

excp An exception event occurs when control leaves a procedure call
because that call has thrown an exception.

There are also internal events which record decisions about the flow of
control, but these are not important for this paper.

When a Mercury program that was compiled with debugging enabled
is run under the Mercury debugger mdb, the runtime system gives the
debugger control at each of these events. The debugger can then decide
to interact with the user, i.e. to prompt for and accept commands, be-
fore giving control back to the program being debugged [14]. The mdb
command set provides all the usual debugger facilities, e.g. for inspecting
the values of variables and setting breakpoints. It also allows the retry of
the current call or any of its ancestors. The retry resets the program to
the state it had at the time of the call event of the selected procedure
invocation. This is possible because in Mercury there are no global vari-
ables that the call could have modified, and we have I/O tabling [11, 13]
to simulate the undoing of any interaction of the call with the outside
world.

Retry capability is very useful in its own right, but it is also crucial in
the implementation of declarative debugging. Users can give the command
to initiate declarative debugging when execution is at an exit event that
computed a wrong solution, when execution is at the fail event of a call
that did not compute all the solutions it was expected to compute, or
when execution is at the excp event of a call that was not expected to
throw that exception. In all three cases, the Mercury declarative debugger
uses the retry mechanism to reexecute the affected call, but this time the
code executed by the runtime system at each event has the task of building
a record of all the events of the call. We call this record the annotated trace

[1]. When execution arrives at the event at which declarative debugging
was initiated, the annotated trace is complete, and the system invokes
the declarative debugging algorithm.

That algorithm searches a tree called the evaluation dependency tree

or EDT (That name is from [8], but the tree is an instance of the scheme
proposed by Naish [5]). Each node in the EDT corresponds to an exit,
fail or excp event in the trace. Each of these nodes also makes an as-
sertion: that the solution represented by an exit event is correct, that

3



the set of solutions returned before a fail event is complete, or that the
exception thrown at an excp event was expected to be thrown. The chil-
dren of a given node N in the EDT are the exit, fail and excp events
generated by child calls made by the procedure invocation represented by
node N which could have affected the correctness of the assertion made
by N . The declarative debugger searches the EDT for a incorrect node
whose children are all correct: such nodes represent bugs.

The declarative debugger constructs the EDT from the annotated
trace on demand. The reason why we don’t build the EDT directly is
that we need to build different EDT fragments for negated goals than for
non-negated goals, and the condition of an if-then-else is a negated goal
only if the condition fails. We therefore wouldn’t know what kind of EDT
to build until it is too late. Building a more general data structure such
as the annotated trace allows us to avoid this problem [1].

Besides the heap space used by the program under normal conditions,
there are two additional memory costs when the annotated trace is being
built. One cost is that each node in the annotated trace consumes a few
words of memory; the number of words depends on the node type. The
other cost comes about because some of our search algorithms need to
know the values of procedure arguments. We therefore include copies of
the call’s input arguments in each call node and copies of the call’s out-
put arguments in each exit node. The copied values may be (and usually
are) pointers to the heap. These references prevent the garbage collec-
tor from recovering the heap cells reachable through those pointers. This
doesn’t add to memory consumption directly, but the indirect effect on
memory requirements is very significant. The exact amount of heap mem-
ory retained by e.g. a specific call node is impossible to predict, but on
average, the amount of heap memory retained by n events is usually lin-
ear in n. This is because (1) Mercury programs can only execute straight
line code between events, so the amount of memory allocated between
two events is bounded for any given program, and the average doesn’t
even vary very much between programs; and (2) the rate of recovery of
heap cells must roughly match the rate of their allocation if the program
is not to run out of memory. The memory overhead imposed by collecting
the annotated trace is thus broadly linear in the number of nodes and the
ratio can be measured for any particular program run. This allows us to
control the memory overhead of the annotated trace by controlling the
number of nodes in the annotated trace.

4



build annotated trace(call number, end event, depth limit) returns trace is

trace := NULL

inside := false
Rewind execution to a call before or equal to call number
For each executed event e loop

If e is a call or redo event for call call number
inside := true

If inside
If depth(e) < depth limit

trace := create annotated node(e, trace)
Else if depth(e) = depth limit and e is an interface event

trace := create annotated node(e, trace)
If e is an exit, fail or excp event

trace := mark as implicit root(e, trace)
If e is an exit, fail or excp event for call call number

inside := false
Until the event number of e is end event

Fig. 1. Algorithm for building the annotated trace to a predefined depth limit.

3 Rematerialization on demand

To generate an annotated trace for a call, the call must be reexecuted
and the resulting events collected. Not all the events need be collected
though. We may collect a subset of the events generated by the call and
ask the declarative debugger to try to find a bug in one of these. If the
declarative debugger needs to explore events not collected the first time
around, then the missing events can always be added by reexecuting the
appropriate call. (Reexecuting a deeper call will require less time.)

On each reexecution of a call we require the set of events gathered
during that run to form an EDT. For each node in the EDT derived from
a generated portion of the annotated trace, we require that either all the
children of the node are present in the annotated trace, or none of them
are present. If none of them are present then we mark the node as an
implicit root. An implicit root is the root of a subtree in the EDT whose
nodes have not been materialized in the annotated trace.

If the declarative debugger needs to search the nodes in an implicit
subtree, the call corresponding to the exit, fail or excp event at the
implicit root must be reexecuted. To do this we use the debugger’s retry
capability to rewind the state of the program to a point just before the
call event corresponding to the exit, fail or excp event at the root
of the implicit subtree. We then proceed to reexecute the program from
that point, gathering events into the annotated trace, until we arrive at
the exit, fail or excp event at the implicit root.

5



Fig. 2. The EDT corresponding to the whole annotated trace (left), and the EDT
fragments corresponding to the parts of the trace materialized on demand (right)

The first version of the algorithm we use to decide which events should
be added to the annotated trace on a given run is depicted in figure 1
(this algorithm is from [1]). Here the depth limit parameter controls the
depth of each generated portion of the annotated trace, or more precisely,
the depth of the EDT represented by the generated portion of the anno-
tated trace. The depth function returns the depth of an event relative to
the root of the portion of the EDT currently being materialized. Initially
end event will be the event where the user started the declarative debug-
ging session. On subsequent invocations end event will be the event at
the root of an implicit subtree we wish to materialize. call number is the
call sequence number of the call corresponding to the event at the root
of the implicit subtree.

The manipulation of inside ensures that we collect events only from
inside the call tree of the selected call. Of the events that pass this test,
the algorithm includes in the annotated trace all events above the depth
limit, only interface events at the depth limit, and no events below the
depth limit. Given a large EDT such as the one on the left in figure 2,
successive invocations of this algorithm materialize annotated traces that
yield EDT fragments whose relationship is shown by the triangles on the
right of that figure.

When the event with event number end event is executed, the new
annotated trace fragment is complete. If this is the first, topmost frag-
ment, the declarative debugger starts running the search algorithm on
it, converting nodes in the annotated trace into nodes of the EDT on
demand. If the search algorithm wants to explore a part of the search
space beneath an implicit root, it will invoke build annotated trace

again. When it returns, the debugger will link the new fragment into the
EDT at the point of the implicit root. Our representation scheme allows
the declarative debugger to view the EDT as a single whole tree whose
nodes are materialized on demand, not as something stitched together
from several fragments.

6



Fig. 3. The shape of the trees for “bigsmall” and “smallbig”, and their approximations

4 Ineffective heuristics

The simplest way to control the space-time trade-off is to give a fixed
value for depth limit in figure 1. The problem with this solution is that it
is impossible for the declarative debugger implementor to give a value for
depth limit that yields acceptable results in most cases, let alone all cases.
This is because the EDTs of different programs have greatly different
average branching factors. It is possible for a given depth setting to cause
the declarative debugger to try to collect infeasibly many events for one
program, while collecting only a handful of events for another program,
requiring a huge number of reexecutions of the program to construct the
required parts of the EDT.

A practical algorithm must therefore make depth limit a function of
the shape of the implicit tree we wish to materialize. Initially nothing is
known about the shape of the search space. We therefore initially give
build annotated trace a small fixed depth limit (currently five), but
make it record information in each node at the bottom edge of the first
fragment about the implicit subtree rooted there. This allows us to give
better depth limits to the invocations that build lower fragments. Our
ideal depth limit is one which will cause no more than a specified number
of nodes, node limit, to be included in the new trace fragment, since
(statistically) this also bounds the memory required by the new fragment.
For now, node limit is a parameter; later, we will look at what values of
this parameter are sensible.

Average branching factor. It is easy to modify the code in figure 1 to
detect when execution enters and leaves an implicit subtree, to record
the maximum depth of each subtree (dmax) and the numbers of calls (C)
and events (E) in each subtree, and to record this data in the root of
each implicit subtree. While this info doesn’t tell us about the implicit
EDT directly, it tells us about a related tree we call the weighted call tree.
We can think of the annotated trace as a weighted tree where each node
corresponds to a call event, and the weight of a node is the number of
events that have the same call sequence number as the node, including

7



internal events. Since the sum of the weights of all the nodes equals the
number of annotated trace nodes represented in the tree, this tree is useful
for modeling memory consumption.

For a weighted call tree with a constant branching factor b, the same
weight for each node w, and maximum depth dmax, the number of events
represented by the tree, N , is given by N = w

∑dmax−1

i=0
bi. In this case,

N = E, and we can compute the average w as E/C. This makes it easy to
solve for b by applying e.g. Newton’s method to the monotonic function
f(b) = w

∑dmax−1

i=0
bi − N to find b where f(b) = 0. This gives us the

average branching factor of the implicit subtree. Assuming the branching
factors of most nodes are close to this average, we can calculate the depth
limit we need to collect about node limit nodes by calculating the root
of the monotonic function g(d) = w

∑dmax−1

i=0
bi − node limit.

Unfortunately, our benchmarking shows the assumption is often very
far from the truth. We used four synthetic benchmark programs: fib, stick,
bigsmall and smallbig, and one real one: the Mercury compiler mmc. For
now, we ran all five on data that yielded 1 to 25 million events. Our
benchmark machine was a PC with a 2.4 GHz Intel Pentium IV with 512
Mb of RAM running SuSe Linux 8.1. The behavior of the heuristic is ok on
the test program whose tree is a thin (predictable) stick and isn’t too bad
for Fibonacci, though for fib it collects 10 to 60 times as many nodes as
intended due to the difference between the average branching factor 1.55
and the actual branching factor of 2 for all non-leaf nodes. However things
are worse for the other benchmarks. Many programs contain components
with characteristics similar to bigsmall or smallbig, whose tree shapes
are shown in trees A and B respectively in figure 3. For smallbig, there
didn’t appear to be any correspondence at all between node limit and
the average number of nodes actually constructed per reexecution. With
node limit = 20 000, we got about 150 000; with node limit = 100 000,
we got about 35 000. Since the tree suddenly gets exponentially large in
the bottom few layers, the computed average branching factor needs to
be only a little bit too optimistic for the number of nodes constructed to
explode. How optimistic the approximation is depends on how close to
the widening point of the tree the relevant approximation is taken from.
That in turn depends on the depths used for the fragments above in an
essentially unpredictable manner. For bigsmall, the computed depth limit
is so bad that trying to collect only 100 nodes ran our test machine out of
memory, and the same thing happens with mmc with node limit = 2 000.

Biased branching factor. The problem with bigsmall arises because the
approximation tree (C in figure 3) is way too deep and narrow: it doesn’t

8



have the same shape as the actual tree, even though it has the same max-
imum depth and number of nodes. Based on this, the heuristic believes
that most nodes are near the bottom and thus it is safe to collect many
levels at the top, but those levels contain far more events than expected.

Even though smallbig and bigsmall have very different shapes, they
are approximated by the same tree, tree C in figure 3. We could fix this
by approximating each implicit tree with a constant-branching-factor tree
of the same average depth. The smallbig and bigsmall examples would
then be approximated by trees D and E respectively in figure 3.

Calculating the average depth of an implicit tree is almost as simple as
calculating the maximum depth; we now solve for β in N = w

∑dave−1

i=0
βi

where dave is the average depth of the nodes in the tree. This approach
does perform better. For stick and fib, the numbers of nodes collected are
much closer than the number asked for by node limit, though there are
still some significant deviations. However, the new estimates are still far
from perfect. The bigsmall and mmc tests still collect far too many nodes,
though with this heuristic they run out only with node limit = 2 000 for
bigsmall and node limit = 200 000 for mmc. The smallbig tests still
suffers from exactly the same problem as before: the numbers of nodes
collected still bears little relationship to node limit, though the chaotic
pattern is different.

5 An effective strategy

Clearly, approximating an implicit subtree using a tree with a constant
branching factor is not a useful approach, since realistic programs do not
behave this way. Real programs call all sorts of different predicates. Some
are simple recursive predicates which produce stick-like trees; some have
long conjunctions in their bodies which produce wide trees with large
branching factors. We need a heuristic that works with both these shapes
and everything in between. The heuristics of the previous section were also
flawed in that their estimates of depth limit could inherently fail in either
direction: they could try to collect too many levels as well as too few.
While trying to collect too few levels is relatively benign, requiring only
a small increase in the number of reexecutions, our benchmarking shows
that trying to collect even a few too many levels can require far more
memory than is available. We therefore want a heuristic that guarantees
that no more than node limit nodes will be added to the annotated trace.
The ideal value for depth limit is the highest value that has this property.

Our ideal depth strategy, whose algorithm is shown in figure 4, is de-
signed to compute this value directly. When processing events we don’t
link into the new trace fragment, we don’t just record their maximum or

9



build annotated trace(call number, end event, node limit, depth limit)
returns trace is

trace := NULL

inside := false
Initialise the counts array to size ⌊node limit/2⌋, all zeros
Rewind execution to a call before or equal to call number
For each executed event e loop

If e is a call or redo event for call call number
inside := true

If inside
If depth(e) < depth limit

trace := create annotated node(e, trace)
Else if depth(e) = depth limit and e is an interface event

trace := create annotated node(e, trace)
If e is an exit, fail or excp event

ideal depth := calculate ideal depth(counts, node limit)
trace := mark as implicit root(e, ideal depth, trace)
Reset counts to all zeros

Else
depth in implicit subtree := depth(e) - depth limit
If depth in implicit subtree ≤ ⌊node limit/2⌋

Add 1 to counts[depth in implicit subtree]
If e is an exit, fail or excp event for call call number

inside := false
Until the event number of e is end event

Fig. 4. Algorithm for building the annotated trace using the ideal depth strategy.

average depth; we build a more detailed record. The algorithm does this
by building an array, counts, that records the number of events at each
depth in the tree below the current depth limit for any given implicit
subtree. The calculate ideal depth function scans this array, incre-
menting the depth and computing the cumulative number of events at
or above the current depth until it gets to a depth at which this total
exceeds node limit, then returns one less than this depth as ideal depth.
(If the subtree contains fewer than node limit nodes, then there is no
such depth, and we return a depth that causes all those nodes to be in-
cluded in the fragment.) We attach the ideal depth of each subtree to the
node that acts as the root of that subtree. We specify depth limit = 5 for
the first invocation of build annotated trace, as before. However, later
invocations, whose task is to build an annotated trace fragment from an
implicit root at the bottom edge of a previous fragment, will be given as
depth limit the recorded ideal depth for the subtree at that node. This
guarantees that we collect as many nodes as we can without going over
node limit.

10



node limit exec count total created total created

exec count
TU TR RSS VSZ

100 1124 102 910 91 35.36 51.60 41 49
500 210 101 826 484 10.63 13.67 41 49

1 000 105 102 188 973 7.81 9.40 41 49
5 000 23 112 432 4 888 5.66 6.17 41 49

10 000 12 116 280 9 690 5.45 5.81 41 49
50 000 4 173 876 43 469 5.56 5.80 51 65

100 000 2 165 514 82 757 5.85 6.10 50 57

500 000 1 262 130 262 130 7.28 7.53 59 74
1 000 000 1 524 124 524 124 9.65 9.93 90 99

Table 1. bigsmall: ideal depth strategy.

Since when we materialize the subtree at an implicit root we will wish
to collect at most node limit events, it suffices to count events down to a
depth of ⌊node limit/2⌋. This is because the minimum number of events
at each depth is two (a call event and its corresponding exit, fail or
excp event). We can reuse the same array to calculate the ideal depth for
all the implicit subtrees encountered during a particular run. Reserving
⌊node limit/2⌋ words of memory for this purpose is not a problem, since
we are clearly willing to have the new fragment occupy space linear in
node limit. The array just increases the constant factor slightly.

Materializing the subtree of a predicate that may succeed more than
once requires a slight variation on our algorithm. Suppose a predicate
succeeds twice, producing a call/exit pair and a redo/exit pair. The
subtree rooted at the second exit node can contain events both from be-
tween the call/exit pair and from between the subsequent redo/exit
pair (consider a child call whose result is used in both solutions). The algo-
rithm in figure 4 resets counts at each exit event, which means the ideal
depth limit stored at the second exit will be too big because it is based
only on the events between the redo and second exit. To fix this, we can
reexecute the call in question using a modified version of the algorithm in
figure 4 which doesn’t reset the counts array and doesn’t construct any
trace nodes. (Since most calls can succeed at most once, this extra reex-
ecution will be required only rarely.) The usual calculate ideal depth

function at the second exit node will then compute the right ideal depth.
In practice we have so far found this modification unneccessary, even for
programs that use significant backtracking.

Table 1 gives experimental results for the most problematic of our
small programs, bigsmall. Tables 2 and 3 do the same for the Mercury
compiler. Table 2 shows the compilation of a small module, while table 3
shows the compilation of a large 6 000+ line source file, a process that
generates more than 200 million events. Each test simulates a declarative

11



node limit exec count total created total created

exec count
TU TR RSS VSZ

1 000 83 59 460 716 19.27 21.14 98 126
5 000 42 173 383 4 128 18.76 19.89 106 134

10 000 31 265 019 8 549 18.93 19.83 115 142
50 000 11 507 947 46 177 18.39 18.93 150 176

100 000 7 640 189 91 455 19.48 19.98 157 184
500 000 2 911 521 455 760 19.52 19.97 200 226

1 000 000 1 913 087 913 087 24.19 24.70 246 268

Table 2. Mercury compiler compiling small module, ideal depth strategy.

node limit exec count total created total created

exec count
TU TR RSS VSZ

1 000 56 26 921 480 274.48 277.48 205 233

5 000 31 86 131 2 778 225.00 226.96 201 225
10 000 25 162 232 6 489 214.26 215.92 206 233
50 000 15 583 876 38 925 186.18 187.54 254 284

100 000 13 1 034 614 79 585 186.63 188.03 311 334

500 000 7 2 969 020 424 145 174.98 190.41 477 542
1 000 000 6 5 130 084 855 014 193.08 684.92 443 866

Table 3. Mercury compiler compiling large module, ideal depth strategy.

debugging session using the divide-and-query search strategy [12]. The
search starts at the top node of tree (the exit node of main), and since
our testing harness automatically answers ‘no’ to all questions, it ends at a
leaf node. (For our largest test, finding this “bug” required 22 questions.)
This is the kind of search that puts the most stress on our algorithm since
it requires the most reexecutions of the program.

In each table, the only parameter is node limit, the upper bound on
the number of nodes that we want to collect for the annotated trace
fragment built by each reexecution. We do not include the initial or final
reexecutions in the shown measurements, since the initial reexecution uses
a small constant depth limit (since nothing is known about the tree at
this time) and the size of the fragment built by the final reexecution is
limited by the size of the subtree, not node limit. total created is the total
actual number of annotated trace nodes which were produced during the
complete debugging session (except for the first and last reexecutions).
exec count is the number of reexecutions required to locate the bug (again
minus the first and last reexecutions). total created/exec count gives the
actual average number of nodes collected per reexecution, which we would
like to be less than node limit but otherwise as close to it as possible. The
TU and TR columns show the user CPU time and the real (wall clock)
time required for the tests in seconds; the times were averaged over ten
runs. The last two columns show (in megabytes) the total resident set
size (RSS) and the total virtual size (VSZ) of the process (including swap

12



space) at the time when the bug is located, which is when they are at
their maximum. All this data is available, in more detail and for more
values of node limit, for all our benchmarks and all our heuristics in [3],
though we have improved our system since that earlier work.

The results show that the extra calculation required to compute the
ideal depth limit (instead of estimating it) is well worth it. For all our
benchmarks, including the ones not in the tables, we get more than ac-
ceptable performance for a wide range of node limit values, with values in
the 10 000-100 000 range generally performing best. Having node limit
much lower wastes time in too many reexecutions; having node limit
much higher runs the risk of running out of memory. (The last row of
table 3 shows the start of thrashing.) We have found node limit = 20 000
to work well for all the programs we have tried. For example, when the
Mercury compiler is invoked on that 6 000 line source file, our algorithm
needs about three and a half minutes to materialize all the fragments
needed to find the “bug” in a leaf node. During this time, the search
algorithm asked the oracle 22 questions. If it were the user answering
these questions, there would be on average about an 8 to 10 second delay
between his/her answer and the next question. Given that the user will
certainly take much more than 10 seconds to answer each query, the over-
head of search space materialization is not the bottleneck in the search
for the bug.

With node limit = 50 000, the sizes of fragments tend to be in the 5-25
Mb range, both for the compiler and some other programs we have looked
at. When the cumulative sizes of the fragments materialized so far starts
to exceed the available memory, it would be relatively straightforward to
release the memory of the least recently used fragment. The EDT nodes
constructed from it would remain, and if the search algorithm ever needs
the other nodes from that fragment, it could construct the fragment again.

On any given reexecution of part of the program, most events end
up being ignored. It is therefore important to optimize the handling of
these events. This is why the we use a simple depth cutoff as the criterion
for inclusion in a new fragment. Other criteria may lead to fragments
that have a higher proportion of nodes useful to the search algorithm
(whichever one is being used), but this is unlikely to compensate for the
sharply greater cost of evaluating the test of any nontrivial criterion.

6 Related work

Nilsson and Fritzson [6, 7] also propose constructing the program trace
piece by piece. They introduce the concept of the query distance to a

13



node. This is the number of questions required to get to the node using
a top-down, left-to-right search.

They optimistically materialize nodes and then uses the query dis-
tance to decide which nodes should be discarded if memory usage becomes
too high. Nodes with higher query distances are the first to be discarded.

This works well for top-down search, since most of the time the next
question will be in a materialized fragment of the EDT. This technique
doesn’t work with the Mercury declarative debugger because it can use
multiple search strategies (including a version of Shapiro’s divide-and-
query [12] algorithm and a search strategy similar to Pereira’s rational
debugger [9]). With these search strategies [4] the query distance ceases
to become a useful heuristic for deciding which nodes to throw away.

Modifying the notion of the query distance to work for different search
strategies is not a viable option, since it is unclear how the modified query
distance could be efficiently calculated for search strategies like divide-
and-query. Also, a node may have a small query distance for one search
strategy and a large query distance for another strategy. Since the user
may switch search strategies mid-session, the query distance heuristic
doesn’t help to decide whether to keep such a node.

There is also a penalty to be paid for first creating a node in the
EDT and then disposing of that node later when resources become tight
(mostly due to the extra work garbage collection must do). Using our
method we are able to know ahead of time how much of the EDT can be
viably generated in a single reexecution, so no nodes are created only to
be destroyed later.

Plaisted [10] proposed an efficient method for deciding which nodes in
the EDT to materialize. Unfortunately the method only works with the
divide-and-query search strategy, and generates questions that are harder
for users to answer.

7 Conclusion

During our work on the Mercury declarative debugger we found that
we needed a new algorithm to control the resources consumed by the
annotated trace, because none of the techniques in the current literature
were adequate in the presence of multiple search strategies.

We first tried two variations on a method that tries to guess the shape
of the subtree to be constructed from information about its branching
factor. These methods don’t work, because their implicit assumption that
most nodes have similar branching factors is much too far from the truth.

Analyzing the cause of the failure led us to the ideal depth strategy.
While this strategy uses a bit more memory, it allows us to calculate ex-

14



actly how much of the search space we can viably materialize each time
the search algorithm visits a previously unexplored part of the search
space. We have found this algorithm to work very well in practice, so well
that users of the Mercury declarative debugger spend much more time
answering questions than waiting for rematerialization, even when debug-
ging long running, real programs. Our algorithm thus helps programmers
find bugs more quickly.

The techniques we presented are certainly not specific to Mercury.
They can be applied to any declarative debugger with a tree that must be
searched and an execution replay mechanism that can rebuild previously
unmaterialized parts of the tree.

We would like to thank the Australian Research Council and Microsoft
for their support.

References

1. Mark Brown and Zoltan Somogyi. Annotated event traces for declarative debug-
ging. Available from http://www.cs.mu.oz.au/mercury/, 2003.

2. Lawrence Byrd. Understanding the control flow of Prolog programs. In Proceedings

of the 1980 Logic Programming Workshop, pages 127–138, Debrecen, Hungary, July
1980.

3. Ian MacLarty. Practical declarative debugging of Mercury programs. MSc thesis,
University of Melbourne, July 2005.

4. Ian MacLarty, Zoltan Somogyi, and Mark Brown. Divide-and-query and sub-
term dependency tracking in the Mercury declarative debugger. In Proceedings of

AADEBUG 2005, Monterey, California, September 2005.
5. Lee Naish. A declarative debugging scheme. Journal of Functional and Logic

Programming, 1997(3), April 1997.
6. Henrik Nilsson. Tracing piece by piece: affordable debugging for lazy functional

languages. In Proceedings of ICFP ’99, pages 36–47, Paris, France, September
1999.

7. Henrik Nilsson and Peter Fritzson. Algorithmic debugging for lazy functional
languages. Journal of Functional Programming, 4(3):337–370, July 1994.

8. Henrik Nilsson and Jan Sparud. The evaluation dependence tree as a basis for lazy
functional debugging. Automated Software Engineering, 4(2):121–150, April 1997.

9. Luis Moniz Pereira. Rational debugging in logic programming. In Proceedings of

ICLP ’86, pages 203–210, London, England, June 1986.
10. D. A. Plaisted. An efficient bug location algorithm. In Proceedings of ICLP ’84,

pages 151–158, Uppsala, Sweden, July 1984.
11. M. Ronsse, K. de Bosschere, and J.C. de Kergommeaux. Execution replay and

debugging. In Proceedings of AADEBUG 2000, Munich, Germany, 2000.
12. Ehud Y. Shapiro. Algorithmic program debugging. MIT Press, 1983.
13. Zoltan Somogyi. Idempotent I/O for safe time travel. In Proceedings of the AADE-

BUG 2003, Ghent, Belgium, September 2003.
14. Zoltan Somogyi and Fergus Henderson. The implementation technology of the

Mercury debugger. In Proceedings of WPLE ’99, pages 35–49, Las Cruces, New
Mexico, November 1999.

15


