
Automatic Parallelisation for Mercury

Paul Bone

pbone@csse.unimelb.edu.au

Department of Computer Science and Software Engineering
The University of Melbourne

December 6th, 2010

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 1 / 30



About my eye sight

About my eye sight

I have roughly 1/8 of normal vision, so I probably won’t see any raised
hands.

If you have a question:

During the presentation Speak up / call out.

After the presentation Raise your hand, a facilitator will help me select
questions.

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 2 / 30



Motivation and background

The problem

Multicore systems are ubiquitous, but parallel programming is hard.

Thread synchronisation is very hard to do correctly.

Critical sections are not composable.

Working out how to parallelise a program is usually difficult.

If the program changes in the future, the programmer may have to
re-parallelise it.

This makes parallel programming time consuming and expensive. Yet
programmers have to use parallelism to achieve optimal performance on
modern computer systems.

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 3 / 30



Motivation and background

Side effects

int main(int argc, char *argv[]) {

printf("Hello ");

printf("world!\n");

return 0;

}

printf has the effect of writing to standard output. Because this effect is
implicit (not reflected in the arguments), we call this a side effect.

When you are looking at unfamiliar code, it is often impossible to tell
whether a call has a side effect without looking at its entire call tree.

Making all effects visible and therefore easier to understand would make
both parallelization and debugging much easier.

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 4 / 30



Motivation and background

Mercury and Effects

In Mercury, all effects are explicit, which helps programmers as well as the
compiler.

main(IO0, IO) :-

write_string("Hello ", IO0, IO1),

write_string("world!\n", IO1, IO).

The I/O state represents the state of the world outside of this process.
Mercury ensures that only one version is alive at any given time.

This program has three versions of that state:

IO0 represents the state before the program is run

IO1 represents the state after printing Hello

IO represents the state after printing world!\n.

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 5 / 30



Motivation and background

Effect Dependencies

qsort([]) = [].

qsort([Pivot | Tail]) = Sorted :-

(Bigs0, Smalls0) = partition(Pivot, Tail), %1

Bigs = qsort(Bigs0), %2

Smalls = qsort(Smalls0), %3

Sorted = Smalls ++ [Pivot | Bigs]. %4

1

2 3

4

Bigs0 Smalls0

Bigs Smalls

Steps 2 and 3 are independent.

This is easy to prove because
there are never any side effects.

The compiler may execute them
in parallel.

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 6 / 30



Explicit parallelism

Explicit parallelism

qsort([]) = [].

qsort([Pivot | Tail]) = Sorted :-

(Bigs0, Smalls0) = partition(Pivot, Tail),

(

Bigs = qsort(Bigs0)

&

Smalls = qsort(Smalls0)

),

Sorted = Smalls ++ [Pivot | Bigs].

The comma separates goals within a conjunction. The ampersand has the
same semantics, except that the conjuncts are executed in parallel.

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 7 / 30



Explicit parallelism

Parallelism overlap

qsort1 qsort1 qsort2 qsort2

qsort1 qsort2

qsort2 qsort2

qsort2

Quicksort can be parallelised easily and reasonably effectively. However,
most code is much harder to parallelise, due to dependencies.

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 8 / 30



Parallel overlap

map foldl

map_foldl(_, _, [], Acc, Acc).

map_foldl(M, F, [X | Xs], Acc0, Acc) :-

M(X, Y),

F(Y, Acc0, Acc1),

map_foldl(M, F, Xs, Acc1, Acc).

During parallel execution, a task will block if a variable it needs is not
available when it needs it.

F needs Y from M, and the recursive call needs Acc1 from F.

Can map foldl be parallelised despite these dependencies,
and if yes, how?

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 9 / 30



Parallel overlap

Parallelisation of map foldl

Y is produced at the very end of M and consumed at the very start of F, so
the execution of these two calls cannot overlap.

Acc1 is produced at the end of F, but it is not consumed at the start of
the recursive call, so some overlap is possible.

map_foldl(_, _, [], Acc, Acc).

map_foldl(M, F, [X | Xs], Acc0, Acc) :-

(

M(X, Y),

F(Y, Acc0, Acc1)

&

map_foldl(M, F, Xs, Acc1, Acc)

).

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 10 / 30



Parallel overlap

map foldl overlap

M F

Acc1

M F

Acc1’Acc1

M F

Acc1’

The recursive call needs Acc1 only when it calls F. The calls
to M can be executed in parallel.

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 11 / 30



Parallel overlap

map foldl overlap

M F

Acc1

M F

Acc1’Acc1

M F

Acc1’

The more expensive M is relative to F, the bigger the
speedup.

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 12 / 30



Parallel overlap

Profiler feedback

We need to know:

the costs of calls through each call site, and

the times at which variables are produced and consumed.

We extended the Mercury profiler to give us this information, to allow
programs to be automatically parallelised like this:

source compile profile analyse feedback

compile
final

executable

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 13 / 30



Parallel overlap

Overlap with more than one dependency

We calculate the execution time of q by iterating over the variables it
consumes in the order that it consumes them.

p pB + pC + pR qB + qC + qR q

B C

pB pC pR

B C

qB qC qR

q qB + qC qR

B C

qB qC qR

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 14 / 30



Parallel overlap

Overlap with more than one dependency

The order of consumption may differ from the order of production.

p pC + pB + pR qB + qC + qR q

BC

pC pB pR

B C

qB qC qR

q qB qC + qR

B C

qB qC qR

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 15 / 30



Parallel overlap

Overlap of more than two tasks

A task that consumes a variable must be after the task that generates its
value. Therefore, we build the overlap information from left to right.

p pA+ pR

A

pA pR

q qA qB + qR

A

qA qB qR

B

r rB rR

B

rB rR

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 16 / 30



Parallel overlap

Overlap of more than two tasks

In this example, the rightmost task consumes a variable produced by the
leftmost task.

p pA+ pR

A

pA pR

q qA qR

A

qA qR

r rA rR

A

rB rR

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 17 / 30



Parallel overlap

How to parallelise

g1, g2, g3

(g1 & g2), g3

g1, (g2 & g3)

g1 & g2 & g3

Each of these is a sequential conjunction of parallel conjunctions, with
some of the conjunctions having only one conjunct.

If there is a g4, you can (a) execute it after all the previous sequential
conjuncts, or (b) put it as a new goal into the last parallel conjunction.

There are thus 2N−1 ways to parallelise a conjunction of N goals.

If you allow goals to be reordered, the search space would
become larger still.

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 18 / 30



Parallel overlap

How to parallelise

X = (-B + sqrt(pow(B, 2) - 4*A*C)) / 2 * A

Flattening the above expression gives 12 small goals, each executing one
primitive operation:

V1 = 0 V5 = 4 V9 = sqrt(V8)

V2 = V1 - B V6 = V5 * A V10 = V2 + V9

V3 = 2 V7 = V6 * C V11 = V3 * A

V4 = pow(B, V3) V8 = V4 - V7 X = V9 / V11

Primitive goals are not worth spawning off. Nonetheless, they can appear
between goals that should be parallelised against one another, greatly
increasing the value of N.

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 19 / 30



Parallel overlap

How to parallelise

Currently we do two things to reduce the size of the search space from
2N−1:

Remove whole subtrees of the search tree that are worse than the
current best solution (a variant of “branch and bound”)

If the search is still taking to long, then switch to a greedy search
that is approximately linear.

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 20 / 30



Parallel overlap

Where to parallelise

We should only explore the parts of the program that might contain
profitable parallelism.

We therefore start at the entry point of the program, and do a depth-first
search of the call graph until either:

the current node’s execution time is too small to contain profitable
parallelism, or

we have already identified enough parallelism along this branch to
keep all the CPUs busy.

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 21 / 30



Benchmarks

Benchmarks — Mandelbrot image generator

dependant parallelism using
map foldl.

280 LoC.

Automatically parallelised.

Light garbage collector usage.

0 5 10 15 20 25 30 35

S

P = 1

P = 2

P = 3

P = 4

29

29

17

14

12

Elapsed time (seconds)

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 22 / 30



Benchmarks

Benchmarks — Mandelbrot image generator

Modified so that independant
parallelism is used.

Automatically parallelised.

0 5 10 15 20 25 30 35

S

P = 1

P = 2

P = 3

P = 4

29

30

16

12

11

Elapsed time (seconds)

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 23 / 30



Benchmarks

Benchmarks — ICFP 2000 raytracer

6,200 LoC.

Automatically parallelised.

Heavy garbage collector usage.

Code was altered to make it less
stateful.

0 10 20 30 40 50 60 70 80 90 100 110 120 130

S

P = 1 GC = 1

P = 1 GC = 4

P = 4 GC = 1

P = 4 GC = 4

98

115

98

110

81

Elapsed time (seconds)

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 24 / 30



Benchmarks

Benchmarks — ICFP 2000 raytracer

Increasing the initial heap size for the
Boehm GC reduces the number of
“stop the world” events.

Increasing the size of the thead-local
free lists reduces the contention on
global locks.

0 10 20 30 40 50 60 70 80 90 100 110 120 130

S

P = 1 GC = 1

P = 1 GC = 4

P = 4 GC = 1

P = 4 GC = 4

61

66

63

48

30

Elapsed time (seconds)

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 25 / 30



Conclusion

Conclusion

Progress to date:

Can analyse program profiles, and find places where parallelism is
probably profitable.

Can explore a large search space of possible parallelisations efficiently.

Auto-parallelisation already yields speedups for some small programs.

Future work:

Build an advice system that informs programmers why something
cannot be parallelised.

Handle loops and divide-and-conquer code more intelligently.

Test alternative ways of exploring the program’s call graph.

Account for barriers to effective parallelism, including
garbage collection and memory bandwidth limits.

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 26 / 30



Conclusion

Questions?

Mercury http://www.mercury.csse.unimelb.edu.au

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 27 / 30

http://www.mercury.csse.unimelb.edu.au


Backup slides

State variable notation

main(!IO) :-

write_string("Hello ", !IO),

write_string("world!\n", !IO).

!VarName is syntactic sugar for a pair of variables. The compiler will
create as many variables as their are versions of the state they represent,
and thread them through calls where !VarName appears.

This is not limited to the I/O state.

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 28 / 30



Backup slides

Divide and conquer

On average, this creates O(N) small parallel tasks. This is far too many
since most systems have far fewer than N cores.

Task 1

Task 2

Task 3 Task 4

Task 5 Task 6 Task 7 Task 8

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 29 / 30



Backup slides

Divide and conquer

It is much better to parallelise the first O(log2P) levels of the tree.

Task 1

Task 2

Paul Bone (pbone@csse.unimelb.edu.au) Automatic Parallelisation for Mercury December 6th, 2010 30 / 30


	About my eye sight
	Motivation and background
	Explicit parallelism
	Parallel overlap
	Benchmarks
	Conclusion
	Backup slides

