
Idempotent I/O for safe time travel

Zoltan Somogyi
zs@cs.mu.oz.au

The University of Melbourne

Why time travel?

• check procedure’s input arguments: all correct

• step over procedure call

• check procedure’s output arguments: some are incorrect

With conventional debuggers, the programmer must start the program
again, find the same call, and this time step into it, not over it.

Being able to reset the program to the state it had at the time of the call
(as if travelling back in time) is much more convenient.

2

Restoring an earlier state

Time travel requires restoring the values of all variables, local and global.

In imperative languages, this is very difficult to do efficiently for long
running programs.

In single assignment languages, the task is much easier: if the debugger
knows which variables are bound at the time of the call, it can simply reset
all variables bound since then to unbound.

Prolog can use the trail (required to support backtracking) to record when
variables are bound at runtime. In functional languages and moded logic
programming languages, the same info is available at compile time.

3

Internal vs external state

Restoring the values of variables is relatively easy, because they are
stored inside the program’s address space, over which the debugger can
usually exert whatever level of control is necessary.

However, all useful programs also interact with entities outside their own
address space, including files, devices, other processes, and network
connections.

Restoring the state of these entities is much harder, if it is possible at all.
This is why Prolog debuggers, which implement retry operations (jumps
backward in time) as a matter of course, typically do not even attempt to
do so.

4

Effects of not restoring external state (1)

write_solution(Stream, ProblemDescription) :-

<compute Solution from ProblemDescription>,

write(Stream, Solution).

Time travel back across a call to write solution will cause output to
be duplicated.

5

Effects of not restoring external state (2)

read_problem(Soluion) :-

read(ProblemDescription),

<compute Solution from ProblemDescription>.

Time travel back across a call to read problem will cause
read problem to return the wrong ProblemDescription .

6

Effects of not restoring external state (3)

get_stream(Stream) :-

write("please type filename: "),

read(Filename),

open(Filename, read, Stream).

Time travel back across a call to get stream will cause a file descriptor
leak, as well as duplicated output and skipped input.

7

Effects of not restoring external state (4)

read_next_item(Stream, MaybeItem) :-

read(Stream, Item),

(Item = end_of_file ->

MaybeItem = no,

close(Stream)

;

MaybeItem = yes(Item)

).

Time travel back across a call to read next item may cause an attempt
to read from a closed stream.

8

Restoring external state

The obvious way to avoid these effects is to restore the external state as
well as the internal state. Unfortunately, this is easier said than done.

• Some changes to external state aren’t reversible: e.g. sending email,
cutting metal.

• Some changes to external state are reversible only in principle: e.g.
sending a message to a process whose source code you don’t have.

• Some external state is mutated by several processes; even if it can be
restored, there is no guarantee that later accesses by the time
travelling program will have the same results as on first execution.

9

I/O primitives

External state can be accessed and modified only through a known set of
primitive operations.

The set of operating system calls can be considered to be one set of
primitive operations.

In many recent languages, programs cannot issue system calls directly,
and must instead go through a library module. The operations of these
modules can then be considered to be primitives.

read_char_code(Stream, CharCode, S0, S) :-

<foreign_code, "C", [Stream, CharCode, S0, S],

"CharCode = getc(Stream); S = S0;">.

10

Idempotent I/O

If we can’t restore external state, the next best thing is to arrange for the
program to behave as if it had been restored. We can do this by
modifying the implementations of all the primitive operations that can
access or modify external state.

• When the program executes a call to a primitive for the first time, we
execute the actions called for by the operation and record the results.

• When the program executes a call to a primitive for the second, third
etc time, after a retry has warped time from after the call to before the
call, we just return the results we recorded the first time without
actually performing reading or writing external state.

11

The idempotency transformation

read_char_code(Stream, CharCode, S0, S) :-

impure allocate_io_action_number(IoActionNum),

(semipure io_has_occurred(IoActionNum, Block) ->

semipure restore_answer(Block, 0, CharCode),

semipure restore_answer(Block, 1, S)

;

<foreign_code, "C", [Stream, CharCode, S0, S],

"CharCode = getc(Stream); S = S0;">,

impure create_answer_block(IoActionNum, 2, Block),

impure save_answer(Block, 0, CharCode),

impure save_answer(Block, 1, S)

).

12

Time travel with idempotent I/O

At each call, we save the current I/O action number in the new stack
frame.

When the programmer wants to retry a call, i.e. to jump back in time to the
point when the call was originally made, the debugger resets the global
variable holding the current I/O action number to the value saved in the
retried call’s stack frame.

When forward execution resumes, the program will make the same calls
to I/O primitives as it did before. They will return the same answers, but
this time without touching external state.

The time warp is thus not visible from outside the process.

13

Controlling the overhead

When the Mercury compiler is compiling six of its own largest modules
(34,000+ lines, 1.2+ Mb of code), it executes over 12 million calls to I/O
primitives.

Enabling the tabling of I/O primitives increases runtime in the debugger by
about 10%, from 190s to 210s. It also increases the memory size of the
process about threefold, from 127 Mb to 389 Mb.

Handling more I/O intensive programs requires a mechanism that turns
on I/O tabling for only a part of the program’s runtime. Safety can still be
ensured for time jumps entirely within the tabled region.

14

Foreign language interfaces

New languages need foreign language interfaces, because programmers
won’t switch to a language that doesn’t let them exploit existing software.

A foreign language interface that can invoke imperative language code
effectively takes a part of the internal state of the program, the part
controlled by foreign language code, out of the control of the host
language implementation.

The solution is to apply the idempotency transformation not just to
operations that access external state but also to operations that invoke
foreign language code.

15

Impure declarative languages

Languages such as ML and Prolog have impure constructs such as
mutable variables and assert/retract.

The part of the internal state manipulated by such constructs can be
restored at time jumps using techniques such as logs, checkpoints and
reexecution.

Reexecution is safe only if time travel restores all state, internal and
external. If a system uses the idempotency transformation to restore
external state, it may also use it to restore the internal state controlled by
impure constructs.

16

Declarative debugging

If the idempotency transformation preserves the identity of the called
primitive and its inputs as well as its outputs, then the table can be used
not just for time travel but also for declarative debugging.

The semantics of predicate includes not just the values it computes for the
output arguments from the given values of the input arguments, but also
all its effects:

• all its I/O actions,

• all its foreign language calls, and

• all its impure operations.

17

Declarative debugging example

mdb> dd
prompt_read_int("please input an integer: ", 1123, ...)
5 io actions:
write_string("please input an integer: ")
read_char(’1’)
read_char(’2’)
read_char(’3’)
read_char(’\n’)
Valid? n
write_string("please input an integer: ", ...)
1 io action:
write_string("please input an integer: ")
Valid? y
...

18

Conclusions

Making an operation idempotent requires only a simple transformation.
This transformation can ensure the safety of time travel with respect to

• operations on state external to the program

• operations on internal state not under the control of the debugger

• operations on internal state that is not single-assignment

The overheads of the transformation are usually acceptable with respect
to both space and time for programs written in a declarative style.

The transformation enables the declarative debugging of programs that
perform these kinds of operations.

19

