
Controlling Loops in Parallel Mercury Code

Controlling Loops in Parallel Mercury Code

Paul Bone, Zoltan Somogyi and Peter Schachte
National ICT Australia

The University of Melbourne

Declarative Aspects of Multicore Programming

January 28, 2012

Paul Bone et al (NICTA) Controlling Loops in Parallel Mercury Code January 28, 2012 1 / 15

Controlling Loops in Parallel Mercury Code Introduction

About Mercury

Mercury is a pure logic/functional language designed to support the
creation of large, reliable, efficient programs.

It has a syntax similar to Prolog’s, however the operational semantics
are very different.

It is strongly typed using a Hindley Milner type system.

It also has mode and determinism systems.

:- pred map(pred(T, U), list(T), list(U)).

:- mode map(pred(in, out) is det, in, out) is det.

map(_, [], []).

map(P, [X | Xs], [Y | Ys]) :-

P(X, Y),

map(P, Xs, Ys).

Paul Bone et al (NICTA) Controlling Loops in Parallel Mercury Code January 28, 2012 2 / 15

Controlling Loops in Parallel Mercury Code Introduction

Parallelism in Mercury

Introducing parallelism in Mercury can be done simply by replacing a
comma with &, the parallel conjunction operator:

map(P, [X | Xs], [Y | Ys]) :-

P(X, Y) &

map(P, Xs, Ys).

Parallel computations are handled by:

Engines Correspond to PThreads. One engine is created for each core
on a multicore system. Each engine has a set of abstract
machine registers.

Contexts Represent computations in progress. They are executed by
engines. Although lighter than PThreads, contexts are still
somewhat heavy: each one contains two stacks.

Paul Bone et al (NICTA) Controlling Loops in Parallel Mercury Code January 28, 2012 3 / 15

Controlling Loops in Parallel Mercury Code Loop control

Dependent right-recursive parallel code

Programmers are encouraged to write tail recursive code. In Mercury, this
means that the last call in a clause is often a recursive call.

Mercury allows dependent AND-parallelism. Variables such as Acc1 are
shared between the parallel conjuncts. Their synchronization is handled
automatically.

map foldl(M, F, [X | Xs], Acc0, Acc) :-

(

M(X, Y),

F(Y, Acc0, Acc1)
) &

map foldl(M, F, Xs, Acc1, Acc).

Paul Bone et al (NICTA) Controlling Loops in Parallel Mercury Code January 28, 2012 4 / 15

Controlling Loops in Parallel Mercury Code Loop control

The general parallel conjunction transformation

A parallel conjunction G1 & G2 & G3 is executed by spawning off G2 & G3

and then executing G1 immediately in the current context. This
mixed-level pseudo-code shows the operations that implement this.

case label:

SyncTerm st;

init sync term(&st);

spawn off(spawn off label, &st);

M(X, Y);

F(Y, Acc0, Acc1);

join and continue(resume label, &st);

spawn off label:

map foldl(M, F, Xs, Acc1, Acc);

join and terminate(&st);

resume label:

return;

Paul Bone et al (NICTA) Controlling Loops in Parallel Mercury Code January 28, 2012 5 / 15

Controlling Loops in Parallel Mercury Code Loop control

Execution of dependent right-recursive parallel code

The original context has to stay around until the recursive call finishes, so
it can resume. Parallelizing such a loop in this way will cause it to use a
number of contexts linear in the depth of the recursion. If each context
contains 4 megabytes of stack space, a loop only has to iterate 256 times
to consume a gigabyte of memory!

Time

Number of Contexts

Paul Bone et al (NICTA) Controlling Loops in Parallel Mercury Code January 28, 2012 6 / 15

Controlling Loops in Parallel Mercury Code Loop control

Loop control structure

Our solution of this problem associates a loop control structure with each
loop. This structure contains a fixed number of slots, each of which has a
pointer to a single context.

Once a context is allocated to a slot, the context is not released until the
loop has finished. Instead, it is reused for later iterations.

We replace the original looping procedure with code that creates the loop
control structure, before calling a renamed and transformed version of its
old self.

map foldl(M, F, Xs, Acc0, Acc) :-

create loop control(LC),

map foldl lc(LC, M, F, Xs, Acc0, Acc).

Paul Bone et al (NICTA) Controlling Loops in Parallel Mercury Code January 28, 2012 7 / 15

Controlling Loops in Parallel Mercury Code Loop control

Loop control transformation

map foldl lc(LC, M, F, [X | Xs], Acc0, Acc) :-

LCS = lc wait for free slot(LC),

lc spawn off(LC, LCS, spawn off label),

map foldl lc(LC, M, F, Xs, Acc1, Acc). % Tail call

spawn off label:

M(X, Y);

F(Y, Acc0, Acc1);

lc free slot(LC, LCS);

map foldl lc(LC, , , [], Acc, Acc).

lc finish(LC).

Only as many iterations of the loop can be active as there are slots in the
loop control structure.

Paul Bone et al (NICTA) Controlling Loops in Parallel Mercury Code January 28, 2012 8 / 15

Controlling Loops in Parallel Mercury Code Loop control

Execution of loop controlled code

The first time each slot is used, we create a context for that slot. After
the initial rampup period, the loop always uses the configured number of
contexts, never more. After the loop terminates, we free the contexts.

Time

Number of Contexts

Paul Bone et al (NICTA) Controlling Loops in Parallel Mercury Code January 28, 2012 9 / 15

Controlling Loops in Parallel Mercury Code Conclusion

Memory usage results: contexts and megabytes

mandelbrot raytracer spectral
seq 1 0.62 1 0.62 1 0.62
par, no & 1 0.62 1 0.62 1 0.62
par, &, 1c, nolc, c128 1 0.62 1 0.62 1 1.12
par, &, 1c, nolc, c512 1 0.62 1 0.62 1 1.12
par, &, 1c, lc1 2 1.25 2 1.25 2 1.75
par, &, 1c, lc2 3 1.88 3 1.88 3 2.38
par, &, 1c, lc4 5 3.12 5 3.12 5 3.62
par, &, 2c, nolc, c128 257 160.62 257 160.62 257 161.12
par, &, 2c, nolc, c512 601 375.62 1025 640.62 1025 641.12
par, &, 2c, lc1 4 2.50 4 2.50 3 2.38
par, &, 2c, lc2 6 3.75 6 3.75 5 3.62
par, &, 2c, lc4 10 6.25 10 6.25 9 6.12
par, &, 4c, nolc, c128 513 320.62 513 320.62 513 321.12
par, &, 4c, nolc, c512 601 375.62 1201 750.62 2049 1281.12
par, &, 4c, lc1 6 3.75 6 3.75 5 3.62
par, &, 4c, lc2 10 6.25 10 6.25 9 6.12
par, &, 4c, lc4 18 11.25 18 11.25 17 11.12

Paul Bone et al (NICTA) Controlling Loops in Parallel Mercury Code January 28, 2012 10 / 15

Controlling Loops in Parallel Mercury Code Conclusion

Time results: seconds and speedups

mandelbrot raytracer spectral
seq 19.37 (0.97) 19.50 (1.21) 16.07 (1.19)
par, no & 18.75 (1.00) 23.55 (1.00) 19.07 (1.00)
1c, nolc, c128 18.74 (1.00) 23.46 (1.00) 19.30 (0.99)
1c, nolc, c512 18.74 (1.00) 23.43 (1.00) 19.30 (0.99)
1c, lc2 18.74 (1.00) 23.54 (1.00) 19.30 (0.99)
1c, lc2, tr 18.74 (1.00) 23.79 (0.99) n/a
2c, nolc, c128 17.82 (1.05) 25.68 (0.92) 19.25 (0.99)
2c, nolc, c512 9.60 (1.95) 20.34 (1.16) 18.54 (1.03)
2c, lc2 9.69 (1.94) 14.14 (1.67) 9.96 (1.91)
2c, lc2, tr 9.78 (1.92) 14.04 (1.68) n/a
4c, nolc, c128 8.35 (2.25) 26.93 (0.87) 18.91 (1.01)
4c, nolc, c512 4.84 (3.88) 14.12 (1.67) 16.83 (1.13)
4c, lc2 4.74 (3.96) 9.35 (2.52) 4.98 (3.83)
4c, lc2, tr 4.76 (3.94) 9.41 (2.50) n/a

Paul Bone et al (NICTA) Controlling Loops in Parallel Mercury Code January 28, 2012 11 / 15

Controlling Loops in Parallel Mercury Code Conclusion

Conclusion

We have prevented excessive memory usage.

We can preserve tail recursion in parallel recursive code.

We have also reduced the overheads of parallelism, resulting in
greater parallel speedups.

Further work

We plan to add support for profiling loop-controlled computations
with ThreadScope.

We also intend to add knowledge of the loop-control cost model to
our automatic parallelization system.

We would like to introduce new transformations that efficiently
control parallelism for other common programming patterns such as
divide and conquer.

Paul Bone et al (NICTA) Controlling Loops in Parallel Mercury Code January 28, 2012 12 / 15

Controlling Loops in Parallel Mercury Code Spare slides

Communication through stack frames

The variables used to communicate to and from spawned off computations,
excluding shared variables, are stored on the parent’s stack frame.

The code that is spawned off accesses these variables through an abstract
machine register called the parent stack pointer rather than the normal
stack pointer register. This mechanism existed before we introduced loop
control.

However, this prevents tail recursion since a spawned off computation will
need access to this stack frame even after the original context executed
the recursive call.

Paul Bone et al (NICTA) Controlling Loops in Parallel Mercury Code January 28, 2012 13 / 15

Controlling Loops in Parallel Mercury Code Spare slides

Getting tail recursion back

In tail recursive code, we can create a stack frame on the child context’s
stack and copy over any variables it needs.

map foldl lc(LC, M, F, [X | Xs], Acc0, Acc) :-

LCS = lc wait for free slot(LC),

incr child stack ptr(LC, LCS, NumSlots);

child stack var(...) = M;

child stack var(...) = F;

...

lc spawn off(LC, LCS, spawn off label),

map foldl lc(LC, M, F, Xs, Acc1, Acc). % Tail call

In tail recursive code, we never need to manage communication from the
spawned off code to the parent code. This is because there is no code
after the recursive call, and therefore no variable can be consumed after

the parallel conjunction.

Paul Bone et al (NICTA) Controlling Loops in Parallel Mercury Code January 28, 2012 14 / 15

Controlling Loops in Parallel Mercury Code Spare slides

Sparks

spawn off actually creates a spark, which join and terminate may
execute using the current engine if it has not been stolen by another
engine.

case label:

SyncTerm st;

create sync term(&st);

spawn off(spawn off label, &st);

M(X, Y);

F(Y, Acc0, Acc1);

join and terminate(resume label, &st);

spawn off label:

map foldl(M, F, Xs, Acc1, Acc);

join and terminate(resume label, &st);

resume label:

return;

Paul Bone et al (NICTA) Controlling Loops in Parallel Mercury Code January 28, 2012 15 / 15

	Controlling Loops in Parallel Mercury Code
	Introduction
	Loop control
	Conclusion
	Spare slides

