
Peter Wang and Zoltan Somogyi

Minimizing the overheads of
dependent AND-parallelism

Zoltan Somogyi
The University of Melbourne

ICLP 2011

8 July 2011

Zoltan Somogyi (ICLP 2011) Minimizing the overheads of dependent AND-parallelism July 7, 2011 1 / 10



Peter Wang and Zoltan Somogyi Minimizing the overheads of dependent AND-parallelism

Mercury: brief overview

Mercury has

a strong type system;

a strong mode system; and

a strong determinism system.

Mercury supports AND-parallelism for conjunctions in which all the
conjuncts are deterministic.

Before this work, Mercury required that all the conjuncts be independent.
This work eliminates that restriction.

Zoltan Somogyi (ICLP 2011) Minimizing the overheads of dependent AND-parallelism July 7, 2011 2 / 10



Peter Wang and Zoltan Somogyi Minimizing the overheads of dependent AND-parallelism

The problem with dependent AND-parallelism

The early systems that supported AND-parallelism, Concurrent Prolog,
Parlog, and Guarded Horn Clauses, aimed to exploit all available
parallelism.

Experience with these systems in the 1980s has taught us that levels of
parallelism beyond what is needed to keep all available CPUs busy have
only costs, not benefits.

In these dependent AND-parallel systems, and in many others, an access
to a variable is more complicated than in the WAM, mainly because it may
require synchronization.

The cost of synchronization is significantly greater than the cost of many
primitive operations in the WAM.

Even a test to see whether synchronization is required would significantly
increase overheads in the Mercury implementation, whose primitive
operations are significantly simpler and faster than the WAM’s.

Zoltan Somogyi (ICLP 2011) Minimizing the overheads of dependent AND-parallelism July 7, 2011 3 / 10



Peter Wang and Zoltan Somogyi Minimizing the overheads of dependent AND-parallelism

Our approach

Even when a program runs on a 64-core processor, we expect the vast
majority of conjunctions to be executed in sequence, not in parallel.

When deciding how to support dependent AND-parallelism, our main
objective therefore was eliminating overheads entirely for sequential code.

The reason why we can (almost) achieve this is that the Mercury compiler
has complete knowledge of

exactly where the values of variables are produced and consumed, and

what variables are shared between conjuncts in a parallel conjunction.

Our implementation consists of two components:

a synchronization transformation, to ensure correctness

a specialization transformation, to improve performance

Zoltan Somogyi (ICLP 2011) Minimizing the overheads of dependent AND-parallelism July 7, 2011 4 / 10



Peter Wang and Zoltan Somogyi Minimizing the overheads of dependent AND-parallelism

Synchronization transformation example: before

:- pred p(int, int, int).

:- mode p(in, in, out) is det.

% before transformation

p(A, B, C) :-

(

q(A, D), % produces D

r(D, E) % produces E

) & (

s(B, F), % produces F

t(D, F, G) % produces G

),

C = D + E + G. % produces C

Zoltan Somogyi (ICLP 2011) Minimizing the overheads of dependent AND-parallelism July 7, 2011 5 / 10



Peter Wang and Zoltan Somogyi Minimizing the overheads of dependent AND-parallelism

Synchronization transformation example: after

% after transformation

p(A, B, C) :-

new_future(FutureD),

(

q(A, D), % produces D

signal_future(FutureD, D),

r(D, E) % produces E

) & (

s(B, F), % produces F

wait_future(FutureD, D’),

t(D’, F, G) % produces G

),

C = D + E + G. % produces C

Zoltan Somogyi (ICLP 2011) Minimizing the overheads of dependent AND-parallelism July 7, 2011 6 / 10



Peter Wang and Zoltan Somogyi Minimizing the overheads of dependent AND-parallelism

The specialization transformation

A parallel conjunction like this will yield a slowdown, not a speedup,
because there is no overlap between the executions of the two original
conjuncts:

(

p1(In1, S, Out1),

signal_future(FutureS, S)

) & (

wait_future(FutureS, S’),

p2(In2, S’, Out2)

)

We therefore have a specialization transformation that attempts to push

each signal as early as possible in the calltree of the producer, and

each wait as late as possible in the calltrees of the consumers.

Zoltan Somogyi (ICLP 2011) Minimizing the overheads of dependent AND-parallelism July 7, 2011 7 / 10



Peter Wang and Zoltan Somogyi Minimizing the overheads of dependent AND-parallelism

Performance results

Our benchmark is a raytracer with two versions: one with independent
AND-parallelism (i), and one with dependent AND-parallelism (d).

The different columns show speedups when the raytracer is told to divide
the rows of the picture into 1, 8, 16 and 32 chunks respectively. Different
rows within a chunk are processed in sequence, different chunks are
processed in parallel.

1i 8i 16i 32i 1d 8d 16d 32d

sequential 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99
parallel, 1 CPU 0.91 1.08 1.08 1.10 0.90 1.02 1.03 1.04
parallel, 2 CPUs N/A 1.46 1.73 1.74 N/A 2.05 2.14 2.13
parallel, 3 CPUs N/A 2.16 2.19 2.21 N/A 2.36 2.73 2.72
parallel, 4 CPUs N/A 2.41 2.49 2.55 N/A 2.83 3.28 3.32

Zoltan Somogyi (ICLP 2011) Minimizing the overheads of dependent AND-parallelism July 7, 2011 8 / 10



Peter Wang and Zoltan Somogyi Minimizing the overheads of dependent AND-parallelism

Conclusion

Our system incurs synchronization overhead on accesses only to a
very small proportion of variables; the fraction can be as low as tens
out of billions.

Unlike most other systems that allow multiple consumers, ours
requires synchronization for consumers only up to the first one that
waits for the variable on all paths.

Since Mercury expresses I/O action sequencing as data dependencies,
our system can also ensure that two I/O predicates called in a
conjunction generate the exact same output when executed in parallel
as when executed in sequence.

Zoltan Somogyi (ICLP 2011) Minimizing the overheads of dependent AND-parallelism July 7, 2011 9 / 10



Peter Wang and Zoltan Somogyi Minimizing the overheads of dependent AND-parallelism

I/O as dataflow

In Mercury, input/output is done by predicates that

take a unique reference to the initial state of the world as input, and

return a unique reference to the updated state of the world as output.

The compiler ensures that there is exactly one “state of the world”
variable live at any one time.

In this example, that variable is initially S0, then S1, then S.

:- pred hello(io::di, io::uo) is det.

hello(S0, S) :-

io.write_string("Hello, ", S0, S1),

io.write_string("world\n", S1, S).

Zoltan Somogyi (ICLP 2011) Minimizing the overheads of dependent AND-parallelism July 7, 2011 10 / 10


	Peter Wang and Zoltan Somogyi
	Minimizing the overheads of dependent AND-parallelism


