
DCGs + memoing = packrat parsing

DCGs + memoing = packrat parsing:

but is it worth it?

Ralph Becket and Zoltan Somogyi

National ICT Australia, and
Department of Computer Science and Software Engineering

The University of Melbourne

DCGs + memoing = packrat parsing

Packrat parsing

Recursive descent parsing requires backtracking for grammars that
aren’t LL(1). In the worst case, that backtracking may lead to
exponential complexity.

Packrat parsers ensure linear complexity for such grammars by
testing each production rule at most once against each position in
the input stream.

They do this by incrementally constructing a table mapping each
(non-terminal, input position) pair to unknown, failed, or
succeeded n, where parsing succeeded consuming n input tokens
(or characters in a scannerless parser).

The success entries may also contain other information, such as
the abstract syntax tree of the matched input fragment.

DCGs + memoing = packrat parsing

Definite clause grammars

The standard way to write recursive descent parsers in logic
programming languages is to use DCGs:

% DCG rule before expansion:

package_declaration --->

keyword("package"),

qualified_identifier,

punct(";").

% DCG rule after expansion:

package_declaration(S0, S) :-

keyword("package", S0, S1),

qualified_identifier(S1, S2),

punct(";", S2, S).

DCGs + memoing = packrat parsing

Parser state representations

chars: the state is a list of the characters remaining in the input.

single: the state is a triple: a string giving the entire contents of
the input file, the length of that string, and the current offset.

global: the state is just an integer, the current offset. The input
string and its length are stored in global variables, and accessed
using impure foreign language code.

pass1: the state is just an integer, the current offset, but the input
string and its length are passed around to every recognition
predicate as a pair in one extra input argument.

pass2: the state is just an integer, the current offset, but the input
string and its length are passed around to every recognition
predicate as two separate extra input arguments.

DCGs + memoing = packrat parsing

Grammar to DCG

BlockStatement ::= LocalVariableDeclarationStatement

| ClassOrInterfaceDeclaration

| [Identifier :] Statement

% straightforward translation: allows multiple parses

block_statement -->

local_variable_declaration_statement.

block_statement -->

class_or_interface_declaration.

block_statement -->

optional(label), statement.

% packrat-like translation: commits to first successful parse

block_statement -->

(if local_variable_declaration_statement then

[]

else if class_or_interface_declaration then

[]

else

optional(label), statement

).

DCGs + memoing = packrat parsing

Memoing

:- pred fib(int::in, int::out) is det.

:- pragma memo(fib(in, out),

[specified(value, output), allow_reset]).

fib(N, F) :-

(if N < 2 then

F = 1

else

fib(N - 1, F1), fib(N - 2, F2), F = F1 + F2

).

The Mercury compiler will surround this with new code that

• looks up N in fib’s hash table, and
• if it is there, returns the recorded value of F, while
• if it is not there, executes the body and records the value of F.

DCGs + memoing = packrat parsing

Memoing applied to DCGs

Each input argument can be tabled by

• its value (which requires traversing the entire input term),
• by the address of that term (which is a single lookup), or
• not at all, if its value is promised to be implied by the other input

arguments. (An argument whose value is constant between table
resets qualifies.)

:- pred package_declaration(string::in, int::in,

int::in, int::out) is semidet.

:- pragma memo(package_declaration/4, [allow_reset,

specified([promise_implied, promise_implied, addr, output])]).

package_declaration(Str, Length) -->

keyword("package", Str, Length),

qualified_identifier(Str, Length),

punct(";", Str, Length).

DCGs + memoing = packrat parsing

DCGs + memoing = packrat parsing

Packrat parsing uses a single 2D array:

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

NT1 fail succ 2 fail

NT2 succ 3

NT3 succ 1

Memoing a recognizer predicate in a DCG parser uses a hash table
that corresponds to that nonterminal’s row in the packrat table.

Despite the structural difference (expandable hash table versus
fixed size array), this has the same function: ensuring the parser
won’t try to match the nonterminal at a given input position more
than once.

DCGs + memoing = packrat parsing

Packrat parser performance

To compare the performance of packrat and memoed DCG parsers,
we used Sun’s Java grammar. The test load was 735 large Java
source files totalling over 900,000 lines and 9.6 megabytes. The
test task was recognition only; no parse tree was built.

Parser version Null load Test load Difference

unoptimized 0.56s 7.54s 6.98s
optimized 0.52s 6.92s 6.40s

The packrat parser we tested was the xtc Java parser generated
with the Rats! packrat parser generator.

Rats! generates Java code, and uses more than a dozen
optimizations, with one being including fewer nonterminals in the
table. Our DCG parsers are written in Mercury, and have no other
optimization.

DCGs + memoing = packrat parsing

DCG parser performance

Backend Input Best None memoed All memoed

high level C chars 3.56s 4.60s (1.29, 77th) 14.08s (3.96, 98th)
high level C single 3.38s 4.14s (1.22, 77th) 13.44s (3.98, 98th)
high level C global 1.30s 1.34s (1.03, 16th) 10.63s (8.18, 98th)
high level C pass1 1.35s 1.36s (1.01, 2nd) 10.66s (7.90, 98th)
high level C pass2 1.24s 1.24s (1.00, 2nd) 10.65s (8.59, 98th)

low level C chars 5.01s 5.03s (1.00, 2nd) 16.58s (3.31, 98th)
low level C single 4.76s 5.01s (1.05, 4th) 15.94s (3.35, 98th)
low level C global 1.82s 1.90s (1.04, 65th) 12.89s (7.08, 98th)
low level C pass1 1.87s 1.92s (1.02, 13th) 13.18s (7.05, 98th)
low level C pass2 2.13s 2.29s (1.08, 85th) 13.71s (6.44, 98th)

We tried 98 combinations of what to memo, including 92 that each
memoed just one recognizer. Memoing everything was always the
slowest, while memoing nothing was never anywhere that bad.

DCGs + memoing = packrat parsing

How can memoing a recognizer lead to a slowdown?

The point of memoing is to save time by avoiding reexecutions.
However, memoing has costs in both time and space.

• If a recognizer is never called more than once in the same
situation, memoing it incurs costs but yields no benefits.

• If the time taken by a call to a recognizer predicate is less
than the cost of consulting that predicate’s table, memoing
that recognizer will lead to a slowdown even if almost every
call is a duplicate.

• Suppose you have two recognizers r1 and r2 where r1 executes
for N times as long as r2. The memory cost of r2 is likely to
be much more than 1/Nth of the memory cost of r1, whether
measured in bytes in memory, bytes in cache, traffic on the
memory bus, or TLB entries tied down.

DCGs + memoing = packrat parsing

When should a recognizer be memoed?

Despite the apples-to-oranges nature of our experiments, we are
pretty sure that one should only memo recognizer predicates

• which are reexecuted in the same input position reasonably
frequently,

• whose time taken per-call is significantly more than their
per-call tabling overhead (building a parse tree helps with
this), and

• which consume nontrivial execution time overall.

For the Java grammar, very few recognizers pass all three tests.

Rats! starts by memoing everything and then decides what should
not be memoed.

We believe one should start by memoing nothing and then decide
what should be memoed.

DCGs + memoing = packrat parsing

Conclusion and further work

Memoing a recognizer only when doing so is likely to yield a
speedup will typically fail to provide the linear time guarantee
provided by memoing everything, or by packrat parsing.

However, memoing everything risks a slowdown from DRAM speed
to disk speed. Technically, time complexity may still be linear, but
users will still complain.

Our guidelines for when to memo recognizers would have more
weight behind them if they were confirmed by repeats of our
experiments for other grammars and other kinds of grammars (e.g.
natural languages, which should have more ambiguity).

A more apples-to-apples comparison would unfortunately require
either a packrat parser generator for a logic programming language
or a DCG parser for a language like Java; neither is likely.

DCGs + memoing = packrat parsing

DCGs with computation

% DCG rules before expansion:

nat(N) --> digit(D), digits(D, N).

digit(D) --> [X], { char.digit_to_int(X, D) }.

digits(M, N) -->

(if digit(D) then digits(10 * M + D, N) else { N = M }).

% DCG rules after expansion:

nat(N, S0, S) :- digit(D, S0, S1), digits(D, N, S1, S).

digit(D, S0, S) :- S0 = [X | S], char.digit_to_int(X, D).

digits(M, N, S0, S) :-

(if digit(D, S0, S1) then

digits(10 * M + D, N, S1, S)

else

N = M, S = S0

).

DCGs + memoing = packrat parsing

Grammar patterns as higher order predicates

:- pred optional(

pred(ps, ps)::in(pred(in, out) is semidet),

ps::in, ps::out) is semidet.

optional(P) -->

(if P then

[]

else

{ semidet_succeed }

).

DCGs + memoing = packrat parsing

Grammar patterns as higher order predicates

:- pred optional(

pred(string, int, int, int)::

in(pred(in, in, in, out) is semidet),

string::in, int::in, int::in, int::out) is semidet.

optional(P, Str, Length) -->

(if P(Str, Length) then

[]

else

{ semidet_succeed }

).

	DCGs + memoing = packrat parsing

