
Divide-and-query and Subterm Dependency Tracking
in the Mercury Declarative Debugger

Ian MacLarty
Dept. of Computer Science
and Software Engineering
University of Melbourne,

Australia

maclarty@cs.mu.OZ.AU

Zoltan Somogyi
NICTA Victoria Laboratory
Dept. of Computer Science
and Software Engineering
University of Melbourne,

Australia

zs@cs.mu.OZ.AU

Mark Brown
Dept. of Computer Science
and Software Engineering
University of Melbourne,

Australia

mark@cs.mu.OZ.AU

ABSTRACT
We have implemented a declarative debugger for Mercury
that is capable of finding bugs in large, long-running pro-
grams. This debugger implements several search strategies.
We discuss the implementation of two of these strategies and
the conditions under which each strategy is useful.

The divide and query strategy tries to minimize the num-
ber of questions asked of the user. While divide and query
can reduce the number of questions to roughly logarithmic in
the size of the computation, implementing it presents prac-
tical difficulties for computations whose representations do
not fit into memory. We discuss how we get around this
problem, making divide and query practical.

Our declarative debugger allows users to specify exactly
which part of an atom is wrong. The subterm dependency
tracking strategy exploits this extra information to jump di-
rectly to the part of the program that computed the wrong
subterm. In many cases, only a few such jumps are required
to arrive at the bug. Subterm dependency tracking can con-
verge on the bug even more quickly than divide and query,
and it tends to yield question sequences that are easier for
users to answer.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Diagnostics, Tracing

General Terms
Algorithms, Human Factors

Keywords
algorithmic debugging, declarative debugging, program slic-
ing, divide-and-query

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AADEBUG’05, September 19–21, 2005, Monterey, California, USA.
Copyright 2005 ACM 1-59593-050-7/05/0009 ...$5.00.

1. INTRODUCTION
Declarative debuggers locate bugs in programs by asking

an oracle (usually the user) whether the results of calls made
during the execution of a buggy program are correct in the
intended interpretation of the program, effectively compar-
ing the actual semantics of the program with its intended
semantics. The set of calls executed by the buggy program
for the given test case is effectively a giant search space that
the declarative debugger explores, looking for a node where
the results of correct subcomputations are combined into an
incorrect result.

We have written a declarative debugger for Mercury, a
purely declarative logic and functional programming lan-
guage intended to support the creation of large, reliable pro-
grams. While Mercury’s strong type, mode and determinism
systems work together to catch many common programming
errors at compile time, bugs in the program logic still oc-
cur. The Mercury declarative debugger takes advantage of
Mercury’s purely declarative semantics to automate much of
the debugging task. Unlike previous declarative debuggers,
ours is designed to work for real programs. We have suc-
cessfully used it to diagnose bugs in the Mercury compiler
(which consists of 300,000+ lines of Mercury code), as well
as bugs in the declarative debugger itself (also a non-trivial
program of 10,000+ lines of Mercury code).

Our declarative debugger implements many features needed
for debugging large programs. These include trusting of
predicates or entire modules, “don’t know” responses, declar-
ative handling of I/O [12] and inadmissibility [6]. We are
also able to debug programs which throw exceptions and
have implemented new techniques for managing the resources
consumed by the debugger. We do not report on these in
this paper. Instead we report on our efficient implementa-
tion of two previously known search strategies: divide and
query (proposed by Shapiro [11]) and subterm dependency
tracking (proposed by Pereira [8]).

The effectiveness of declarative debuggers, like other de-
bugging tools, is measured by how long it takes to find a
bug with their help. One obvious objective when design-
ing the declarative debugger’s search strategy is therefore
to minimize the number of questions asked of the oracle:
the fewer questions the user needs to answer, the sooner the
bug is found. The classic algorithm for minimizing ques-
tions is Shapiro’s divide and query algorithm [11]. While

conceptually simple, implementing the usual version of this
algorithm isn’t really feasible when a representation of the
computation to be debugged is too large to fit into memory
all at once. We have therefore developed a modified version
of the algorithm that does scale well to large computations.

While minimizing the number of questions is useful, it
isn’t a panacea. The time to find the bug is the product of
the number of questions asked and the average time required
to answer each question. While divide and query minimizes
the number of questions, the fact that the questions it asks
seem random to the user can make them relatively hard to
answer. This is because for each question the user is asked
to think about the meaning of a completely different, often
unrelated, part of the program being debugged. Even if the
questions are about the same predicate it is unlikely that
common sub-expressions will appear in successive questions,
so the user cannot reuse any previous knowledge of such
sub-expressions which can be a problem if the expressions
involved are large. We have therefore implemented another
search strategy that tries to minimize the time required to
answer questions as well as the number of questions. This
strategy, subterm dependency tracking, depends on the user
indicating not just the fact that an atom is not correct, but
also which part of that atom is not correct. The declarative
debugger will then track that subterm back to its origin.
This strategy can converge on the bug even more quickly
than divide and query, and the questions it asks are often
easier to answer because they are related in a fashion that
makes sense to the user.

The structure of the paper is as follows. Section 2 presents
the background we require on the Mercury language and on
the infrastructure on which the Mercury declarative debug-
ger is built. Section 3 presents an overview of the Mercury
declarative debugger itself. Section 4 describes the feasibil-
ity problem of divide-and-query as well as our solution, while
section 5 describes subterm dependency tracking. Both sec-
tions contain comparisons to some related work. Our con-
clusion then evaluates these search strategies and discusses
their strengths and weaknesses based on our experience with
using them to search for real bugs in real programs.

2. BACKGROUND

2.1 Mercury
Mercury [14] has its roots in logic programming, which is

why its syntax looks like the syntax of Prolog. However, pro-
gramming in Mercury feels different from programming in
Prolog. One reason is that unlike Prolog, Mercury is purely
declarative. Another is that Mercury’s design objective is
to support teams of programmers building large, reliable
software systems, and thus the Mercury compiler insists on
knowing a lot more information about the program. This
includes information about types, modes and determinisms.

Mercury has a Hindley-Milner type system very similar
to Haskell’s. A mode classifies each argument of a predi-
cate (or function, since Mercury supports functions) to be
either input or output. If input, the argument passed by
the caller must be a ground term; if output, the argument
passed by the caller must be a free variable, which the pred-
icate or function will instantiate to a ground term. It is
possible for a predicate or function to have more than one
mode; the usual example is append, which has two princi-
pal modes: append(in,in,out) and append(out,out,in).

We call each mode of a predicate or function a procedure.
The Mercury compiler generates different code for different
procedures, even if they represent different modes of the
same predicate or function; in fact, different procedures are
handled as separate entities by most parts of the Mercury
debugger and by all parts of the compiler after mode check-
ing. The mode checking pass of the compiler is responsible
for reordering conjuncts in conjunctions as necessary to en-
sure that for each variable, the goal that generates the value
of the variable comes before all goals that use the value of
the variable. This means that for each variable in each pro-
cedure, the compiler knows exactly which subgoal (call or
unification) in that procedure makes that variable ground.

Each mode of a predicate or function has a determinism,
which puts limits on the number of solutions that procedure
may have. Procedures with determinism det succeed exactly
once; procedures with determinism semidet succeed at most
once; procedures with determinism multi succeed at least
once; and procedures with determinism nondet may succeed
zero or more times. In our experience, few predicates are
designed to have more than one solution; most have exactly
one. For example, in the Mercury compiler, which is written
in Mercury itself, roughly 85% of procedures are det, 14%
are semidet, and only 1% multi or nondet.

Programmers must declare the types, modes and deter-
minisms of predicates and functions exported from their
defining modules, and common practice is to declare them
for internal predicates and functions as well, though these
could be inferred. The compiler verifies these declarations.
This process catches most simple errors in the program, leav-
ing only the relatively complex ones to be found by the de-
bugger.

2.2 Debugger events
The Mercury debugger views the execution of a program

as a sequence or trace of events; when debugging is enabled,
the compiler generates code that gives the runtime system
control at each event. The mechanisms involved in doing
this are described in [13].

Events can be classified into two categories, interface events
and internal events. Interface events describe the interac-
tion between one invocation of a procedure (one mode of a
predicate) and its caller, while internal events describe the
flow of control inside the call. The four types of interface
events supported by the declarative debugger correspond to
the four ports in Byrd’s box model. [2]

call A call event occurs just after a procedure has been
called, and control has just reached the start of the
body of the procedure.

exit An exit event occurs when a procedure call has suc-
ceeded, and control is about to return to its caller.

redo A redo event occurs when all computations to the
right of a procedure call have failed, and control is
about to return to this call to try to find alternative
solutions.

fail A fail event occurs when a procedure call has run out
of alternatives, and control is about to return to the
rightmost computation to its left that has remaining
alternatives which could lead to success.

At each event, the debugger has access to several kinds
of information about the event. The event number uniquely
identifies the event, and the call number uniquely identifies a
specific invocation of a procedure. The event depth gives the
number of ancestors linking the call to the initial invocation
of main. The debugger of course knows the identity of the
procedure within which the event occurs (the name of the
predicate or function, its arity, its mode number, etc), and
the list of the variables that are live at the time of the event,
including their names, types and storage locations.

There are also several types of internal events. Their pur-
pose is to mark the boundaries of (possibly) negated con-
texts and to record the outcomes of decisions about the flow
of control. For example, if the program executes an if-then-
else, there is an event when control enters the condition. If
the condition succeeds, there is an event when control en-
ters the then part; if the condition fails, there is an event
when control enters the else part. At all of these internal
events , the debugger also has access to the goal path, which
gives the identity of the subgoal associated with the event
(in this case it would specify exactly which if-then-else the
event relates to).

3. OVERVIEW OF THE DECLARATIVE
DEBUGGER

Declarative debugging involves querying an oracle about
the validity of the results of calls made during the execution
of a buggy program and then using this information to find
a bug in the program.

A call can succeed and produce a solution by grounding
its output arguments. A call can also fail, possibly after
producing some solutions.

Every time a call succeeds an exit event is generated and
an assertion about the semantics of the program is made.
The assertion made by an exit event is that the solution
generated by the call is in the intended interpretation of the
program.

Every time a call fails a fail event is generated and a
different assertion about the semantics of the program is
made. The assertion made by the fail event is that the
(possibly empty) set of all previous solutions generated by
the call is a superset of all the expected solutions. The
presence of exit events for unexpected solutions does not
affect the truth of the assertion made by the fail event.

If the assertion made by an event is wrong, then we con-
sider the event to represent incorrect behaviour. Incorrect
exit events represent wrong answers and incorrect fail

events represent missing answers.
When users encounter an event for which the assertion is

wrong, they can start the declarative debugger to diagnose
the incorrect behaviour by giving the ‘dd’ command to the
procedural debugger at that event.

The declarative debugger will ask an oracle about the as-
sertions made by the exit and fail events generated dur-
ing the execution of a buggy program. The oracle therefore
needs to have knowledge of the intended interpretation of
the program. The obvious source of this information is the
user, but the oracle may also use other sources, such as a
specification, or the user’s previous answers.

The oracle may give one of two1 possible answers to a

1Actually we also allow an answer of inadmissible consistent
with the three valued debugging scheme proposed by Naish

question from the debugger: correct which indicates that the
assertion made by the event is consistent with the intended
semantics of the program or erroneous which indicates that
the assertion made by the event is not consistent with the
intended semantics of the program.

Given the execution trace of a program we construct an
evaluation dependency tree or EDT which we use to search
for bugs. (The phrase EDT was coined by Nilsson [7] to de-
scribe a structure used for the declarative debugging of lazy
functional programs. We have adopted the term, though we
are not concerned with laziness.) Our EDT is an instance
of the declarative debugging scheme proposed by Naish [5].
We use the same EDT to diagnose both missing answer bugs
and wrong answer bugs.

Each node in the EDT corresponds to an exit or fail

event in the execution trace.
The children of any node in the EDT are the exit and

fail events generated by child calls which could have af-
fected the result of the parent call.

In the absence of negations and if-then-elses, the children
of an exit node will be the last exit events generated by
all non-backtracked over child calls before the parent exit.
Only the solutions generated by these events are used in the
calculation of the answer given at the parent exit.

In the absence of negations and if-then-elses, the children
of a fail node will be all the exit and fail events resulting
from child calls. This is because if a child call succeeded,
producing an exit event, then it may have succeeded with
a wrong answer, the correct version of which might have
caused the parent call to succeed instead of fail. If a child
call failed, producing a fail event, then it may have missed
a solution which in turn could have caused the parent call
to succeed.

If-then-elses and negations complicate matters somewhat.
The algorithm we use can be understood in terms of a pro-
gram transformation that replaces the body of each negated
goal with a call to a newly defined procedure, thus eliminat-
ing nested negations. The conditions of if-then-elses repre-
sent negated goals only if the condition fails, since declara-
tively (if a then b else c) is equivalent to (a, b ; (not

a), c). We thus replace the condition of an if-then-else
with a newly defined procedure only if the condition fails.
Our implementation faithfully mimics the tree structure you
would get using this transformation but without including
any events for the introduced procedures. A more detailed
treatment of the algorithm is given in [1].

For example, consider the following predicate, which checks
whether Struct contains a Pairs element such that all the
key/value pairs in Pairs are present in Table:

all_pairs_are_in_table(Struct, Table) :-

extract_pairs(Struct, Pairs),

not (

list_member(Key - Value, Pairs),

not map_search(Table, Key, Value)

).

Assuming a call to all pairs are in table succeeded,
only the last exit of the call to extract pairs would be
included as a child of the exit resulting from the call to
all pairs are in table. Since the call to list member is
in a negation which succeeds all exit and fail events gen-
erated by the call will be included (because the negated

[6], though that is outside the scope of this paper.

goal fails). Only the last exits of calls to map search are
included as children, since the negation containing it always
fails. (for a call to all pairs are in table to succeed, all
calls to map search would also have to succeed).

Suppose Table contained the pairs 1 - "one" and 2 -

"two" and suppose the call to extract pairs(Struct, Pairs)

initially unified Pairs with [0 - "zero"], but on backtrack-
ing unified Pairs with [1 - "one", 2 - "two"]. The re-
sulting EDT would look like the tree in figure 1.

Figure 1: The EDT for a succeeded call to

all pairs are in table

We construct the EDT on demand, based on a represen-
tation of the execution we call the annotated trace. The
annotated trace is like a chronologically ordered linked list
of trace events, with two main differences. The first is that
we only record events down to a given depth; if a search al-
gorithm needs to know about EDT nodes and hence events
below this depth, then it will use the machinery of the pro-
cedural debugger’s “retry” command [13, 12] to repeat that
part of the execution, this time recording events to a deeper
level. Execution traces can consist of hundreds of millions
of events, so doing this allows us to trade off the space re-
quired to store the annotated trace against the time required
to construct it. We call a subtree whose root node is the only
node materialized in memory an implicit subtree.

The second difference is that we maintain extra links be-
tween nodes. For example, each non-call interface event
contains a link to the previous interface event of that call
and a link directly to the call event, while call events con-
tain a link to the last exit, redo or fail event of that call.
These links allow us to efficiently search through the an-
notated trace for the child calls which are relevant to any
particular node in the EDT. For more details on the struc-
ture of the annotated trace, see [1].

We search for bugs in the EDT as we build it. A node
in the EDT is buggy if it is erroneous and all its children
are correct. By asking questions about the validity of the
assertions made by the events corresponding to the nodes
in the EDT, we can eliminate portions of the EDT until we
are left with an erroneous node all of whose children are
correct.

Nodes are eliminated from the EDT in two ways. First,
if the oracle asserts that a node is erroneous, then we only
need to search the subtree rooted at the erroneous node – all
other nodes can be eliminated. Second, if the oracle asserts
that a node is correct, we can eliminate the subtree rooted
at that node from the bug search.

We call nodes which have not (yet) been eliminated from
the bug search suspects. We call the set of suspect nodes in
an EDT the suspect area of the EDT.

middleweight(LastErroneousNode, StepSize):
CurNode := LastErroneousNode

TargetWeight := weight(CurNode) / 2
repeat

if CurNode is the root of an implicit subtree
materialize the next StepSize levels
of the subtree rooted at CurNode

PrevNode := CurNode

CurNode := the heaviest child of PrevNode

until weight(CurNode) < TargetWeight

if PrevNode is closer to TargetWeight than CurNode

return PrevNode

else
return CurNode

Figure 2: Finding the middle weight node in an EDT

4. DIVIDE AND QUERY

4.1 Overview
For long running programs, the sheer number of nodes in

the EDT makes it often impractical to use a search strategy
based on top down search. For such situations, we need a
search algorithm that can eliminate large numbers of nodes
from the search space in one step. The classic search algo-
rithm designed for this task is Shapiro’s divide and query
algorithm [11]. This algorithm chooses a node in the sus-
pect area of the EDT that divides the suspect area into two
parts, each of equal weight (or as close to equal weight as
possible) according to some weighting metric. Each time the
oracle gives an answer, the weight of the suspect area should
be reduced by almost a factor of two. Given an EDT with
an initial weight w, this allows the bug to be found with
O(log w) questions being asked of the oracle in most cases.

Our version of the divide and query algorithm is shown
in figure 2. The greedy search works because at each step
CurNode is guaranteed to be at least as close to the target
weight as any of its siblings.

4.2 Calculating the weight of a subtree
In this section we will discuss the reasons why it is diffi-

cult to accurately calculate the weight of a subtree in prac-
tice. We will then explore some alternative weighting met-
rics which are easier to calculate, but still good enough to
yield effective results in most cases.

4.2.1 The traditional weighting metric
The most obvious weighting of a subtree in the EDT is

the number of nodes in that subtree. This metric directly
reflects the number of questions represented by the tree.
Shapiro has shown in [11] that using this metric, divide and
query is query optimal in the worst case.

This weighting is easy to compute for subtrees we have
in memory – we simply traverse the subtree and count the
nodes.

Calculating the weight of an implicit subtree is, however,
not as simple. To calculate the weight of an implicit subtree
we might, while executing the part of the program repre-
sented by the implicit subtree, try to count the events that
would be EDT nodes. This turns out to be harder than
it may at first seem. There may be calls in the implicit
subtree which produce multiple solutions. All the exit and
fail events for such calls will be included in the EDT only

if the call fails. When we are executing the program in the
implicit subtree, we will need to remember how many solu-
tions have been produced for each multi or nondet call, as
well as the weights of the subtrees rooted at these solutions,
in case the call ultimately fails and we need to include all
previous solutions in the EDT. This becomes quite difficult
to do without an explicit version of the entire subtree in
memory. At the least we will require memory proportional
to the number of multi or nondet calls.

For example consider the predicate p.

p(X) :- q(X), X > 1.

Suppose we wish to calculate the weight for the node cor-
responding to the result of a call to p without having a copy
of the EDT in memory. As we progress through forward
execution of the call to p, suppose q exits with the result
0. Potentially this is a child of the call to p in the EDT,
but we will only know if it is when we know whether q fails
inside the call to p or not (this uncertainty is indicated by a
dotted line in figure 3). Suppose the subtree under the first
exit event for q has weight X. Now the generated solution
of q(0) makes the body of p false, so we retry q and get the
new answer 1. Suppose the weight of the subtree under this
exit event is Y .

Figure 3: The potential EDT after q has produced

two solutions.

Figures 4 and 5 show two possible next scenarios. In the
scenario in figure 4, the next retry of q yields the solution
2, which causes the body of p to be true and p to exit. In
this case only the last exit is included in the EDT, so the
weight of the subtree rooted at the call to p is Z + 1.

Figure 4: Scenario 1, q produces another solution.

Figure 5: Scenario 2, q fails.

In the scenario in figure 5, q produces no more solutions,
causing the call to p to fail. In this case we include all q’s
previous exits as well as the fail node, so the weight of
the (failed) call to p is X + Y + Z + 1.

In this example we need to remember the weight X + Y

in case we need to use it in the calculation of the weight of
the call to p. We have to do the same for all multi or non-
det nodes in the EDT if we wish to accurately calculate the
weights of their ancestors. If the entire EDT is available in
memory, this is easy. If parts of the EDT are not available,
we need an alternate data structure that gives us this infor-
mation. Such a data structure would duplicate the parts of
the missing EDT that involve procedures that can succeed
more than once, but would have to have a more complicated
structure than the EDT itself. The design and implemen-
tation of such a data structure seems a very high price to
pay, and we would strongly prefer not to pay it. Instead, we
have looked at alternate metrics for the weight of a subtree.

4.2.2 A practical approximation to the traditional
weighting metric

For implicit subtrees where multi or nondet code is exe-
cuted we can approximate the weight by counting the num-
ber of descendant exit and fail events between the event
which is the root of the implicit subtree and the correspond-
ing call event.

The weight of any subtree can then be approximated by
adding the sum of all the materialized EDT nodes in the
subtree, plus the approximated weights of any descendant
implicit subtrees.

For subtrees with only det or semidet code, this is a com-
pletely accurate calculation of the number of nodes in the
EDT, since for det and semidet code each fail and exit

event will appear as a node in the tree.
For subtrees which also contain nondet or multi code, the

approximation is just that, and is not guaranteed to be ac-
curate. If such an implicit subtree is materialized, we must
recalculate its weight and that of its ancestors. However,
this is not a significant cost, since in our experience proce-
dures that can succeed more than once are quite rare.

4.2.3 A biased weighting metric
Instead of counting the number of exit and fail events

only, we might count all the descendant events (both inter-
face and internal) in a subtree and use this as a weighting
metric.

For det and semidet code this is trivial to calculate: we
simply take the difference between the event number of the
root of the subtree and the event number of the correspond-
ing call node plus one – we needn’t traverse any of the sub-
tree even if it is in memory. We have these event numbers
available at each node already, for switching between the
procedural and declarative debuggers and for building un-
materialized portions of the EDT.

For calls that produce multiple solutions, we can approx-
imate the number of descendant events by adding the num-
ber of events between previous redos and exits. This is an
over approximation, since not all the events generated for
previous solutions will contribute to the generation of later
solutions, i.e. some of the events may be inside backtracked-
over descendant calls.

For example, suppose a call generates the following se-
quence of interface events.

event 4: call event 17: exit

event 7: exit event 23: redo

event 12: redo event 45: fail

Our estimate of the weight of the subtree rooted at the final
fail event will be (45 - 23 + 1) + (17 - 12 + 1) + (7 - 4 +
1) = 33. Our estimate of the weight of the subtree rooted
at the second exit event would be (17 - 12 + 1) + (7 - 4
+ 1) = 10. The weight of the first exit would be 7 - 4 + 1
= 4.

Using this over approximation, however, can cause the
weights to become inconsistent. For example suppose fur-
ther that the event number of the parent call was 3, the
call failed without producing any solutions and the event
number of the parent fail was 46. Then the approximated
weight of the parent fail node in the EDT would be 46 -
3 + 1 = 44, however the sum of the weights of the children
would be at least 33 + 10 + 4 = 47.

To avoid this situation where the weight of a subtree is
less than the sum of the weights of the child subtrees, we
need to add any double counted events to ancestor subtrees.
We can do this on the fly if and when we encounter such a
situation. This situation would only arise in the presence of
multi or nondet code, which as we mentioned occurs quite
rarely in practice.

An interesting property of this weight metric is that it
is biased towards nodes whose calls generate more internal
events. Calls which generate more internal events are gener-
ally to predicates with more complicated bodies (i.e. bodies
with more disjuncts, switches, if-then-elses, etc). It seems
likely that predicates with more complicated bodies would
be more likely to contain bugs so this bias would seem jus-
tified. We have no empirical evidence in support of this
hypothesis at the moment beyond our own experiences.

This third weighting metric is the one we have imple-
mented in the Mercury declarative debugger.

4.3 Using divide and query
We have successfully used our implementation of divide

and query to find two bugs in the declarative debugger itself
(we can use the declarative debugger on itself as long as we
don’t use a feature that triggers the bug we are trying to
find). The EDT for the first bug consisted of 893 events.
The debugger asked 11 questions before finding the bug.
The EDT for the second bug consisted of 166 events and
the debugger asked 8 questions before finding the bug.

We can see here the logarithmic relationship between the
number of events in the initial EDT and the number of ques-
tions it took to find the bug. Because of this we can approx-
imate the number of questions remaining, which makes the
debugging process more predictable in this respect. We can
(and do) tell the user approximately how many more ques-
tions they will need to answer before a bug is found. This
type of user feedback is not possible with a top down style
search.

On the other hand, the questions asked with divide and
query tend to come from different, often unrelated, parts
of the program. The sequence of questions do not usually
follow the flow of execution and so do not coincide with the
user’s mental model of the program. This can make the
questions more difficult to answer, since the user is required
to constantly switch mental contexts. This is especially true
when the search space covers lots of unrelated predicates.

Divide and query however remains an essential weapon in
the user’s arsenal because of its ability to greatly reduce the
search space, even when nothing is known a priori about the
location of the bug.

Because we allow the user to switch search strategies be-
tween top down and divide and query on the fly, the user is
free to make use of either depending on the situation.

4.4 Related work
Shapiro’s original method of rerunning the erroneous part

of the program with a modified interpreter each time the
middle node needs to be found is impractical for long run-
ning programs. Ironically, long running programs which pro-
duce large search spaces are precisely the programs for which
divide and query is most useful.

Plaisted [9] proposed a more efficient version of Shapiro’s
divide and query algorithm for Prolog. His technique in-
volves saving the input and output values of calls at care-
fully chosen points in the call tree. The oracle is queried
about only the saved calls until a much smaller subtree con-
taining no saved calls is left. The process is then repeated
on the remaining subtree. This greatly reduces the time
spent re-executing the program. The nodes are chosen in
such a way as to approximate Shapiro’s divide and query
algorithm. This approach has two main drawbacks. Firstly
the tree has to first be transformed into a new tree with a
constant branching factor of two. To achieve this the mean-
ings of the questions at each node must be modified which
results in questions of the form “If procedure P was called
with such and such inputs, then should it be possible to
reach a state after Q returns in which the variables acces-
sible to P have such and such values?” for each child call
Q of call P . Such questions are more complex than ours
and would seem to require a knowledge of the operational
semantics of the program, something we would prefer to
avoid. Secondly, because only selected nodes are material-
ized, the search strategies that can be applied are severely
limited. We could not, for example perform the usual top-
down search or do subterm dependency tracking. In our
practical experience this loss of flexibility would be intoler-
able.

Because we are able to approximate the weight of a node
without having its entire subtree in memory, we are able
to selectively materialize the heaviest subtrees: if an im-
plicit node is not CurNode at any point in the algorithm
in figure 2, its subtree won’t be materialized. This means
that the algorithm will materialize only small portions of
the EDT while searching for the middle weight node. The
StepSize parameter allows the user to control the trade-
off here: higher values require more memory to store more
nodes of the annotated trace and the EDT, but require fewer
re-executions of parts of the program.

5. SUBTERM DEPENDENCY TRACKING
Previous declarative debuggers have asked users to say, for

each atom, simply whether the atom is valid or erroneous.
However, by accepting only these two answers, they have
failed to gather information that could improve the search
significantly. This information is the precise difference in the
user’s head between the correct behavior of the predicate
concerned and the actual behavior.

When users say that a particular atom is erroneous, it is
because they know, at least implicitly, what the set of cor-
rect solutions is for the call, and they see that the output
arguments of the actual atom computed by the program
differ from output arguments in all the correct solutions.
Frequently, the actual output is almost right: most parts of

most output arguments are correct, and only a small num-
ber of parts in just one or two output arguments are wrong.
However, unless the debugger allows users to specify ex-
actly which parts of which output arguments are wrong, the
search inside the computation represented by the atom will
not be able to focus on the part of the computation that
computed the wrong part of the erroneous atom.

We have included in the Mercury declarative debugger a
mechanism that allows users to mark subterms of arguments
when browsing the atom that the declarative debugger is
asking about. If they mark a subterm of an output argu-
ment, they say that the atom is erroneous, and that the
marked subterm is wrong, i.e. replacing the marked sub-
term, and possibly other subterms, with other values could
make the atom correct. The system will use the informa-
tion about the identity of the wrong subterm to guide the
search for the bug. Specifically, the system will start ask-
ing questions about the atoms that generated the marked
subterm, since it is very likely that either these atoms have
bugs inside their call tree, or they were given incorrect in-
formation themselves.

Focusing the search onto a wrong subterm can be a huge
win. If the atom is large, and only a small part of it is
incorrect, then not exploring the parts of the computation
that generated the correct parts of the atom will avoid a
large number of questions that don’t have anything to do
with the bug; the larger the atom, the more unnecessary
questions can be avoided. We are acutely aware of this
point, because we use the Mercury declarative debugger to
debug the Mercury compiler, many of whose predicates pass
around multi-megabyte data structures as arguments.

Focusing the search onto the wrong subterm also makes
the declarative debugger more understandable, since this be-
haviour is what the user would intuitively expect. Following
the marked subterm also gives users some control in direct-
ing the bug search, while still remaining at a high level of
abstraction.

5.1 The subterm tracking algorithm
Our method of tracking a marked subterm to its ultimate

source can be best described in two steps: the algorithm for
tracking subterms within a single procedure call, and the
algorithm for tracking subterms across calls.

Consider an erroneous atom in which one subterm of an
output argument is marked as wrong. The first task in
tracking the marked subterm is to find out what goal in the
body of the procedure generated that subterm.

The Mercury mode system’s knowledge of where each vari-
able is bound makes this task significantly easier than it
would be in most other languages. If the program is com-
piled with the right options, the compiler will include in the
executable a representation of the bodies of all procedures,
and this representation includes, for each goal, the list of
variables bound by that goal. Given the predicate

:- pred rational_add(rational::in, rational::in,

rational::out) is det.

rational_add(HV1, HV2, HV3) :-

HV1 = r(An, Ad), HV2 = r(Bn, Bd),

lcm(Ad, Bd, Cd),

CA = Cd // Ad, CB = Cd // Bd,

Ap = An * CA, Bp = Bn * BA,

Cn = Ap + Bp,

HV3 = r(Cn, Cd).

the mode information recorded for rational add can tell
the declarative debugger immediately that the producer of
the Cd part of the output argument is the call to lcm (the
least common multiple predicate), and that the producer
of the Cn part of the output argument is the call to the
builtin function +. (Unlike in Prolog, in Mercury evaluable
functions such as + can appear anywhere, not just on the
right hand side of the is operator.)

This works for all predicates whose body is a simple con-
junction. However, most predicates have more complex bod-
ies, which include if-then-elses and/or disjunctions.

:- pred search(bintree(K, V)::in, K::in, V::out)

is semidet.

search(Tree, K, V) :-

Tree = tree(K0, V0, Left, Right),

compare(Result, K0, K),

(if Result = (=) then

V = V0

else if Result = (<) then

search(Right, K, V)

else

search(Left, K, V)

).

In this case, the mode system knows that V is produced by
the unification V = V0 or by one of the two recursive calls,
exactly one of which is executed in the process of computing
a solution, but it can’t know which one was executed in any
specific case. However, the debugger can, since it has access
to the execution history of the call. If during the relevant
call the first condition failed and the second succeeded (i.e.
if Result = (<)), the debugger will know it, because it will
have seen an else event for the outer if-then-else and a then

event for the inner if-then-else. It can thus reconstruct the
sequence or conjunction of goals executed to compute the
solution. This sequence is a kind of slice [16].

search(Tree, K, V) :-

Tree = tree(K0, V0, Left, Right),

compare(Result, K0, K),

Result = (<),

search(Right, K, V).

While procedure bodies may contain conjunctions, dis-
junctions, negations and if-then-elses nested arbitrarily, with
the atomic goals being unifications and calls, the slice we
compute is always a conjunction in which all conjuncts are
either unifications, calls or negated goals. You can boil a
procedure body down to such a slice by discarding those
arms of if-then-elses and disjunctions which did not con-
tribute to the solution being considered.

When tracking the origin of an output argument in an
exit event for a given call, it looks at the internal events of
that call and at the interface events of the child calls one level
down. By comparing this sequence of events with the code
of the procedure involved, seeing which of these events have
been backtracked over and which haven’t, it can compute
the slice leading to the exit event in question.

The marked subterm is identified by argument number
and position within that argument. The position is a sub-

term path, which is a sequence of argument numbers. A

origin(Head, Conj, Var, SubtermPath):
find the goal G that produces Var in Conj

if G is a construction X <= f(Y1, ...Yn) then
Var must be X

if SubtermPath = [] then
return 〈unify(G)〉

else
SubtermPath must be [First | Rest]
First must be in 1..n
return origin(Head, Conj, YFirst, Rest)

else if G is a deconstruction X => f(Y1, ...Yn) then
Var must be one of the Yis, say Yk

return origin(Head, Conj, X, [k | SubtermPath])
else if G is an assignment unification X := Y then

Var must be X

return origin(Head, Conj, Y , SubtermPath)
else if G is a call p(A1, ...An) then

Var must be one of the Ais, say Ak

return 〈call(G, k, SubtermPath)〉
else

Var must be an input argument
let ArgNum be the number of that input argument
return 〈head(ArgNum, SubtermPath)〉

Figure 6: The origin function

subterm path can be used to uniquely identify a subterm
in a term. The first number in the sequence represents the
position of the subterm in the top level functor of some
term. Successive argument numbers give the functor argu-
ment number in which the subterm appears for terms nested
in the top level term. For example the subterm path of the
second f(a) in the term h(f(a), g(h(b, c, f(a))), b) is [2, 1, 3].

The algorithm for tracking subterm dependencies within
procedure bodies is implemented as the origin function,
shown in figure 6. This algorithm relies on the fact that the
compiler converts the bodies of predicates to what we call
superhomogeneous form. In this form, all clause heads and
calls have distinct variables as arguments, all unifications are
explicit, and each unification contains at most one function
symbol. The mode system classifies all unifications into four
categories:

• Unifications of the form X = f(Y1, ...Yn) in which the
Yi are input and the X is output. We write these
construction unifications as X <= f(Y1, ..., Yn).

• Unifications of the form X = f(Y1, ...Yn) in which the
X is input and the Yi are output. We write these
deconstruction unifications as X => f(Y1, ..., Yn).

• Unifications of the form X = Y in which one variable
(say X) is input and the other is output. We write
these assignment unifications as X := Y .

• Unifications of the form X = Y in which both variables
are input and have atomic types. We write these test

unifications as X == Y .

All other unifications are either (a) transformed into calls
to compiler-generated unification predicates or (b) disal-
lowed, which results in either that goal being reordered rela-
tive to other conjuncts or in an error message. For example,
a unification of two non-atomic ground terms is transformed

into a call, while a unification of two free variables is delayed
until one variable is bound, if that is possible.

The slices we compute contain only calls, unifications and
negated goals, and negated goals cannot bind any variables
visible from the outside (this restriction being necessary
for the safety of negation as failure). Among unifications,
only construction, deconstruction and assignment unifica-
tions can bind variables; test unifications cannot. The cases
handled by the origin function are therefore all the cases.

Consider the rational add example above, and suppose
we want to find the origin of the computed numerator. Since
the numerator is the first argument of r, the declarative
debugger calls origin(Head, Body, HV3, [1]), where Head
and Body are the head and body of that clause respectively.
The goal that produces HV3 is HV3 = r(Cn, Cd). Since this
is a construction unification and the path isn’t empty, we call
origin(Head, Body, Cn, []), which finds that the origin
is the call to the builtin addition function.

If we want to find the origin of the computed denomi-
nator, the declarative debugger calls origin(Head, Body,

HV3, [2]). This time, the processing of HV3 = r(Cn, Cd)

leads to the recursive call origin(Head, Body, Cd, []).
That in turn tells us that the origin is the third argument
of the call to the lcm predicate.

This algorithm can be adapted quite simply to track the
origin of subterms in input arguments. There are three dif-
ferences.

First, the head and conjunction we give it as the first
two arguments are from the caller of the marked atom, not
the predicate involved in the marked atom itself. Second,
the conjunction we pass to the origin function starts at the
start of the relevant procedure body and it ends at a call,
not at the end of that procedure body. Thirdly the conjunc-
tion may go inside negated goals, since the inputs to the
call where the subterm was marked may have been passed
through negations. This cannot happen with output argu-
ments, since negated goals cannot bind any variables outside
the negated goal.

Consider the all pairs are in table from section 3. If
one of the input arguments of a call to map search in
all pairs are in table is marked, then in the call to the
origin function, the conjunction leading up to that call and
the corresponding head, will be

all_pairs_are_in_table(Struct, Table) :-

extract_pairs(Struct, Pairs),

list_member(Key - Value, Pairs).

If the origin function returns a unification, we have found
the true origin of the subterm we are tracking. If it returns
a reference to an argument in the clause head, then the true
origin is in a sibling call to the left. We can take another step
towards that true origin by marking the indicated subterm
of the indicated argument and invoking the origin function
on the conjunction leading up to that call, stepping one level
up in the call tree.

If a call to origin returns a reference to a call, then the
true origin is somewhere probably in the subtree below the
call, and we can take another step towards that true origin
by marking the indicated output argument of the call and
invoking the origin function on the conjunction leading up
to the exit event that computed that atom, stepping one
level down in the call tree.

However, even if a call to origin returns a reference to

a call, it is possible that the true origin is not somewhere
in the subtree below the call, because it is possible that the
marked output argument of the call was simply copied from
an input argument. In such cases, our dependency tracking
algorithm will take one step down into the body of the call
and one step up again to get back to the body of its caller.
However, this time it will be searching for the origin of a
different variable in that scope, and the producer of that
variable will be to the left of the call the algorithm dived
into and out of. This guarantees that the algorithm makes
progress.

In general, the dependency tracking algorithm may make
many steps both up and down in the call tree in its search
for the unification that creates the subterm being tracked.
However, it cannot step into predicates whose bodies it
doesn’t have access to. This can happen either if the module
containing that predicate wasn’t compiled with the option
that tells the compiler to include predicate bodies in the
executable, or if the predicate is defined in a foreign language
using Mercury’s foreign language interface.

5.2 Using incorrect subterm information
Once the oracle has asserted that a particular subterm

in a node in the EDT is incorrect we can call origin

repeatedly as we described above and locate the node in
which the subterm was bound. We define the dependency

chain as the sequence of EDT nodes corresponding to the
atoms returned by successive calls to origin made by this
algorithm. If the algorithm succeeds, the first node in the
dependency chain will be the node where the subterm was
marked by the user while the last node will correspond to
the call where the subterm was initially constructed.

Our implementation will then ask the oracle about the va-
lidity of the node which bound the incorrect subterm, pro-
vided the node wasn’t previously eliminated from the sus-
pect area (if the binding node is outside the suspect area,
then we ask about the last node on the dependency chain
that is in the suspect area). We also tell the user the lo-
cation in the source file of the construction unification that
bound the subterm. This behaviour is easy for the user to
understand since it is predictable and gives the user some
control over the bug search – they can direct the bug search
to the predicate responsible for binding a particular subterm
appearing in an atom.

5.3 An example
Consider the following predicate which calculates the av-

erage of a list of floating point numbers by keeping track of
the sum of the numbers and how many there are so it can
be tail recursive:

average([], Sum, N, Sum / float(N + 1)).

average([H|T], Sum, N, Average) :-

average(T, H + Sum, N + 1, Average).

This implementation is buggy, since average([1.0, 2.0,

3.0, 4.0, 5.0, 6.0], 0.0, 0, 3.0) is true in this imple-
mentation (the correct answer is 3.5). Marking the fourth
argument incorrect takes us directly to the bug:

average([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 0.0, 0, 3.0)

Valid? browse 4

browser> mark

average([], 21.0, 6, 3.0)

Valid? no

Found incorrect contour:

average([], 21.0, 6, 3.0)

Using a divide and query search would result in approx-
imately log

2
n questions being asked where n is the length

of the list. For long lists this could be a substantial number
of questions and the questions are likely to take longer to
answer. In this case, marking the incorrect subterm in the
first question results in only one more question being asked
no matter how big the list is.

We have successfully used our implementation of subterm
dependency tracking to find real bugs in the Mercury com-
piler. In one such session the first question contained a data
structure which required over 1,800 lines to display! Once
the guilty subterm had been marked only two subsequent
questions (both of which required less that 30 lines each to
fully display) needed to be answered to uncover the bug.

5.4 Related work
The idea of focusing the search on a marked subterm is not

new. It was first proposed two decades ago by Pereira [8],
who named it rational debugging. Pereira’s implementation
worked by modifying the usual Prolog unification algorithm
to keep track of where each part of the output was bound,
effectively recording the entire history of the program exe-
cution. This idea has been applied several times since then.
For example, Sparud [15] used redex trailing to implement
subterm dependency tracking for Haskell, and some exper-
imental debuggers for Java (e.g. [4]) can also find out
where a particular variable was last assigned, their equiva-
lent of subterm tracking.

Unfortunately, this approach has significant overhead, in
both space and time. The space overhead in particular is
a killer; a program running for a minute or two can gener-
ate enough data to overflow memory or even disk capacity
(since most disks are always close to full). The difference
from the standard execution algorithm is itself a problem:
the code for recording execution history is a large body of
code that must be maintenained, and due to differences in
data formats, most of these systems do not allow history
recording to be switched on for only part of a program or
program run.

By contrast, the static availability of mode information
in Mercury allows our subterm dependency tracking algo-
rithm to work without a complete history of execution, which
makes the system much more practical. We don’t need
any changes to the runtime system; the only two things we
needed to add to our existing system to support dependency
tracking were compiler support for recording procedure bod-
ies in the executable and the algorithms in the debugger to
interpret them. In a sense, we made virtue out of neces-
sity. While Pereira could modify the general purpose unifier
to keep track of dependencies, we couldn’t, since the Mer-
cury runtime doesn’t have a general purpose unifier. The
only unifications allowed in Mercury programs are one-way
matches, and all matches are compiled into sequences of
primitive operations such as constructions and deconstruc-
tions. Recording history at runtime would therefore have
demanded huge changes in the code generator. As it is, the
only cost our algorithm imposes when not being used is the
cost of storing representations of procedure bodies, which
leads to larger executables but not to slowdowns (except
possibly through cache effects).

Since functional languages are in many respects very sim-
ilar to strongly moded logic languages, our approach should
be adaptable to Haskell and other pure functional languages,
although coping with lazyness probably won’t be trivial.

The dependency chain we compute is a form of program
slice [16], with the slicing criterion being the contribution to
the value of the marked subterm. Unlike many applications
of slicing, we don’t need to construct an executable extract
of the program; we just construct a sequence of EDT nodes.
In particular it should be noted that the Prolog slicing al-
gorithm proposed by Schoenig and Ducassé [10] does not
apply to our situation, since we are not interested in gener-
ating an executable slice, nor are we interested in the control
flow aspects of the slice. We are only interested in tracking
the data flow of one value. The combination of the single-
assignment nature of Mercury and the static availability of
mode information makes our algorithm for constructing our
kind of slice particularly simple and cheap to execute.

Fritzson et al combine slicing with algorithmic debugging
[3]. They use the slice to prune the debug tree, but don’t
zoom in immediately on the source of the incorrect value as
we do. They also do not seem to be able to determine the
origin of a substructure of a larger structure as we can.

6. CONCLUSION
Divide and query is useful for quickly reducing the size of

a large search space; that’s what it was designed for. In our
experience, divide and query is best used when the user is
quite familiar with the intended semantics of all the pred-
icates involved. This is important, because the sequence
of questions it asks can be very confusing to anyone unfa-
miliar with the code. In our experience, for smaller search
spaces top down search is much more comfortable to use,
even though it asks more questions, because the sequence
of questions it asks generally follows the flow of execution
of the program. This means that successive questions are
clearly and closely related, making them much easier to an-
swer. This effect is due to the cache-like behavior of people’s
short-term memory; you don’t have to explore a possibly
large term if you have explored a closely related term a few
seconds ago, and you know what their relationship is. The
random jumps made by divide and query virtually guaran-
tee that there will be no meaningful relationships between
successive questions, and even when there are (typically to-
wards the end, where the suspect part of the tree is small)
the user typically doesn’t know about them. To alleviate
this problem, we are working on changes to the user inter-
face to signal to users that a large term being presented is
one they have seen before.

Tracking the origin of a subterm can be even more effec-
tive than divide and query at reducing the size of the search
space, especially if the subterm is generated far away from
where it is marked. The question about the atom which
bound the subterm is generally also simpler than its pre-
decessor, since its output is usually smaller than the term
that the subterm appeared in when it was marked. In our
experience, the sequence of questions generated by subterm
dependency tracking is quite easy for the user to under-
stand despite the large jumps it makes in the tree. This
is because successive questions are closely related in a way
that is meaningful to the user.

Because we tell the user exactly which unification of which
line of code produced the subterm, subterm tracking can also

be used to try to understand what a program is doing, even
if its behaviour is not necessarily incorrect – the user may
simply be trying to understand a piece of code they may not
have written themselves.

The user may use all three algorithms (top down, divide
and query and subterm dependency tracking), switching be-
tween them and the conventional procedural debugger at
will. This allows users to use whichever method they be-
lieve is best suited to the problem at hand, and makes them
feel more in control. To make the best use of this flexibil-
ity, users of course need to understand the strengths and
weaknesses of each algorithm.

We would like to thank the Australian Research Council
and Microsoft for their support.

7. REFERENCES
[1] Mark Brown and Zoltan Somogyi. Annotated event traces for

declarative debugging. Available from

<http://www.cs.mu.oz.au/mercury/>, 2003.

[2] Lawrence Byrd. Understanding the control flow of Prolog

programs. In Proceedings of the 1980 Logic Programming

Workshop, pages 127–138, Debrecen, Hungary, July 1980.

[3] Peter Fritzson, Nahid Shahmehri, Mariam Kamkar, and Tibor

Gyimothy. Generalized algorithmic debugging and testing.

ACM Letters on Programming Languages and Systems,

1(4):303–322, 1992.

[4] Bil Lewis. Debugging backwards in time. In Proceedings of the

Fifth International Workshop on Automated and Algorithmic

Debugging, Ghent, Belgium, September 2003.

[5] Lee Naish. A declarative debugging scheme. Journal of

Functional and Logic Programming, 1997(3), April 1997.

[6] Lee Naish. A three-valued declarative debugging scheme.

Australian Computer Science Communications,

22(1):166–173, January 2000.

[7] Henrik Nilsson and Jan Sparud. The evaluation dependence

tree as a basis for lazy functional debugging. Automated

Software Engineering, 4(2):121–150, April 1997.

[8] Luis Moniz Pereira. Rational debugging in logic programming.

In Proceedings of the Third International Conference on

Logic Programming, pages 203–210, London, England, June

1986.

[9] D. A. Plaisted. An efficient bug location algorithm. In

Proceedings of the Second International Logic Programming

Conference, pages 151–158, Uppsala, Sweden, July 1984.

[10] Stéphane Schoenig and Mireille Ducassé. A backward slicing

algorithm for prolog. In Third International Static Analysis

Symposium, pages 317–331, Aachen, Germany, September

1996.

[11] Ehud Y. Shapiro. Algorithmic program debugging. MIT Press,

1983.

[12] Zoltan Somogyi. Idempotent I/O for safe time travel. In

Proceedings of the Fifth International Workshop on

Automated and Algorithmic Debugging, pages 13–24, Ghent,

Belgium, September 2003.

[13] Zoltan Somogyi and Fergus Henderson. The implementation

technology of the Mercury debugger. In Proceedings of the

Tenth Workshop on Logic Programming Environments, pages

35–49, Las Cruces, New Mexico, November 1999.

[14] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The

execution algorithm of Mercury, an efficient purely declarative

logic programming language. Journal of Logic Programming,

26(1-3):17–64, October-December 1996.

[15] Jan Sparud and Colin Runciman. Complete and partial redex

trails of functional computations. Lecture Notes in Computer

Science, 1467:160–177, 1998.

[16] Mark Weiser. Program slicing. In Proceedings of the Fifth

International Conference on Software Engineering, pages

439–449, San Diego, California, 1981.

