
The Mercury project

The Mercury project

Zoltan Somogyi
The University of Melbourne

Linux Users Victoria

7 June 2011

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 1 / 23



The Mercury project Introduction

Mercury: objectives

Classic AI languages like Lisp and Prolog are well suited for exploratory
programming, where flexibility and quick turn-around time are the most
important objectives.

Mercury is a declarative programming language, but it has different
objectives:

program reliability

program maintainability

scalability to large programs and teams

programmer productivity

program efficiency

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 2 / 23



The Mercury project Introduction

This talk

I do not have enough time to give a tutorial on Mercury (one is available
on the Mercury web site).

I will instead tell you about two very useful technologies that are available
in Mercury, but not in imperative languages like C and Java.

These two technologies are

declarative debugging, and

automatic parallelization.

The purity of Mercury is key in making both of these feasible.

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 3 / 23



The Mercury project Introduction

Purity

Imperative programs are based on side effects. You call a function such as
strcat(str1, str2), and it returns a value, but the reason you call it is
for its side effect.

Purely declarative programs have no side effects. If a predicate has an
effect, it has to be a main effect, reflected in its argument list.

hello(S0, S) :-

io.write_string("Hello, ", S0, S1),

io.write_string("world\n", S1, S).

In purely declarative languages, data structures are immutable. Instead of
updating an existing data structure, programs create slight variants of
existing data structures, typically reusing almost all their memory.

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 4 / 23



The Mercury project Declarative debugging

Declarative debugging

The execution of the program is represented by a tree: each node
corresponds to a procedure call.

The children of each node are the calls to functions / predicates /
procedures / methods in the body of the parent.

A node is valid if its actual result matches its intended result;
otherwise, it is erroneous.

A bug is an erroneous node with no erroneous children.

The declarative debugger searches for a bug by asking questions
about the validity of nodes.

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 5 / 23



The Mercury project Declarative debugging

Example

The proof tree for insertion sort([3,1,2], [1,3]):

s([3,1,2],[1,3])

s([1,2],[1]) i(3,[1],[1,3])

s([2],[2]) i(1,[2],[1]) 3 > 1 i(3,[],[3])

s([],[]) i(2,[],[2]) 1 =< 2

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 6 / 23



The Mercury project Declarative debugging

Example

mdb> p
insertion_sort([3, 1, 2], [1, 3])
mdb> dd
insertion_sort([3, 1, 2], [1, 3])
Valid? n
insertion_sort([1, 2], [1])
Valid? n
insertion_sort([2], [2])
Valid? y
insert(1, [2], [1])
Valid? n
The bug occurs during the call
insert(1, [2], [1])

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 7 / 23



The Mercury project Declarative debugging

Advantages of declarative debugging

It automates recordkeeping: users need not keep a record in their
heads of everything they have done.

It avoids repeated testing of hypotheses, which puts an upper bound
on the effort required to find the bug.

The computer directs the bug search, not the programmer. This is
especially good for novices, who often don’t know where to begin.

The search algorithms programmed into the declarative debugger can
automate heuristics followed by humans who are expert debuggers.

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 8 / 23



The Mercury project Declarative debugging

Why is it not widely used?

Reason 1

The “Is this valid?” question must describe exactly what “it” is.

For a pure predicate or function in Mercury, this is given by the values
of the input and output arguments.

For a Mercury predicate that does I/O, it also includes the sequence
of executed I/O primitives.

For a function or method in an imperative program, it also includes
the value of every global variable in the program that the function or
method has access to, directly or indirectly.

Therefore for the questions to be of a manageable size, the program must
be declarative.

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 9 / 23



The Mercury project Declarative debugging

Why is it not widely used?

Reason 2

The tree does not fit in memory for computations that run for more than a
second or two.

The only option is to keep only the parts of the tree needed right now,
recomputing the other parts on demand by reexecuting the calls that
generate them. This requires rebuilding the state of the computation at
the time of the call.

In Mercury, data structures are immutable; you never need to restore them
to a previous state. Mercury does need to remember the results of
previously executed I/O actions. Being relatively rare, this is feasible.

In imperative language programs, every assignment statement destroys
earlier state. Recording every assignment in an undo/redo log is possible in
theory, but infeasible in practice except for toy programs.

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 10 / 23



The Mercury project Automatic parallelism

Parallelization and side effects

Can you execute these two C calls in parallel?

c = p(a, b);

f = q(d, e);

Answering the question requires computing all the side-effects that p may
have, and figuring out whether q is affected by any of them.

In multi-module programs using libraries, this is very hard to do.

What about these two Mercury calls?

p(A, B, C), % produces C

q(D, E, F) % produces F

There is no need for any program analysis, and the answer is yes.

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 11 / 23



The Mercury project Automatic parallelism

Overheads and dependencies

p(A, B, C, G), % produces C and G

q(C, D, E, F) % produces F

Can you execute these two calls in parallel? Yes, of course. The compiler
will handle the synchronization on C.

Should you execute these two calls in parallel? Answering that is harder.

First, we need to know how expensive the two calls are. If e.g. the call to
q executes in twenty instructions, there is no point in spawning it off, since
the spawn operation itself executes a few hundred instructions.

Second, we need to know when q needs the value of C. There is no point in
spawning it off if it will immediately block waiting for C (the usual case).

The main problem in parallelizing declarative programs is too much

parallelism, not too little.

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 12 / 23



The Mercury project Automatic parallelism

Execution overlap

The overlap between the executions of p and q depends on when shared
variable C is produced and consumed.

pC pR qC qR

produce C consume C

Seq: p, q

pC pR
qC qR

consume C

Par: p & q

pC pR qC qR

produce C
consume C

Seq: p, q

pC pR
qC qR

consume C

Par: p & q

In the scenario on the left, executing p and q in parallel yields the best
possible speedup.

In the scenario on the right, parallel execution looks like yielding a smaller
speedup, and may yield a slowdown in practice due to overheads.

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 13 / 23



The Mercury project Automatic parallelism

Estimating execution overlap

The Mercury system has a profiler than can tell us not just the average
time taken by calls to a given a predicate or function, but also the average
time taken by a given call site.

The compiler also arranges for programs being profiled to put a description
of their own structure into the profiling data file. This includes complete
information about where the value of each variable is produced and
consumed.

Our automatic parallelization tool can use this information to estimate the
times taken by p and q, both in total, and up to the production or first
consumption of C.

From this, one can estimate the speedup from executing p and q in
parallel.

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 14 / 23



The Mercury project Automatic parallelism

Automatic parallelization workflow

Compile the program with profiling enabled.

Run the program on some typical input. This generates a profiling
data file.

Invoke our automatic parallelization tool. This tool

reads the profiling data file,
finds conjunctions containing two or more expensive calls,
estimates the speedups from of parallelizing them in many possible
ways (1: p & q & r, 2: (p & q), r, etc)
if the best way yields a nontrivial speedup even when taking estimated

overheads into account, then record a recommendation for this
parallelization,
put all the recommendations into a feedback file.

Compile the program asking for automatic parallelization, specifying
the feedback file.

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 15 / 23



The Mercury project Automatic parallelism

Results

Program Seq 1 CPU 2 CPUs 3 CPUs 4 CPUs

matrixmult 11.0 14.6 (0.75) 7.5 (1.47) 6.2 (1.83) 5.2 (2.12)

raytracer 22.7 25.1 (0.90) 16.0 (1.42) 11.2 (2.03) 9.4 (2.42)

mandelbrot 33.4 35.6 (0.94) 17.9 (1.87) 12.1 (2.76) 9.1 (3.67)

Parallel code needs to use a machine register to point to thread-specific
data, so enabling parallel execution but not using it leads to slowdowns.

Matrixmult has one memory store for each FP multiply/add pair. Its
speedup is limited by memory bus bandwidth, which it saturates relatively
quickly.

Raytracer generates many intermediate data structures. The gc system
consumes 40% of the execution time in stop-the-world collections on 4
CPUs (it is parallel, but does not always scale well).

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 16 / 23



The Mercury project Conclusion

Conclusion

In our experience, programming in Mercury is significantly more productive
than programming in imperative languages.

Programs written in Mercury are guaranteed to be free of several classses
of bugs that can occur in most other languages.

Programmers working in Mercury have powerful tools they can use to
chase down any bugs not caught by the compiler.

We expect that Mercury programmers will soon have tools they can use to
help them parallelize programs with relatively little effort.

For more information about the Mercury project, visit
http://www.mercury.csse.unimelb.edu.au/.

Any questions?

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 17 / 23

http://www.mercury.csse.unimelb.edu.au/


The Mercury project Reserve slides

Powerful type system

The type system used by Mercury is both safe and flexible. It allows
programmers to describe their intentions much more closely than the type
systems of languages like C and Java.

:- type token

---> ident(string)

; int_const(int)

; float_const(float)

; left_paren

; right_paren

; ...

You cannot access e.g. the float without checking that the token is a
float const.

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 18 / 23



The Mercury project Reserve slides

Weak type system

typedef enum { IDENT, INT_CONST, FLOAT_CONST,

LEFT_PAREN, RIGHT_PAREN, ...}

TokenKind;

typedef struct {

TokenKind kind;

char *name;

int int_const;

float float_const;

...

} Token;

You can access token.float const without checking that token.kind ==
FLOAT CONST.

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 19 / 23



The Mercury project Reserve slides

Some bug types

Memory allocation errors. Cannot be expressed in Mercury.

Pointer arithmetic errors. Cannot be expressed in Mercury.

Can-be-null vs cannot-be-null confusion. Cannot arise in Mercury.

Uninitialized variables. The Mercury compiler is guaranteed to catch
this.

Uninitialized fields in structures. The Mercury compiler is guaranteed
to catch this.

Uncovered cases in a switch. The Mercury compiler is guaranteed to
catch this.

Incorrect casting (C) or dynamic type tests (Java). Casts do not
exist, and the need for dynamic type tests can be trivially avoided in
almost all cases.

Use of union or structure fields when not valid. Can be trivially
avoided in almost all cases.

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 20 / 23



The Mercury project Reserve slides

Why is it not widely used?

Some other reasons:

The search algorithm may ask too many questions.
We have implemented better search algorithms finding bugs with
fewer questions. Some focus on a user-selected wrong part of the
answer, while some others use coverage information from successful
vs failed test cases to focus on parts of the program that were
executed relatively more frequently during failed test cases.

The questions asked may be difficult to answer.
The Mercury declarative debugger has tools to make it easier, and
allows users to skip questions if they wish to.

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 21 / 23



The Mercury project Reserve slides

Tree materialization on demand

More memory, less timeLess memory, more time

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 22 / 23



The Mercury project Reserve slides

Updating a tree

”d” 4 • •

”b” 2 • •

”a” 1 / / ”c” 3 / /

”f ” 6 • •

”e” 5 / / ”g” 7 / /

”d” 4 • •

”f ” 6 • •

”g” 7 / •

”h” 8 / /

Zoltan Somogyi (Linux Users Victoria) The Mercury project June 15, 2011 23 / 23


	The Mercury project
	Introduction
	Declarative debugging
	Automatic parallelism
	Conclusion
	Reserve slides


