
Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

Towards automatic parallelization
of Mercury programs

Zoltan Somogyi
joint work with Tom Conway, Peter Wang and Paul Bone

Department of Computer Science and Software Engineering
The University of Melbourne

23 November, 2009

Zoltan Somogyi 1 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

Mercury

Mercury is a purely declarative logic programming language. Syntactically,
it is based on Prolog, but semantically, it is very different.

Mercury has a strong Hindley-Milner type system with algebraic data
types, parametric polymorphism, higher order types and typeclasses,
very similar to Haskell.

Mercury has a strong mode system. Each predicate has one or more
modes, each of which says which arguments are input and which are
output. Each mode is compiled into separate code (its own
procedure), and the compiler reorders the goals in the body of each
procedure to ensure that for each variable, its consumers are executed
after its producer.

Mercury has a strong determinism system that can say that a
procedure has at least one solution, at most one solution, or both.

Zoltan Somogyi 2 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

An example

:- pred map_list(pred(X, Y)::in(pred(in, out) is det),

list(X)::in, list(Y)::out) is det.

map_list(_, [], []).

map_list(P, [Head0 | Tail0], [Head | Tail]) :-

P(Head0, Head),

map_list(P, Tail0, Tail).

This predicate is the standard map function over lists.

The P(Head0, Head) represents a higher order call. The declaration of the
first argument gives the type, the mode and the determinism of P.

Zoltan Somogyi 3 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

Reordering

map_list(P, In, Out) :-

(

In = [],

Out = []

;

In = [Head0 | Tail0], % 1

P(Head0, Head), % 2

map_list(P, Tail0, Tail), % 3

Out = [Head | Tail] % 4

).

1

2 3

4

Head0 Tail0

Head Tail

The data dependencies show that in the recursive case, (1) has to be done
first and (4) has to be done last, but (2) and (3) can be done in either
order, or in parallel.

Zoltan Somogyi 4 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

OR-parallelism versus AND-parallelism

Logic programs can exhibit two kinds of parallelism: OR-parallelism and
AND-parallelism.

With OR-parallelism, the parallel goals are computing alternate solutions
(or alternate sets of solutions) of the same call to a predicate.

With AND-parallelism, the parallel goals are working on different parts of
the same solution.

In typical Mercury programs, about 80-90% of procedures have
determinism det (exactly one solution), about 10-20% are semidet

(at most one solution), and only about 1-2% are multi (at least one
solution) or nondet (any number of solutions). This makes OR-parallelism
useful only in rare cases, so we implement only AND-parallelism.

We also require the conjuncts executed in parallel to be det.

Zoltan Somogyi 5 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

AND-parallelism in Mercury

To execute two det conjuncts in parallel in Mercury, just replace the
comma between them with an ampersand:

In = [Head0 | Tail0],

(P(Head0, Head) & map_list(P, Tail0, Tail)),

Out = [Head | Tail]

The code generated for the parallel conjunction will

create and initialize a barrier,

spawn off all the conjuncts except the first for other threads running
on other CPUs to pick up and execute,

execute the first conjunct, and

wait at the barrier for the spawned-off conjuncts to finish.

Zoltan Somogyi 6 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

Dependent vs independent AND-parallelism

The parallelism opportunity in map_list is an example of independent

AND-parallelism, because neither goal produces a variable that is consumed
by the other.

Most programs have relatively few goals that are both (a) expensive enough
to be worth executing in parallel and (b) independent. To find enough
parallelism, we need to exploit dependent AND-parallelism as well.

In the 1980s, there were several logic language implementations based on
dependent AND-parallelism. Most assumed that all conjuncts would be
executed in parallel, and used completely different data representations and
execution strategies from sequential systems.

These generated lots of overhead, mostly in the form of extra
synchronization. These overheads swamped the available speedups.

Zoltan Somogyi 7 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

Low-overhead dependent AND-parallelism

The Mercury compiler internally transforms code like this

p(A, B, C, D) & % A => B, C, D

q(A, B, C, E) % A, B, C => E

into code like this:

new_future(FutureB), new_future(FutureC),

(

p(A, B, C, D),

signal_future(FutureB, B), signal_future(FutureC, C)

&

wait_future(FutureB, B2), wait_future(FutureC, C2),

q(A, B2, C2, E)

)

This approach allows the system to pay the cost of synchronization only
when synchronization is absolutely needed.
Zoltan Somogyi 8 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

Pushing signals and waits

If the first conjunct signals the futures only at the very end, and the second
waits for the futures at the very start, there will be no parallelism: instead
of a speedup, you get a slowdown from the overhead.

We create specialized variants of p and q that also do the synchronization:

new_future(FutureB), new_future(FutureC),

(

p_and_signal(A, FutureB, FutureC, D)

&

q_and_wait(A, FutureB, FutureC, E)

)

In p_and_signal, we try to push the signal operations as early as possible,
and in q_and_wait, we try to push the wait operations as late as possible.
How much parallelism you get depends on how far you can push.

Zoltan Somogyi 9 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

Good overlap

p pB + pC + pR qB + qC + qR q

B C

pB pC pR

B C

qB qC qR

q qB + qC qR

B C

qB qC qR

Zoltan Somogyi 10 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

Not so good but sort-of OK overlap

p pB + pC + pR qB + qC + qR q

B C

pB pC pR

B C

qB qC qR

q qB qC qR

B C

qB qC qR

Zoltan Somogyi 11 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

Almost no overlap

p pB + pC + pR qB + qC + qR q

B C

pB pC pR

C B

qC qB qR

q qC qB + qR

C B

qC qB qR

Zoltan Somogyi 12 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

Estimating times

p(A, FutureB, FutureC, D) :-

p1(A, E),

B = E * 2,

signal_future(FutureB, B),

p2(A, E, B, FutureC),

p3(B, D).

To estimate the average time between the call of p and the signal on
FutureB, we need to know the average time taken by the call to p1 from

this call site. The Mercury deep profiler can give us this information.

Our estimate of the average time between the call of p and the signal on
FutureC will be the time taken by the call to p1 plus the estimated average
time between the call of p2 and the signal on FutureC.

This technique also works for estimating times until wait operations.

Zoltan Somogyi 13 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

Coverage profiling

p(A, FutureB, FutureC, D) :-

(A = <value1>, ...

; A = <value2>, ...

; A = <value3>, ...

).

Different arms of the switch may signal e.g. FutureB at different times.

To compute the average time until any given future is signalled, we need to
know how frequently each arm of the switch is executed. We recently
extended the Mercury deep profiler to provide this information.

This adds very little overhead, since most switch arms have a call near the
start whose call count we can reuse.

Zoltan Somogyi 14 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

When is a parallel conjunction worthwhile?

We want to execute two calls in parallel only if

each call’s time cost is above a threshold, and

the speedup ratio of the conjunction (its sequential time divided by its
parallel time) is above another threshold.

If the two calls are not adjacent, each piece of code between them has to
be put into one parallel conjunct or the other. This will affect the speedup
ratio.

With N pieces of code between the two calls, there are only N+1
sequence-preserving partitions, so it is a simple matter to try them all.

Zoltan Somogyi 15 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

Using profiling feedback

1.1.1 1.1.2 1.1.3 1.2.1 1.2.2 1.2.3 1.2.4

1.1 1.2

1

Our feedback tool walks the call tree from the top, with the parallelism
level being 1 at the top node.

At each node, we look for two calls that satisfy both conditions.
If we find them, we update the current parallelism level within the two calls
by multiplying it by their speedup ratio.

We keep going only until we reach the desired level of parallelism (which
could be e.g. eight-fold parallelism for a four-core CPU). We also stop when
the node’s cost is itself below a third threshold.
Zoltan Somogyi 16 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

Using profiling feedback on recursive code

If the two calls we want to execute in parallel are both recursive calls, we
want to create several variants of the procedure:

seq seq seq seq

p2 p2

p4

If just one of the two calls is a recursive call, we want to modify the
procedure body to test at runtime whether the runtime system has enough
work packages already. If it does, we execute the calls in sequence; if it
does not, we execute the calls in parallel.

Zoltan Somogyi 17 / 18

Towards automatic parallelization of Mercury programs Mercury Parallelism in Mercury Profiling Conclusion

Conclusion

We are just now working on getting the compiler to act on data fed back
from the profiling tools.

When that is done, we will see how well the system works for real
programs. Specifically, we want to see what the thresholds should be,
whether we need to look for 3+ parallel conjuncts, and whether using
averages loses too much precision.

Compiling a Mercury program with parallelism enabled but with no parallel
conjunctions yields code that is only slightly slower than compiling that
program for sequential execution. Such a program should be faster on one
CPU than a parallel Haskell program fully using two or even three CPUs.

Mercury expresses I/O through dataflow. Our mechanism for
synchronization based on dataflow therefore also ensures the preservation of
the order of I/O actions.

Zoltan Somogyi 18 / 18

	Towards automatic parallelization of Mercury programs
	Mercury
	Parallelism in Mercury
	Profiling
	Conclusion

