
Minimizing the overheads of dependent AND-parallelism

Peter Wang
Mission Critical Australia
novalazy@gmail.com

Zoltan Somogyi
Department of Computer Science and Software Engineering

University of Melbourne, Australia and
National ICT Australia (NICTA)

zs@unimelb.edu.au

July 7, 2011

Abstract
Parallel implementations of programming languages need to control synchronization

overheads. Synchronization is essential for ensuring the correctness of parallel code, yet it
adds overheads that aren’t present in sequential programs. This is an important problem
for parallel logic programming systems, because almost every action in such programs
requires accessing variables, and the traditional approach of adding synchronization code
to all such accesses is so prohibitively expensive that a parallel version of the program may
run more slowly on four processors than a sequential version would run on one processor.
We present a program transformation for implementing dependent AND-parallelism in
logic programming languages that uses mode information to add synchronization code
only to the variable accesses that actually need it.

1 Introduction

The usual motivation for parallelism is higher performance. Parallelizing imperative programs
is notoriously errorprone, whereas in some declarative languages, introducing parallelism into
a program can be as easy as adding a directive asking for it. Unfortunately, parallel imple-
mentations of declarative languages have a big enemy: overheads.

Parallel systems have overheads for the mechanisms used to manage the parallelism itself,
as well as the overheads present in the sequential system they are based on. To get speedups
over the best sequential systems, overheads must be kept to a minimum. Unfortunately, most
sequential implementations of logic programming languages have quite high overheads. Most
Prolog systems employ one variant or another of the Warren Abstract Machine or WAM [18],
either compiling Prolog programs to WAM bytecode and then interpreting that bytecode, or
by compiling the bytecode further down to C [2] or to native code [5]. Unfortunately, even with
the latter approach, it is very hard to eliminate the overheads that are effectively designed
into WAM instructions. For example, in the WAM, implementing A is B + C requires (a)
following a chain of zero or more variable-to-variable references for each of A, B and C, (b)
checking that B and C are bound to integers, (c) removing the tags from their values, (d)
adding the values, (e) putting the “integer” tag on the result, (f) checking that A is unbound,
(g) binding it to the tagged result, (h) checking to see if the binding needs to be trailed,

1

and if yes (i) trailing the binding. This will usually require 10 to 20 instructions, when you
should need only one or two ((d) and maybe (g)). For each of the nonessential steps, there
are analyses that allows that step to be eliminated in a given instance, but even in the few
systems that have such analyses they are nowhere near 100% effective. For example, one of
the best such systems, Ciao-Prolog, averages only about half the speed of Mercury on several
benchmarks [8]. The only way to guarantee the minimization of sequential overheads is to
design a language that removes the need for them as far as possible, which can be done by
moving all possible decisions to compile time. The best way to minimize overheads is to design
a language that removes the need for them as far as possible, which is best done by moving
all possible decisions to compile time. The only logic programming language designed with
this objective is Mercury. Its implementation has consequently long been the fastest among
sequential implementations of logic programming languages [14], though recently systems like
YAP [4] have been catching up. This speed makes Mercury a good starting point for a parallel
logic programming implementation.

Most parts of most Mercury programs are deterministic,1 so Mercury needs AND-
parallelism, not OR-parallelism, and since most goals in predicate bodies depend on the
goals preceding them,2 it needs dependent AND-parallelism. If you want to use this par-
allelism to achieve higher speeds than would be possible on one processor in any language
(which may become the “killer application” of declarative languages when we enter the era
of CPUs with 16+ cores), then you need to be very aggressive in keeping down the overheads
of the synchronization required to implement the dependencies between parallel goals. Our
paper presents a way to do this.

The structure of the paper is as follows. Section 2 briefly reviews the Mercury language.
Sections 3 and 4 present the main contributions of the paper, our synchronization and special-
ization transformations respectively. Section 5 gives some performance results, while section 6
concludes with comparisons to related work.

2 Background

2.1 Mercury

The part of Mercury relevant to this paper can summarized by this abstract syntax:

pred P : p(x1, . . . , xn) ← G predicates
goal G : x = y | x = f(y1, . . . , yn) unifications

| p(x1, . . . , xn) | x0(x1, . . . , xn) first and higher order calls
| foreign(p, foreign code,

[x1 : f1, . . . , xn : fn]) foreign code
| (G1, . . . , Gn) | (G1 & . . . & Gn) seq and par conjunctions
| (G1; . . . ;Gn) | switch x (. . . ; fi : Gi; . . .) disjunctions and switches
| (if Gc then Gt else Ge) | not G if-then-elses and negations
| some [x1, . . . , xn] G quantifications
| promise pure G | promise semipure G purity assertions

1In the Mercury compiler, about 2% of all predicates can succeed more than once, about 22% can succeed
at most once, and about 76% are guaranteed to succeed exactly once.

2The version of the Mercury compiler in the 11.07 release of Mercury contains 53 conjunctions with two or
more expensive conjuncts. The expensive conjuncts are independent of one another in only one of these.

2

The atomic constructs of Mercury are unifications, (which the compiler breaks down until
they have at most one function symbol each), plain first-order calls, higher-order calls, and
calls to predicates defined by code in a foreign language (usually C). (To allow inlining, the
representation of the last construct includes not just the name of the predicate being called
but also the foreign code that is predicate’s definition and the mapping from the Mercury
variables that are the call’s arguments to the names of the variables that stand for them in
the foreign code.)

The composite constructs include sequential disjunctions, if-then-elses, negations and ex-
istential quantifications3 These should all be self-explanatory. A parallel conjunction is a
conjunction in which all the conjuncts execute in parallel. They may be independent or de-
pendent; if dependent, the dependencies must be respected. (The mechanism for enforcing
the dependencies is the subject of this paper.) A switch is a disjunction in which each disjunct
unifies the same variable, whose value is known, with a different function symbol. Switches
in Mercury are thus analogous to switches in languages like C. We explain purity assertions
below.

Mercury has a strong mode system. The mode system classifies each argument of each
predicate as either input or output; there are exceptions, but they are not relevant to this
paper. If input, the caller must pass a ground term for that argument. If output, the caller
must pass a distinct free variable, which the predicate will instantiate to a ground term. A
predicate may have more than one mode; we call each one a procedure. The Mercury compiler
generates different code for different procedures; in fact, different procedures are handled as
separate entities by all parts of the compiler after mode checking. The compiler is responsible
for reordering conjuncts in both sequential and parallel conjunctions as necessary to ensure
that for each variable shared between conjuncts, the goal that generates the value of the
variable (the producer) comes before all the goals that use this value (the consumers). This
means that for each variable in each procedure, the compiler knows exactly where in that
procedure that variable gets grounded.

The mode system both establishes and requires some invariants.

• The conjunction invariant says that on any execution path consisting of conjoined goals,
each variable that is consumed by any one of the goals is produced by exactly one goal.

• The branched goal invariant says that in disjunctions, switches and if-then-elses, the
goal types that contain alternative branches of execution, each branch of execution must
produce the exact same set of variables that are visible from outside the branched goal,
with one exception: a branch of execution that cannot succeed may produce a subset
of this set.

• Negated goal invariant: A negated goal may not bind any variable that is visible to
goals outside it, and the condition of an if-then-else may not bind a variable that is
visible anywhere except in the then-part of that if-then-else.

Each procedure and goal has a determinism, which puts limits on the number of its possible
solutions in the absence of infinite loops and exceptions. A determinism may impose a lower
limit of one solution, and it may impose an upper limit of or one solution. Goals with

3(The abstract syntax does not include universal quantification: they are allowed at the source level, but
the compiler turns ∀X : G into not ∃X : not G.

3

determinism det succeed exactly once, semidet goals at most once, multi goals at least once,
while nondet goals may succeed any number of times. Each procedure’s mode declaration
typically declares the procedure’s determinism, though if this is omitted, the compiler can
infer it.

Mercury divides goals into three categories:

• pure goals have no side effects and their outputs do not depend on side effects;

• semipure goals’ outputs may depend on side effects, but have none themselves;

• impure goals may have side effects.

Semipure and impure predicates have to be declared as such, and calls to them must be
prefaced with either impure or semipure, whichever is appropriate. The vast majority of
Mercury code is pure, with impure and semipure code confined to a few places where they
are used to implement pure interfaces. (For example, the implementation of the all-solutions
predicates in the Mercury standard library uses impure and semipure code.) Programmers can
wrap a promise_pure or promise_semipure scope around a goal to promise to the compiler
(and to human readers) that the goal itself is pure or semipure respectively, even though some
of the code inside the goal may be less pure.

Before we started this work, Mercury already supported independent AND-parallelism
[3]. This meant that programmers who wanted to use parallelism could indicate which con-
junctions should be executed in parallel by writing the parallel connective ’&’ instead of the
sequential connective ’,’ between the conjuncts. The compiler then checked that the code
satisfied the restrictions imposed on parallel conjunctions. The first restriction required all
conjuncts in parallel conjunctions to be det, and the second required them to be all indepen-
dent: no conjunct could produce any variable consumed by any other conjunct. The reason
for the first restriction is that while there are ways to run nondeterministic conjuncts in
parallel, the overheads of the algorithms required to assure correctness in such cases make it
almost impossible to achieve speedups, even on several cores, over the best possible sequential
version of the program at hand. We therefore keep the first restriction, even though our work
obviously removes the second.

3 Synchronization for dependent AND-parallelism

Our main objective is to minimize the cost of synchronization by incurring it only when it
is truly needed. In Mercury, this is relatively easy to do, due to the compiler’s complete
knowledge of the data flow in every predicate. (This was one of the design criteria for
the language, even though the original implementation was sequential.) Given two or more
conjuncts in a conjunction, the compiler knows not only which variables they have in common
(i.e. which variables they share), but for each shared variable, it also knows which conjunct
produces the variable and which conjuncts consume it.

The main parts of our implementation are the synchronization transformation (described
in this section) and the specialization transformation (in section 4) . They both operate on a
representation of the source code, which is based on the Mercury abstract syntax.

The synchronization transformation processes each parallel conjunction in the program
independently. For each parallel conjunction, it computes the set of variables that need
synchronization because they are produced by one conjunct and consumed by later conjuncts.

4

:- pred p(int, int, int).
:- mode p(in, in, out) is det.

% before transformation
p(A, B, C) :-
(
q(A, D), % produces D
r(D, E) % produces E

) & (
s(B, F), % produces F
t(D, F, G) % produces G

),
C = D + E + G. % produces C

% after transformation
p(A, B, C) :-
promise_pure (
new_future(FutureD),
(
q(A, D), % produces D
impure signal_future(FutureD, D),
r(D, E) % produces E

) & (
s(B, F), % produces F
wait_future(FutureD, D’),
t(D’, F, G) % produces G

),
C = D + E + G % produces C

).

Figure 1: Example of synchronizing a parallel conjunction
For each such variable, it creates a new variable that we call a future. It then modifies all
conjuncts to use these futures to synchronize all accesses to the shared variables.

We will introduce the synchronization transformation using the example in figure 1. The
body of p contains a parallel conjunction, whose first conjunct is the sequential conjunction
q(A, D), r(D, E) and whose second is the sequential conjunction s(B, F), t(D, F, G).
The comments indicate the modes of the calls.

The basic idea of our work is that

• the producer of a shared variable will signal the availability of a value for the shared
variable immediately after that value has been computed, and

• all consumers of a shared variable will wait for the availability of a value for the shared
variable immediately before they use that value for the first time.

No consumer ever accesses the shared variable directly. Instead, each consumer waits on the
future, and creates its own copy (D’ in this case).

Note that once a producer generates a value for a shared variable, that binding is stable;
it will never be retracted. This is because we require producers to be det, and bindings can
be retracted only by backtracking. Shallow backtracking occurs when the condition of an
if-then-else fails. However, the condition is not allowed to bind any variables visible from
outside the if-then-else. Deep backtracking can occur only in nondet or multi code. Any such
code inside the producer must either generate no outputs, or must be inside an all-solutions
predicate. Again, neither of these generates any retractable bindings for variables visible from
the outside.

The call to signal future is deterministic but generates no outputs. The compiler can
optimize away such computations if they are pure. Our transformation marks the call to
signal future impure to tell the rest of the compiler that it has a side-effect that must not
be optimized away. Since the call to wait future is the producer of the renamed version of
the shared variable that is input to the consumer, it is safe from being deleted even as pure
code.

Normally, any code that contains impure code is itself impure, but here impure code is
only part of the implementation of the original pure goal. That is why we surround the

5

implementation of the parallel conjunction with an assertion promising the original purity of
the code; the impurity inside the promise pure scope cannot be seen from outside the scope.

The data structures we use for this synchronization are the futures. (We got the name
from MultiLisp [6]; our futures resemble theirs.) A future consists of these four fields:

• a boolean that says whether the future has been signalled yet;

• the value of the variable, if it has been signalled;

• a list of the contexts suspended waiting for this future, if it has not;

• a mutex to allow only one engine to access the future at a time.

The implementations of the three operations on futures are quite straightforward.

• new future allocates a new future on the heap, and initializes its fields to the obvious
values: not yet signalled, no waiting contexts.

• wait future locks the mutex. If the future has been signalled, it picks up the its value
and unlocks the mutex. Otherwise, the thread suspends itself on the future, unlocking
the mutex. It will pick up the value when it resumes.

• signal future locks the mutex, sets the value of the shared variable, records that the
value is now available, makes all the threads suspended on the future runnable, and
unlocks the mutex.

Note that wait future acts as the producer for consumers (it generates the value of the
variable) while signal future acts as the consumer for producers (it consumes the value of
the variable). The signal operation thus takes two inputs, the future and the value, and does
not produce anything. It is also deterministic: it will succeed exactly once. The compiler can
optimize away such computations if they are pure. Since that would cause the corresponding
wait operations to wait forever, we mark calls to signal future as impure code, which the
compiler is not allowed to optimize away.
The synchronization transformation traverses the bodies of all procedures looking for parallel
conjunctions. When it finds one, it invokes the algorithm in figure 2. In our algorithms all
variable names start with an upper case letter, names starting with lower case letters represent
the names of functions or data constructors, square parentheses represent lists as in Prolog
syntax, and ++ means list concatenation. The seq conj and par conj data constructors
create conjunctions of the named kinds out of a list of conjuncts. For example, the paral-
lel conjunction in figure 1 would be denoted par conj([seq conj([Q, R]), seq conj([S,
T])]), where Q, R, S and T each stand for the call to the named predicate.

If none of the conjuncts consumes a variable produced by one of the other conjuncts, then
the conjunction represents independent AND-parallelism, and requires no synchronization
(beyond the barrier at the end, which we will ignore from now on). Otherwise, the conjunction
is dependent and needs synchronization using futures. We create one future for each shared
variable; FutureMap maps each shared variable to the variable that holds its future. The
goals that create and initialize the futures (AllocGoals) will all run before execution enters
the parallel conjunction (ParConjuncts) in the transformed code.

Figure 3 shows the algorithm that transforms each parallel conjunct to ensure that the
conjunct waits for each shared variable it consumes before its first use, and that it signals the

6

add sync par conj(Conjuncts, Purity) returns Goal:
let SharedVars be the set of variables that are
(a) produced by one conjunct and
(b) consumed by one or more later conjuncts

if SharedVars = ∅:
Goal := par conj(Conjuncts)

else:
FutureMap := ∅
AllocGoals := []
for each Var in SharedVars:
create a new var FutureVar
FutureMap := FutureMap ∪ {Var → FutureVar}
AllocGoals := [new future(FutureVar) | AllocGoals]

ParConjuncts := []
for each Conjunct in Conjuncts:
ParConjuncts := ParConjuncts ++
[add sync par conjunct(Conjunct, SharedVars, FutureMap, yes)]

AllocParGoal := seq conj(AllocGoals ++ [par conj(ParConjuncts)])
switch on Purity:
case pure: Goal := promise pure(AllocParGoal)
case semipure: Goal := promise semipure(AllocParGoal)
case impure: Goal := AllocParGoal

Figure 2: Synchronizing a parallel conjunction
availability of each shared variable it produces just after it is bound. First, the algorithm finds
out which shared variables it consumes and which it produces. If there are no variables in
either category, then this conjunct is independent of the others and needs no synchronization.
Otherwise, we loop over the consumed and produced variables, each iteration modifying the
conjunct by adding the code required to synchronize accesses to that variable.

We could speed up the transformation algorithm by having one traversal add the syn-

add sync par conjunct(Goal, SharedVars, FutureMap, Rename) returns NewGoal:
ConsumedVars := SharedVars ∩ Goal’s consumed vars
ProducedVars := SharedVars ∩ Goal’s produced vars
if ConsumedVars and ProducedVars are both ∅:
NewGoal := Goal

else:
NewGoal := Goal
for each ConsumedVar in ConsumedVars:
NewGoal := insert wait into goal(NewGoal, ConsumedVar, FutureMap)

for each ProducedVar in ProducedVars:
NewGoal := insert signal into goal(NewGoal, ProducedVar, FutureMap)

if Rename:
map each var in ConsumedVars to a fresh clone var
apply this substitution to NewGoal

Figure 3: Synchronizing one parallel conjunct

7

chronization code for all the shared variables, not just one, but we expect that most parallel
conjunctions will have only a few shared variables, so the potential speedup in the compiler
itself from reducing the number of traversals is limited. We also expect that most programs
will contain relatively few parallel conjunctions, so forgoing this small speedup is a small price
to pay for a simpler, clearer and more maintainable algorithm.

The reason why add sync par conj tells add sync par conjunct to rename the variables
consumed by each conjunct is to ensure that no variable is produced more than once on any
one execution path (the mode system’s conjunction invariant). The calls to wait future bind
their second argument. Since each shared variable is bound once in its producing conjunct,
binding it again in one or more of its consuming conjuncts would violate this invariant. (In
section 4, we will see a call to add sync par conjunct that passes “no” for Rename, but
that is in circumstances in which this invariant is not in danger.) This way, each consuming
conjunct gets its own copy of the shared variable, and the code after the parallel conjunction
gets the original version from the producing conjunct.

Figures 4, 5, 6, 7 and 8 each show part of the algorithm for inserting the call to
wait future on ConsumedVar into a goal.

The insert wait into goal function returns NewGoal, an updated version of Goal in
which every occurrence of ConsumedVar is preceded by code that picks up the value of
ConsumedVar by waiting on its future. It also says whether all execution paths that lead
to the success of NewGoal have such a wait operation on them. If they all do, then the code
following the original Goal will be able to access ConsumedVar without waiting, and thus
does not need to be transformed. If some or all do not, then the code after the original
Goal will need to wait for ConsumedVar, and thus does need to be transformed. However,
we do not want both Goal and the code following it to wait for and thus bind ConsumedVar,
as this would violate the conjunction invariant. That is why, if WaitAllPaths = false, we
replace all occurrences of ConsumedVar in NewGoal with a fresh variable. This renaming
leaves the meaning of NewGoal unchanged. Therefore when insert wait into goal returns
WaitAllPaths = false, NewGoal will not bind ConsumedVar; in fact, it will not refer to it
at all.

If the goal given to insert wait into goal does not consume ConsumedVar, then the
given goal does not need modification. If it does consume ConsumedVar, then the kind of
modification it needs depends on what kind of goal it is, which is why the main body of

insert wait into goal(Goal, ConsumedVar, FutureMap)
returns <NewGoal, WaitAllPaths>:

if Goal does not consume ConsumedVar:
NewGoal := Goal
WaitAllPaths := false

else:
switch on the type of Goal:
the switch cases are shown in the following figures
each case sets NewGoal and WaitAllPaths

if not WaitAllPaths:
create a clone of ConsumedVar, call it CloneVar
apply the substitution {ConsumedVar → CloneVar} to NewGoal

Figure 4: Inserting waits into goals, top level

8

case unify, plain call, higher order call and foreign call:
look up ConsumedVar in FutureMap; call the result FutureVar
WaitGoal := wait future(FutureVar, ConsumedVar)
NewGoal := seq conj([WaitGoal, Goal])
WaitAllPaths := true

case sequential conjunction:
let Goal be seq conj([Conjunct 1, ..., Conjunct n])
NewConjuncts := []
WaitAllPaths := false
for i = 1 to n:
if Conjunct i consumes ConsumedVar:
<NewConjunct, ConjunctWaitAllPaths> :=
insert wait into goal(Conjunct i, ConsumedVar, FutureMap)

if ConjunctWaitAllPaths:
NewConjuncts := NewConjuncts ++ [NewConjunct] ++
[Conjunct i+1, ..., Conjunct n]

WaitAllPaths := true
break out of the loop

else:
NewConjuncts := NewConjuncts ++ [NewConjunct]

else:
NewConjuncts := NewConjuncts ++ [Conjunct i]

NewGoal := seq conj(NewConjuncts)

Figure 5: Inserting waits into goals, part 1
the insert wait into goal is a switch on goal type. The base case handles atomic goals
(goals that do not contain other goals): unifications, plain first order calls, higher order calls,
and calls to predicates defined by foreign language code. For these goals, we insert a call to
wait future before the goal to wait for and pick up the value of the consumed variable. For
unifications and calls to foreign code, this is the best we can do. For plain first order calls
and maybe for higher order calls, we can wait for ConsumedVar closer to the time when it is
actually needed, but we will worry about that in the next section.

insert wait into goal processes the conjuncts of plain sequential conjunctions left to
right. When it finds a conjunct that consumes ConsumedVar, it calls itself recursively to
insert the call to wait future into that conjunct. If all successful execution paths inside this
conjunct wait for ConsumedVar, then it is guaranteed to be available by the time execution
gets to the following conjuncts, so we can leave them unchanged. If only some execution
paths inside this conjunct wait for ConsumedVar, then NewConjunct will wait on a renamed
version of ConsumedVar, so ConsumedVar itself won’t be bound when execution gets to the
next conjunct. If none of the conjuncts that consume ConsumedVar wait for it on all paths,
then ConsumedVar itself won’t be bound by the conjunction itself, which is why in that case
we return WaitAllPaths = false.

Parallel conjunctions differ from sequential conjunctions in that even if one conjunct waits
for ConsumedVar on all paths, the later conjuncts cannot assume that it will be available when
they need it. Each conjunct that consumes ConsumedVar thus needs to wait for it indepen-
dently. However, as above, having several conjuncts all ask their call to wait future to

9

bind the same variable (ConsumedVar) would violate the invariant that no variable have more
than one producer in a conjunction. A consuming conjunct actually binds ConsumedVar if
the recursive call to insert wait into goal on it returns ConjunctWaitAllPaths = true.
insert wait into goal therefore renames the occurrences of ConsumedVar in all such con-
juncts except the first.

Given a switch on ConsumedVar, we obviously need to wait for the value of ConsumedVar
before the switch. For switches on other variables, we insert the wait into the switch arms
that consume ConsumedVar. Likewise, for disjunctions, we insert the wait into the disjuncts
that consume ConsumedVar.

With switches, execution is guaranteed to enter at most one arm. With disjunctions,
execution may enter the first disjunct, and if that fails, enter the second and then later dis-
juncts. It is therefore possible for one disjunct to execute wait future for ConsumedVar
after a previous disjunct has already done so. Since bindings made by one disjunct disap-
pear when execution backtracks to the next disjunct, we do need to pick up the value of
ConsumedVar in every disjuncts that consumes it. However, if a conjunct is guaranteed to
wait for ConsumedVar before the first place where it can fail, then later conjuncts could pick
it up using a version of wait future that assumes that the future has already been signalled,
and thus does not need any synchronization.

The condition of an if-then-else may not bind any variable that is visible from anywhere
except the then-part of that if-then-else. This is to prevent the variable remaining unbound
if the condition fails. That is why, if Cond consumes ConsumedVar, we have to refer to a
clone of it in NewCond. However, if NewCond condition waits for ConsumedVar on all paths,
then its value of will be available in CloneVar at the start of the then-part, which means
that the then-part will not have to wait for it again. On the other hand, if Cond does not
consume ConsumedVar, then the call to insert wait into goal and the substitution will
leave it unchanged.

case parallel conjunction:
let Goal be par conj([Conjunct 1, ..., Conjunct n])
NewConjuncts := []
WaitAllPaths := false
for i = 1 to n:
if Conjunct i consumes ConsumedVar:
<NewConjunct, ConjunctWaitAllPaths> :=
insert wait into goal(Conjunct i, ConsumedVar, FutureMap)

if ConjunctWaitAllPaths:
if WaitAllPaths:
create a clone of ConsumedVar, call it CloneVar
apply the substitution {ConsumedVar → CloneVar} to NewConjunct

else:
WaitAllPaths := true

NewConjuncts := NewConjuncts ++ [NewConjunct]
else:
NewConjuncts := NewConjuncts ++ [Conjunct i]

NewGoal := par conj(NewConjuncts)

Figure 6: Inserting waits into goals, part 2

10

case switch:
let Goal be switch(SwitchVar, [Case 1, ..., Case n])
if SwitchVar = ConsumedVar:
look up ConsumedVar in FutureMap; call the result FutureVar
WaitGoal := wait future(FutureVar, ConsumedVar)
NewGoal := seq conj([WaitGoal, Goal])
WaitAllPaths := true

else:
NewCases := []
WaitAllPaths := true
for i = 1 to n:
if Case i’s goal consumes ConsumedVar:
<NewCaseGoal, CaseWaitAllPaths> :=
insert wait into goal(Case i’s goal, ConsumedVar, FutureMap)

NewCase := replace Case i’s goal with NewCaseGoal
NewCases := NewCases ++ [NewCase]
WaitAllPaths := WaitAllPaths and CaseWaitAllPaths

else:
NewCases := NewCases ++ [Case i]
WaitAllPaths := false

NewGoal := switch(SwitchVar, NewCases)
case disjunction:
let Goal be disj([Disjunct 1, ..., Disjunct n])
NewDisjuncts := []
WaitAllPaths := true
for i = 1 to n:
if Disjunct i consumes ConsumedVar:
<NewDisjunct, DisjunctWaitAllPaths> :=
insert wait into goal(Disjunct i, ConsumedVar, FutureMap)

NewDisjuncts := NewDisjuncts ++ [NewDisjunct]
WaitAllPaths := WaitAllPaths and DisjunctWaitAllPaths

else:
NewDisjuncts := NewDisjuncts ++ [Disjunct]
WaitAllPaths := false

NewGoal := disj(NewDisjuncts)

Figure 7: Inserting waits into goals, part 3
We handle not G the same way we handle if G then false else true. Quantifications and

purity assertions require no special handling.
In some cases, the above transformation generates code that is slightly bigger than neces-

sary. Consider an if-then-else in which the condition starts by consuming ConsumedVar, and
the else part needs it too. Our algorithm will insert a call to wait future at the start of the
condition, to make the variable available in the condition (in clone form) and in the then part,
and it will insert another call to wait future into the else part to make the variable available
there. The latter will not have to do any actual waiting, since it cannot be reached until the
former has done all the waiting that may be needed. We can dispense with the second call to
wait future, and its cost both in code size and in execution time, if we simply put the first

11

case if-then-else:
let Cond, Then and Else be the if-then-else’s component goals
<NewCond, CondWaitAllPaths> :=
insert wait into goal(Cond, ConsumedVar, FutureMap)

create a clone of ConsumedVar, call it CloneVar
apply the substitution {ConsumedVar → CloneVar} to NewCond
if CondWaitAllPaths:
NewThen := seq conj([ConsumedVar := CloneVar, Then])
ThenWaitAllPaths := true

else:
<NewThen, ThenWaitAllPaths> :=
insert wait into goal(Then, ConsumedVar, FutureMap)

<NewElse, ElseWaitAllPaths> :=
insert wait into goal(Else, ConsumedVar, FutureMap)

NewGoal := replace the relevant parts of Goal
with NewCond, NewThen and NewElse

WaitAllPaths := ThenWaitAllPaths and ElseWaitAllPaths
case negation:
let NegatedGoal be the negated goal
<NewNegatedGoal, > :=
insert wait into goal(NegatedGoal, ConsumedVar, FutureMap)

create a clone of ConsumedVar, call it CloneVar
apply the substitution {ConsumedVar → CloneVar} to NewNegatedGoal
replace the negated goal with NewNegatedGoal
WaitAllPaths := false

case quantification and purity assertion:
<NewSubGoal, WaitAllPaths> :=
insert wait into goal(Goal’s subgoal, ConsumedVar, FutureMap)

NewGoal := replace the subgoal in Goal with NewSubGoal

Figure 8: Inserting waits into goals, part 4
call before the if-then-else as a whole.

In general, given a branching goal (an if-then-else, switch, or disjunction), if on all possible
paths of execution, the program can do only a trivial amount of work before waiting for
ConsumedVar, then it is better to wait for ConsumedVar before entering the branching goal.
Our implementation defines “trivial amount of work” as a sequence of zero or more unifications
and calls to builtin predicates such as addition. Since calls to other predicates count as a
nontrivial amount of work, if any execution paths make calls before needing ConsumedVar,
we will wait for ConsumedVar only after the calls, even if this yields bigger code.

Inserting signals for produced variables is similar to inserting waits for consumed vari-
ables, but a bit simpler, because the mode system of Mercury enforces significantly stronger
invariants for producing variables than for consuming them. For example, a negated goal can
consume a variable produced outside the negation, but it cannot produce a variable consumed
outside the negation. Also, it is ok for some arms of a switch, disjunction or if-then-else to
consume a variable while other arms do not, but if one arm produces a variable, then all arms
that can succeed must produce that variable. There is thus no need for SignalAllPaths.

12

insert signal into goal(Goal, ProducedVar, FutureMap) returns NewGoal:
switch on the type of Goal:
case unify, plain call, higher order call and foreign call:
look up ProducedVar in FutureMap; call the result FutureVar
SignalGoal := signal future(FutureVar, ProducedVar)
NewGoal := seq conj([Goal, SignalGoal])

case sequential conjunction:
let Goal be seq conj([Conjunct 1, ..., Conjunct n])
NewConjuncts := []
for i = 1 to n:
if Conjunct i produces ProducedVar:
NewConjunct :=
insert signal into goal(Conjunct i, ProducedVar, FutureMap)

NewConjuncts := NewConjuncts ++ [NewConjunct] ++
[Conjunct i+1, ..., Conjunct n]

break out of the loop
else:
NewConjuncts := NewConjuncts ++ [Conjunct]

NewGoal := seq conj(NewConjuncts)
case parallel conjunction:
let Goal be par conj([Conjunct 1, ..., Conjunct n])
NewConjuncts := []
for i = 1 to n:
if Conjunct i produces ProducedVar:
NewConjunct :=
insert signal into goal(Conjunct i, ProducedVar, FutureMap)

NewConjuncts := NewConjuncts ++ [NewConjunct]
else if Conjunct i consumes ProducedVar:
<NewConjunct, > :=
insert wait into goal(Conjunct i, ProducedVar, FutureMap)

create a clone of ProducedVar, call it CloneVar
apply the substitution {ProducedVar → CloneVar} to NewConjunct
NewConjuncts := NewConjuncts ++ [NewConjunct]

else:
NewConjuncts := NewConjuncts ++ [Conjunct i]

NewGoal := par conj(NewConjuncts)

Figure 9: Inserting signals into goals, part 1

13

case switch:
let Goal be switch(SwitchVar, [Case 1, ..., Case n])
NewCases := []
for i = 1 to n:
NewCaseGoal :=
insert signal into goal(Case i’s goal, ProducedVar, FutureMap)

NewCase := replace Case’s goal with NewCaseGoal
NewCases := NewCases ++ [NewCase]

NewGoal := switch(SwitchVar, NewCases)
case disjunction:
let Goal be disj([Disjunct 1, ..., Disjunct n])
NewDisjuncts := []
for i = 1 to n:
NewDisjunct :=
insert signal into goal(Disjunct i, ProducedVar, FutureMap)

NewDisjuncts := NewDisjuncts ++ [NewDisjunct]
NewGoal := disj(NewDisjuncts)

case if-then-else:
let Cond, Then and Else be the if-then-else’s component goals
NewThen := insert signal into goal(Then, ProducedVar, FutureMap)
NewElse := insert signal into goal(Else, ProducedVar, FutureMap)
NewGoal := replace the relevant parts of Goal
with NewThen and NewElse

case negation:
cannot happen: negated goals cannot produce any nonlocal variables

case quantification and purity assertion:
NewSubGoal :=
insert signal into goal(Goal’s subgoal, ProducedVar, FutureMap)

NewGoal := replace the subgoal in Goal with NewSubGoal

Figure 10: Inserting signals into goals, part 2

4 The specialization transformation

The algorithms in the previous section try to push each wait future operation as late as they
can and each signal future operation as early as they can, in order to maximize parallelism
by maximizing the time during which the producer and the consumers of the shared variable
can all run in parallel. However, the amount of parallelism they can create is limited by
procedure boundaries. Overcoming this limitation is the task of the specialization algorithm.
The first step in this algorithm is the “making requests” step, which looks for places in the
code where creating specialized versions of procedures can increase parallelism:

• We look for plain first-order calls preceded by one or more calls to wait future, followed
by one or more calls to signal future, or both.

• For each of these wait future operations, we check whether the waited-for variable is
an input argument of the call and the callee does non-trivial work before it needs the
variable. PushedInputs is the set of variables for which the answer is “yes”.

14

• For each of these signal future operations, we check whether the signalled variable is
an output argument of the call and the callee does non-trivial work after it produces
the variable. PushedOutputs is the set of variables for which the answer is “yes”.

• If PushedInputs ∪ PushedOutputs is not empty, and we have access to the code of
the callee, we replace the call, all the wait futures on PushedInputs and all the
signal futures on PushedOutputs with a call to a specialized version of the called
procedure, one in which all the replaced waits and signals will be done in the callee. We
also request that this specialized version be created. This request identifies the variables
in PushedInputs and PushedOutputs by their position in the call’s argument list.

The specialized version of the callee will have each formal parameter corresponding to a
variable in PushedInputs or PushedOutputs replaced by a newly-created variable that will
hold its future. This changes the mode of the pushed output arguments to input, since a
future is input even when it represents a value being output.

The second step executes each request by creating the specialized version of the request’s
callee. To generate the body of the new procedure, we invoke add sync par conjunct from
figure 3 with the callee’s original code as Goal. As SharedVars, we pass the formal pa-
rameters corresponding to PushedInputs ∪ PushedOutputs, and the FutureMap we pass
maps each variable in SharedVars to the future that replaces it in the list of formal pa-
rameters. add sync par conjunct will push the synchronization code for each variable in
SharedVars as deeply into the code of the callee as possible. Since the goal returned by
add sync par conjunct will be the body of the specialized procedure and thus will not be
conjoined to anything, it is ok for this goal to bind the consumed variables, which is why we
pass “no” as the value of Rename.

We invoke the specialization algorithm after the algorithms of section 3 have inserted
synchronization operations into all the procedures in the module being compiled that con-
tain dependent parallel conjunctions. We invoke the “making requests” step on all of these
procedures, looking for opportunities for specialization, and modifying the code at each such
opportunity as if the specialized version of the callee already existed. In doing so, we collect
a queue of specialization requests, none of which have yet been acted upon. The rest of the
specialization algorithm is a fixpoint operation. While there are specialization requests that
have not yet been acted upon, the algorithm selects one such request, and

• executes the request, creating the requested specialized procedure, and then

• invokes the “making requests” step of the algorithm again on the newly created proce-
dure to look for more specialization requests.

Some of these requests may have been already acted upon, some of them may already be in
the queue, and some may be new. We add the new ones to the queue. The algorithm must
terminate because the number of procedures and the number of possible specialization requests
for each procedure are both finite. Note that each specialization always starts with the
original, untransformed code of the callee; procedures created by the specialization algorithm
itself are never used as the basis of further specializations.

The synchronization and specialization transformations push wait operations almost as
late as they could possibly be pushed, and they push signal operations almost as early as
they could possibly be pushed. There are two main reasons why in practice we cannot quite
push those operations exactly as far they could be pushed in theory.

15

First, at the sites of higher order calls, we don’t know the identity of the called procedure,
so we cannot push any wait or signal operations into it. This limitation can be overcome
through a program transformation called higher order specialization, which creates copies of
predicates that take higher order values as input arguments, with each copy being specialized
to one specific set of values of these arguments. Since this program transformation replaces
higher order calls with first order calls, it allows waits and signals to be pushed further.

Second, even if we know the identity of the callee, we may not have access to its code. The
Mercury compiler normally compiles each module of the program separately, which means it
has access to the bodies only of the procedures defined the module being compiled. However,
if intermodule optimization is enabled, it will also have access to the bodies of some of the
procedures in the other modules, since in that case earlier invocations of the compiler on those
other modules will have made available to it processed and checked versions of the bodies of
procedures in those modules that compiler heuristics select as being likely to be profitably
inlined and/or specialized. Another instance of this same problem that is unfortunately
effectively impossible to overcome is that we cannot push wait or signal operation operations
into foreign language code.

5 Performance evaluation

We have room to report on only one benchmark, but it should suffice to demonstrate the
low overheads of our system. This benchmark is a raytracer written for the 2000 ICFP
programming competition. Its top level loops over the rows of the picture, with each iteration
computing the RGB values of the pixels in a chunk of consecutive rows. We have two versions
of this loop. The independent version (i1) computes the pixels for these rows, (i2) recurses to
compute the pixels for the remaining rows, and then (i3) adds both sets of pixels to the list of
pixels so far. The parallelized conjunction is (i1 & i2), i3, and there is no data flow from
i1 to i2. The dependent version (d1) computes the pixels for these rows, (d2) adds these pixels
to the list of pixels so far, and then (d3) recurses to compute the pixels for the remaining
rows, based on the updated list of the pixels so far. The parallelized conjunction is (d1, d2)
& d3, and there is data flow from d1 to d2 and from d2 to d3. We tested both forms of the
loop with varying chunk sizes, which divided the rows into 1, 8, 16 and 32 chunks. The table
shows speedups compared to the best sequential version on our test machine, which was a
Dell Optiplex 755 PC with a 2.4 GHz Intel Core 2 Quad Q6600 CPU. All tests were run ten
times; the results are derived from the average of the middle eight.

1i 8i 16i 32i 1d 8d 16d 32d
sequential 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99
parallel, 1 CPU 0.91 1.08 1.08 1.10 0.90 1.02 1.03 1.04
parallel, 2 CPUs N/A 1.46 1.73 1.74 N/A 2.05 2.14 2.13
parallel, 3 CPUs N/A 2.16 2.19 2.21 N/A 2.36 2.73 2.72
parallel, 4 CPUs N/A 2.41 2.49 2.55 N/A 2.83 3.28 3.32

The parallel version of the system needs to use a real machine register to point to thread-
specific data, such as each engine’s abstract machine registers. On x86s, this leaves only
one real register for the Mercury abstract machine, which is why switching to the parallel
version of the system can yield a 10% slowdown on one CPU. However, inevitable differences

16

between program versions (such as in the placement of code and data) happen to allow similar
speedups as well.

The independent versions on the left do not need any of the algorithms in this paper. The
dependent versions on the right do, and thus incur extra synchronization costs. However,
these costs must be very small, since they are massively outweighed by the better cache
utilization resulting from appending each chunk’s pixels to the pixels so far immediately after
computing those pixels. (In all versions, the append is done in constant time using a cord,
not a list, and all versions do the same appends and compute the same cord.)

Different rows take different times to render. Dividing the input into more chunks evens
out such fluctuations. The data shows this to be worthwhile (up to a point) even though
it also increases synchronization overhead. Overall, the speedup of 3.32 over the sequential
version and 3.32/1.04 = 3.19 over the 1-CPU parallel version shows that we have succeeded
in keeping synchronization costs to a very low level.

6 Conclusion

Here we list the main differences between our work and previous systems [16].
• In Concurrent Prolog, Parlog and GHC, almost all variable accesses need protection

either against premature binding of a variable (typical if the variable access is in a
guard) or against some other part of the program trying to bind the variable at the
same time (typical if the variable access is in a body). The survey [12] discusses some
of the algorithms needed to implement this protection, all of which have considerable
overhead, overhead that needs to be incurred on most accesses. By contrast, since in
our system sequential execution is the rule and parallel execution is the exception, we
incur synchronization overhead on accesses only to a very small proportion of variables;
the fraction can be as low as tens out of billions.

• Even when synchronization is required, our system has lower overheads. Our mode
system allows the producer of a variable to bind that variable without synchronization
to protect it from competing producers. As for consumers, in our system, a sleeping
task always waits for exactly one variable, while in some other systems, a sleeping task
needs to be woken up if any one of several variables is bound [12]. An example is the
ward primitive from [15].

• Unlike the DASWAM and similar parallel Prolog systems [13], our system does not
allow the producer of a variable to be decided at runtime, so it does not have to keep
track of which goal is the leftmost goal referring to a variable.

• Our system cannot deadlock: every shared variable has a producer, which (unless it
throws an exception) cannot exit without binding the variable. Languages without
mode systems (such as GHC) are very vulnerable to program bugs that leave a variable
uninstantiated, leaving goals in guards waiting forever for them to be bound. Such bugs
are notoriously hard to find [10].

• Our system does not require programmers to divide clauses into guard and body, much
less into ask guard, tell guard and body.

• Unlike Janus [11] and Doc [7], hirata86a our system allows a variable to have more than
one consumer.

17

• Unlike most other systems that allow multiple consumers, ours requires synchronization
for consumers only up to the first one that waits for the variable on all paths.

• Unlike CIAO’s <& operator [1], our futures are significantly simpler to implement, and
support finer grained parallelism.

• Unlike Moded FGHC [17], our system supports separate compilation.

One important further advantage of our system is that it completely eliminates the need for a
system for controlling the order of parallel code’s interactions with the outside world, such as
the one in [9]. This is because Mercury uses dummy variables called I/O states to represent
states of the outside world, and models operations that interact with the outside world as
predicates that consume and destroy the current I/O state and produce a new one. If two
or more goals in a conjunction update I/O states, the algorithm in section 3 will ensure that
the parallel version of the conjunction executes the same actions in the same order as the
sequential version.

The system we have described is part of recent versions of Mercury, which are available
for free download from the Mercury project’s web page.

We would like to thank the Mercury team for their work on the Mercury implementation,
and Tom Conway in particular for implementing independent AND-parallelism.

References

[1] Daniel Cabeza and Manuel V. Hermenegildo. Implementing distributed concurrent con-
straint execution in the CIAO system. In Proceedings of the AGP’96 Joint Conference
on Declarative Programming, pages 67–78, 1996.

[2] Philippe Codognet and Daniel Diaz. wamcc: Compiling Prolog to C. In Proceedings of
ICLP 12, pages 317–331, Kanagawa, Japan, June 1995.

[3] Thomas C. Conway. Towards parallel Mercury. PhD thesis, University of Melbourne,
2002.

[4] Anderson Faustino da Silva and Vı́tor Santos Costa. The design of the YAP compiler:
an optimizing compiler for logic programming languages. J. UCS, 12(7):764–787, 2006.

[5] Daniel Diaz and Philippe Codognet. Design and implementation of the GNU Prolog
system. Journal of Functional and Logic Programming, 2001(6), October 2001.

[6] Robert H Halstead. Implementation of Multilisp: Lisp on a multiprocessor. In Pro-
ceedings of the 1984 ACM Symposium on List and Functional Programming, pages 9–17,
Austin, Texas, 1984.

[7] M. Hirata. Programming language Doc and its self-description, or x = x is considered
harmful. In Proceedings of the Third Conference of Japan Society of Software Science
and Technology, pages 69–72, 1986.

[8] J. Morales, M. Carro, and M. Hermenegildo. Improving the compilation of Prolog to
C using types and determinism information. In Proceedings of PADL 6, pages 86–103,
Dallas, Texas, June 2004.

18

[9] K. Muthukumar and M. Hermenegildo. Complete and efficient methods for supporting
side effects in independent/restricted and-parallelism. In Proceedings of ICLP 6, pages
80–101, Lisbon, Portugal, June 1989.

[10] Ann E. Nicholson. Declarative debugging of the parallel logic programming language
GHC. In Proceedings of the 11th Australian Computer Science Conference, pages 225–
236, 1988.

[11] Vijay Saraswat. Janus: a step towards distributed constraint programming. In Proceed-
ings of the Second North American Conference on Logic Programming, pages 431–446,
Austin, Texas, October 1990.

[12] Ehud Shapiro. A family of concurrent logic programming languages. Computing Surveys,
21(3), September 1989.

[13] Kish Shen. Overview of DASWAM: exploitation of dependent AND-parallelism. Journal
of Logic Programming, 29(1-3):245–293, 1996.

[14] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm of
Mercury, an efficient purely declarative logic programming language. Journal of Logic
Programming, 26(1-3):17–64, October-December 1996.

[15] Hamish Taylor. A lingua franca for concurrent logic programming, 1989.

[16] Evan Tick. The deevolution of concurrent logic programming languages. Journal of Logic
Programming, 23(2):89–123, May 1995.

[17] Kazunori Ueda and Masao Morita. Moded flat GHC and its message-oriented implemen-
tation technique. New Generation Computing, 13(1):3–43, 1994.

[18] David H. D. Warren. An abstract Prolog instruction set. Technical Report 309, SRI
International, Menlo Park, California, October 1983.

19

