
The Mercury Programming Language
Paul Bone

based on slides by Zoltan Somogyi

Mercury from 30,000ft
Mercury is a purely declarative logic/functional
programming language. It is aimed at programming in the
large.

Mercury looks like Prolog, but it feels
like strict Haskell or pure OCaml

The Mercury Programming Language 2

Goals
Declarative programming (for example in Prolog) has
always been very powerful. However creating large pieces
of software is difficult.

We aim to make programming in the large easier:

• large programs
• large teams
• better program reliability
• better program maintainability
• program efficiency

The Mercury Programming Language 3

This talk
I do not have enough time to teach you Mercury.

Instead I will aim to give a guided tour of Mercury's main
features, and how it differs from languages you may be
familiar with.

Time permitting I will introduce two very cool Mercury
technologies:

• declarative debugging, and
• automatic parallelization.

The purity of Mercury is key in making both of these
feasible.

The Mercury Programming Language 4

Some syntax
fibs/2 is the hello world of declarative programming. F is
the Nth Fibonacci number.

fibs(N, F) :-
(N < 2 ->

F = 1
;

fibs(N - 1, FA),
fibs(N - 2, FB),
F = FA + FB

).

Predicates do not have return values per-se. They are
either true or false for a given set of arguments. Arguments
may be either input or output.

The Mercury Programming Language 5

Some syntax
fibs/2 is the hello world of declarative programming. F is
the Nth Fibonacci number.

fibs(N, F) :-
(N < 2 ->

F = 1
;

fibs(N - 1, FA),
fibs(N - 2, FB),
F = FA + FB

).

A clause is made up of goals and goals can be conjoined
(logical AND) with a , and disjoined (logical OR) with a ;.

The Mercury Programming Language 6

Some syntax
fibs/2 is the hello world of declarative programming. F is
the Nth Fibonacci number.

fibs(N, F) :-
(N < 2 ->

F = 1
;

fibs(N - 1, FA),
fibs(N - 2, FB),
F = FA + FB

).

This code also uses an if-then-else which joins three goals:

Condition -> Then ; Else

The Mercury Programming Language 7

Purity
Imperative programs are based on side effects. You call a
function such as

strcat(str1, str2);

and it returns a value, but the reason you call it is for its
side effect (modifying str1).

The Mercury Programming Language 8

Purity
Purely declarative programs have no side effects. If a
predicate has an effect, it has to be reflected in its
argument list.

hello(IO0, IO) :-
io.write_string("Hello, ", IO0, IO1),
io.write_string("world\n", IO1, IO).

Because a predicate can return more than one item, it is
easy to work with more than one state.

In purely declarative languages, data structures are immutable. Instead of
updating an existing data structure, programs create slight variants of
existing data structures, typically reusing almost all their memory.

The Mercury Programming Language 9

Purity
Typing out all the intermediate versions of a value can
become tedious.

hello(IO0, IO) :-
io.write_string("Hello, ", IO0, IO1),
io.write_string("world\n", IO1, IO).

So we created a useful syntactic sugar:

hello(!IO) :-
io.write_string("Hello, ", !IO),
io.write_string("world\n", !IO).

It is now easy to update this code without renumbering all
the variables.

The Mercury Programming Language 10

Types
Mercury has a strong, static type system similar to
Haskell's.

There are several built-in types (int, float, char...).
Developers can define new types easily.

:- type playing_card
---> normal_card(

c_suit :: suit,
c_num :: int

)
; joker.

:- type suit
---> heart
; diamond
; spade
; club.

The Mercury Programming Language 11

Types
A predicate's arguments' types are declared in its pred
declaration.

:- pred fibs(int, int).

fibs(N, F) :-
(N < 2 ->

F = 1
;

fibs(N - 1, FA),
fibs(N - 2, FB),
F = FA + FB

).

The Mercury Programming Language 12

Modes
The basic modes are in and out.

:- pred fibs(int, int).
:- mode fibs(in, out).

When there is a single mode for a predicate we can write
this more succinctly:

:- pred fibs(int::in, int::out).

The Mercury Programming Language 13

Modes
in and out are defined as:

:- mode in == ground >> ground.
:- mode out == free >> ground.

Where free means doesn't have a value, and ground
means has a value. These are instantiation states.

The Mercury Programming Language 14

Modes
Modes can also be used to track uniqueness. These modes
are di for destructive input and uo for unique output.

:- pred hello(io::di, io::uo).

They are defined as:

:- mode di == unique >> clobbered.
:- mode uo == free >> unique.

clobbered means that the memory that used to contain a
value has been written-over: a program cannot read its
value. In practice the io type is special: it is optimised away
and doesn't consume any memory.

The Mercury Programming Language 15

Genealogy Example
:- pred mother(person, person).
:- mode mother(in, out).
:- mode mother(out, in).

mother(paul, faye).
mother(james, faye).

This predicate has two modes. We can call it in either mode:

• Who is Paul's mother?
mother(paul, M)

• Who is Faye the mother of?
mother(C, faye)

The Mercury Programming Language 16

Determinisms
:- pred mother(person, person).
:- mode mother(in, out) is det.
:- mode mother(out, in) is nondet.

mother(paul, faye).
mother(james, faye).

The second mode may have multiple answers or none at all
so it it nondeterministic, we indicate this with is nondet.

The first mode has exactly one answer it is det.

Fun Science Fact: A person may have two biological mothers when they
have their normal DNA from one woman and their mitochondrial DNA from
another woman.

The Mercury Programming Language 17

Disjunction syntax
These are equivalent:

mother(paul, faye).
mother(james, faye).

mother(C, M) :-
M = faye,
(

C = paul
;

C = james
).

Whether you write one clause containing disjunctions or
multiple clauses depends on the kind of thing you're
expressing. In this case using facts (clauses without bodies)
is clearer.

The Mercury Programming Language 18

Determinisms
There are six basic determinisms. They form a matrix
based on what they allow

at most zero
solutions

at most one
solution

no
limit

cannot
fail erroneous det multi

can fail failure semidet nondet

The two remaining determinisms cc_multi and cc_nondet
are used in committed choice contexts.

The Mercury Programming Language 19

Geneology Example
Nondeterministic search can be a very useful
programming tool:

mother(paul, faye).
mother(james, faye).

parent(C, P) :-
mother(C, P).

parent(C, P) :-
father(C, P).

sibling(A, B) :-
parent(A, P),
parent(B, P).

Mercury generates specialised code for each mode of each
predicate.

The Mercury Programming Language 20

IO
Using predicates and modes we can now make IO safe in
this purely declarative language.

:- pred main(io::di, io::uo) is det.

main(!IO) :-
write_string("Hello ", !IO),
write_string("World\n", !IO).

• The mode system ensures that we can't reference an
old version of IO (because it's clobbered)

• the determinism system ensures that we cannot
backtrack over IO (because code is det)

The Mercury Programming Language 21

An old version of a state variable
An old version of !IO that's impossible (mode system). But
an old version of some other !StateVariable, that's easy!

!Name
stands for both current and next variables,

!.Name
stands for only the current variable

!:Name
stands for only the next variable

The Mercury Programming Language 22

An old version of a state variable
An old version of !IO that's impossible (mode system). But
an old version of some other !StateVariable, that's easy!

Before we do something complex, we can save a copy of
the state in the state variable.

SavedState = !.MyProgramsState,

Now, if the user clicks "undo" I can restore that old state.

!:MyProgramsState = SavedState

The Mercury Programming Language 23

Higher order programming
Mercury supports the usual higher order programming
features.

:- type list(T)
---> [T | list(T)]
; [].

:- pred map(pred(T, U), list(T), list(U)).
:- mode map(pred(in, out) is det, in, out) is det.

map(_, [], []).
map(P, [X | Xs], [Y | Ys]) :-

P(X, Y),
map(P, Xs, Ys).

The Mercury Programming Language 24

	The Mercury Programming Language
	Paul Bone based on slides by Zoltan Somogyi
	Mercury from 30,000ft
	Goals
	This talk
	Some syntax
	Some syntax
	Some syntax
	Purity
	Purity
	Purity
	Types
	Types
	Modes
	Modes
	Modes
	Genealogy Example
	Determinisms
	Disjunction syntax
	Determinisms
	Geneology Example
	IO
	An old version of a state variable
	An old version of a state variable
	Higher order programming

