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1 Introduction

This document is intended to help the reader translate existing Prolog programs to Mercury.
We assume that the reader is familiar with Prolog. This guide should be used in conjunction
with the Mercury User’s Guide and Reference Manuals.

If the Prolog code is quite declarative and does not make use of Prolog’s non-logical
constructions, the job of converting it to Mercury will usually be quite straight forward.
However, if the Prolog program makes extensive use of non-logical constructions, conversion
may be very difficult, and a direct transliteration may be impossible. Mercury code typically
has a very different style to most Prolog code.

2 Syntax and declarations

Prolog and Mercury have very similar syntax. Although there are a few differences, by and
large if a program is accepted by a Prolog system, it will be accepted by Mercury. There
are however a few extra operators defined by the Mercury term parser (see the “Builtin
operators” section of the “Syntax” chapter of the Mercury Language Reference Manual).

In addition, Mercury implements both existential and universal quantification using the
syntax

some Vars Goal
and
all Vars Goal
The constructor for lists in Mercury is ‘[|]/2’, not ‘. /2.

Terms with functor '{}/N’ are treated slightly differently in Mercury than in ISO Prolog.
ISO Prolog specifies that “{1, 2, 3}” is parsed as *{}’ (*,’ (1, ?,’(2, 3))). In Mercury,
it is parsed as {2}’ (1, 2, 3).

Mercury does not allow users to define their own operators.

3 Input and output

Mercury is a purely declarative language. Therefore it cannot use Prolog’s mechanism for
doing input and output with side-effects. The mechanism that Mercury uses is the threading
of an object that represents the state of the world through the computation. The type of
this object is io.state, or just io for short. Each operation that affects the state of the
world must have two arguments of this type, representing respectively the state of the world
before the operation, and the state of the world after the operation. The modes of the two
arguments that are added to calls are di for “destructive input” and uo for “unique output”.
The first means that the input variable must be the last reference to the original state of the
world, and the latter means that the output variable is guaranteed to be the only reference
to the state of the world produced by this predicate.

For example, the direct translation of the Prolog predicate
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write_total(Total) :-
write(’The total is ’),
write(Total),
write(’.’),
nl.
into Mercury yields this Mercury predicate:

:— pred write_total(int::in, io::di, io::uo) is det.

write_total(Total, I00, I0) :-
print("The total is ", I00, IO1),
print(Total, I01, I02),
print(’.’, I02, I03),
n1(I103, 1I0).

The variables 100, I01 etc each represent one version of the state of the world. I00
represents the state before the total is printed, I01 represents the state after just The total
is is printed, and so on. However, programmers usually don’t want to give specific names
to all these different versions; they want to name only the entities that all these variables
represent different versions of. That is why Mercury supports state variable notation. This
is syntactic sugar designed to make it easier to thread a sequence of variables holding the
successive states of an entity through a clause. You as the programmer name only the
entity, and let the compiler name the various versions. With state variables, the above
clause would be written as

write_total(Total, 'I0) :-
print ("The total is ", !'I0),
print(Total, 'I0),
print(’.’, 'I0),
nl(!I0).

and the compiler will internally convert this clause into code that looks like the pre-
vious clause. (The usual convention in Mercury programs is to name the state variable
representing the state of the world !I0.)

In the head of a clause, what looks like an argument that consists of a variable name
prefixed by an exclamation mark actually stands for two arguments which are both variables,
holding the initial and final state of whatever entity the state variable stands for. In this
case, they stand for the state of the world, respectively before and after the line about the
total has been printed. In calls in the body of a clause, what looks like an argument that
consists of a variable name prefixed by an exclamation mark also stands for two arguments
which are both variables, but these hold respectively, the current and the next state.

In Prolog, it is quite normal to give to print an argument that is an atom that is not
used anywhere else in the program, or at least not in code related to the code that does
the printing. This is because the term being printed does not have to belong to a defined
type. Since Mercury is strongly typed, the atom being printed would have to be a data
constructor of a defined type. A Mercury programmer could define a meaningless type just
to give one of its data constructors to a call to print, but it is far better to simply call
a predicate specifically designed to print the string, or integer, or character, you want to
print:
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write_total(Total, !'I0) :-
io.write_string("The total is ", !'I0),
io.write_int(Total, 'IO0),
io.write_char(’.’, !I0),
io.nl(!'I0).

The io. prefix on the predicates called in the body indicates that the callees are in the
io module of the Mercury standard library. This module contains all of Mercury’s primitive
I/O operations. These module qualifications are not strictly necessary (unless two or more
modules define predicates with the same names and argument types, the Mercury compiler
can figure out which modules called predicates are in), but Mercury convention is to make
write the module qualifier explicitly in order to make the intent of the code crystal clear to
readers.

The above could also be written more compactly like this:

write_total(Total, 'I0) :-
io.format("The total is %d.\n", [i(Total)], 'I0).

The first argument of io.format is a format string modelled directly on the format
strings supported by printf in C, while the second is a list of the values to be printed, which
should have one value for each conversion specifier. In this case, there is one conversion
specifier, ‘%d’, which calls for the printing of an integer as a decimal number, and the
corresponding value is the integer Total. Since Mercury is strongly typed, and different
arguments may have different types, in the argument list integers must be wrapped inside
i (), floats must be wrapped inside f (), strings must be wrapped inside s (), and chars must
be wrapped inside c(). Despite appearances, in the usual case of the format string being
constant, the wrappers and the list of arguments have neither time nor space overhead,
because the compiler optimizes them away, replacing the call to io.format with the calls
to io.write_string, io.write_int etc above.

One of the important consequences of our model for input and output is that predicates
that can fail may not do input or output. This is because the state of the world must be a
unique object, and each I/O operation destructively replaces it with a new state. Since each
I/0 operation destroys the current state object and produces a new one, it is not possible
for I/O to be performed in a context that may fail, since when failure occurs the old state
of the world will have been destroyed, and since bindings cannot be exported from a failing
computation, the new state of the world is not accessible.

In some circumstances, Prolog programs that suffer from this problem can be fixed by
moving the I/O out of the failing context. For example

( solve(Goal) ->
),

where ‘solve(Goal)’ does some I/O can be transformed into valid Mercury in at least two
ways. The first is to make ‘solve’ deterministic and return a status:
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solve(Goal, Result, 'I0),
(

Result = success(...),

Result failure,

),

The other way is to transform ‘solve’ so that all the input and output takes place outside
it:

io.write_string("calling: ", 'IO0),

solve.write_goal(Goal, 'I0),

( solve(Goal) —>
io.write_string("succeeded\n", !I0),

b

),

4 Assert and retract

In Prolog, calls to the builtin predicates assert and retract can change the set of clauses
of the program currently being executed. This makes compilation very tricky, and different
Prolog systems react differently when the program alters the definition of a predicate that
has active calls. It also makes program analysis almost impossible, since the program that
the compiler should analyze is not actually available at compilation time. Since Mercury is
a compiled language, it does not allow the compiled program to be altered in any way.

Most uses of assert and retract in Prolog programs are not actually intended to alter
the program. Their purpose is just to maintain a set of facts, with semantically separate sets
of facts being stored in separate predicates. (Most Prolog systems require these predicates
to be marked as dynamic predicates.) A Mercury programmer who wants to store a set of
facts would simply store those facts as data (not as code) in a data structure.

The standard library contains several abstract data types (ADTs) for storing collections
of items, each of which is useful for different classes of problems.

If the order of the items in the collection is important, consider the 1ist and cord ADTs.
list has lower constant factors, but the cord ADTs supports concatenation in constant
time. The stack and queue ADTs implement lists with specific semantics and operations
appropriate to those semantics.

If the order of items in the collection is not important, and if the items are key-value pairs,
you can store them in ADTs implementing several different kinds of trees, including rbtree
and tree234. In the absence of a compelling reason to choose a different implementation,
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we recommend the map ADT for generic use. Maps are implemented using 234 trees, which
are guaranteed to be balanced and thus have good worst-case behavior, but also have good
performance in the average case. bimap, injection, multi_map and rtree are specialized
version of maps.

If the items in the collection are not key-value pairs, then consider the set and bag
ADTs. The set ADT itself has several versions, some based on trees and some based on
bit vectors, each with its own tradeoffs.

The Mercury standard library has some modules for more specialized collections as well,
such as graphs. And of course, if needed, you can always create your own ADT.

If for some reason you cannot thread variables holding some data through the parts of
your program that need access to that data, then you can store that data in a ‘mutable’,
which is as close as Mercury comes to Prolog’s dynamic predicates. Each Mercury mutable
stores one value, though of course this value can be a collection, and that collection may
be (but doesn’t have to be) implemented by one of the Mercury standard library modules
listed above.

Each mutable has a getter and setter predicate. You can set things up so that the getter
and setter predicates both function as I/O operations, destroying the current state of the
world and returning a new state of the world. This effectively considers the mutable to be
part of the state of the world outside the Mercury program. The io module also provides
another way to do this, by allowing the storage of information in the io.state using the
predicates io.get_globals and io.set_globals. These predicates take an argument of
type univ, the universal type, so that by using type_to_univ and univ_to_type it is
possible to store data of any type in the io.state.

Alternatively, you can set things up so that the getter and setter predicates of a mutable
are not 1/O operations, but in that case calls to those predicates are not considered pure
Mercury, and must instead use Mercury’s mechanisms for controlled impurity. These mech-
anisms require all code that is not pure Mercury to be explicitly marked as such. They are
intended to allow programmers to implement pure interfaces using small pieces of impure
code, for use in circumstances where there is no feasible way to implement that same in-
terface using pure code. Most Mercury programs do not use impure code at all. The ones
that do make use of it use it very sparingly, with 99.9+% of their code being pure Mercury.

5 Failure driven loops

In pure Mercury code, the goal Goal, fail is interchangeable with the goal fail, Goal,
and Goal cannot have any side effects. As a consequence of these two facts, it is not possible
to write failure driven loops in pure Mercury code. While one could try to use Mercury’s
mechanisms for controlled impurity to implement failure driven loops using impure Mercury
code, this is not part of the culture of Mercury programming, because failure driven loops
are significantly less clear and harder to maintain than other means of iterating through a
sequence. Since they are inherently imperative and not declarative, they are also very hard
for compilers to optimize.

If the sequence must be generated through backtracking, then a Mercury programmer
could just collect all the solutions together using the standard Mercury library predicate
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solutions, and iterate through the resulting list of solutions using an ordinary tail recursive
predicate.

However, most Mercury programmers would prefer to generate a list of solutions directly.
This can be easily done by replacing code that generates alternative solutions through
backtracking, using predicates like this:

generate_solutions(Inl, In2, Soln) :-

(
% Generate one value of Soln from Inl and In2.
generate_one_soln(Inl, In2, Soln)
% Compute a new value for the second input.
In2’ = ....
% Generate more values of Soln from Inl and In2’.
generate_solutions(Inl, In2’, Soln)

).

in which the different solutions are produced by different disjuncts, with predicates in
which the different solutions are produced by different conjuncts, like this:

generate_solutions(Inl, In2, [Soln| Solns]) :-
generate_one_soln(Inl, In2, Soln),
In2’ = ....
generate_solutions(Inl, In2’, Solns).

Unlike predicates following the previous pattern, predicates following this pattern can
exploit Mercury’s determinism system to ensure that they have considered all the possible
combinations of the values of the input arguments. They are also more efficient, since choice
point creation is expensive.

They can be made even more efficient if the consumption of the solutions can be inter-
leaved with their generation. For example, if the solutions are intended to be inputs to a
fold (i.e. each solution is intended to update an accumulator), then this interleaving can be
done like this:

generate_and_use_solutions(Inl, In2, !Acc) :-
generate_one_soln(Inl, In2, Soln),
use_solution(Soln, 'Acc),
In2’ = ....
generate_and_use_solutions(Inl, In2’, !Acc).

6 Cuts and indexing

The Prolog cut operator is not part of the Mercury language.

Mercury allows if-then-elses to be written not just as ‘C => T ; E’, but also as ‘if C then
T else E'. In Mercury, an if-then-else prunes away either the ‘else’ goal (if the condition
succeeded) or the ‘then’ goal (if the condition failed), but if there are multiple solutions to
the condition, they will all be found on backtracking, and the ‘then’ goal will be executed
for each of those solutions. By contrast, an if-then-else in Prolog prunes away all solutions
of the condition except the first.
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Prolog programs that use cuts and a ‘catch-all’ clause should be transformed to use
if-then-else in Mercury.

For example
p(this, ...) := 1!,

p(that, ...) := !,
p(Thing, ...) :-
should be rewritten as

p(Thing, ...) :-
( Thing = this ->

; Thing = that ->

b

).

The Mercury compiler does much better indexing than most Prolog compilers. Actually,
the compiler indexes on all input variables to a disjunction (separate clauses of a predicate
are merged into a single clause with a disjunction inside the compiler). As a consequence,
the Mercury compiler indexes on all arguments. It also does deep indexing. That is, a
predicate such as the following will be indexed.

p([f(g(h)) | Rest]) :- ...
p([£f(g(i)) | Rest]) :- ...
Since indexing is done on disjunctions rather than clauses, it is often unnecessary to
introduce auxiliary predicates in Mercury, whereas in Prolog it is often important to do so
for efficiency.

If you have a predicate that needs to test all the functors of a type, it is better to use
a disjunction instead of a chain of conditionals, for two reasons. First, if you add a new
functor to a type, the compiler will still accept the now incomplete conditionals, whereas if
you use a disjunction you will get a determinism error that pinpoints which part of the code
needs changing. Second, in some situations the code generator can implement an indexed
disjunction (which we call a switch) using binary search, a jump table or a hash table, which
can be faster than a chain of if-then-elses.

7 Accumulators and Difference lists

Mercury does not in general allow the kind of aliasing that is used in difference lists. Prolog
programs using difference lists fall in to two categories — programs whose data flow is “left-
to-right”, or can be made left-to-right by reordering conjunctions (the Mercury compiler
automatically reorders conjunctions so that all consumers of a variable come after the
producer), and those that contain circular dataflow.

Programs which do not contain circular dataflow do not cause any trouble in Mercury,
although the implicit reordering can sometimes mean that programs which are tail recursive
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in Prolog are not tail recursive in Mercury. For example, here is a difference-list implemen-
tation of quick-sort in Prolog:

gsort(LO, L) :- gsort_2(LO, L - [1).

gsort_2([], R - R).
gsort_2([X|L], RO - R) :-
partition(L, X, L1, L2),
gsort_2(L1, RO - R1),
R1 = [X|R2],
gsort_2(L2, R2 - R).

Due to an unfortunate limitation of the current Mercury implementation (partially in-
stantiated modes don’t yet work correctly), you need to replace all the ‘=’ symbols with
commas. However, once this is done, and once you have added the appropriate declarations,
Mercury has no trouble with this code. Although the Prolog code is written in a way that
traverses the input list left-to-right, appending elements to the tail of a difference list to
produce the output, Mercury will in fact reorder the code so that it traverses the input
list right-to-left and constructs the output list bottom-up rather than top-down. In this
particular case, the reordered code is still tail recursive — but it is tail-recursive on the first
recursive call, not the second one!

If the occasional loss of tail recursion causes efficiency problems, or if the program
contains circular data flow, then a different solution must be adopted. One way to translate
such programs is to transform the difference list into an accumulator. Instead of appending
elements to the end of a difference list by binding the tail pointer, you simply insert elements
onto the front of a list accumulator. At the end of the loop, you can call ‘1ist.reverse’ to
put the elements in the correct order if necessary. Although this may require two traversals
of the list, it is still linear in complexity, and it probably still runs faster than the Prolog
code using difference lists.

In most circumstances, the need for difference lists is negated by the simple fact that
Mercury is efficient enough for them to be unnecessary. Occasionally they can lead to a
significant improvement in the complexity of an operation (mixed insertions and deletions
from a long queue, for example) and in these situations an alternative solution should be
sought (in the case of queues, the Mercury library uses the pair of lists proposed by Richard
O’Keefe).

8 Determinism

The Mercury language requires the determinism of all predicates exported by a module to
be declared. The determinism of predicates that are local to a module may be declared but
don’t have to be; if they are not declared, they will be inferred. By default, the compiler
issues a warning message where such declarations are omitted, but if you want to use deter-
minism inference, you can disable this warning using the ‘--no-warn-missing-det-decls’
option.

Determinism checking and inference is an undecidable problem in the general case, so
it is possible to write programs that are deterministic, and have the compiler fail to prove
the fact. The most important aspect of this problem is that the Mercury compiler only
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detects the clauses of a predicate (or the arms of a disjunction, in the general case) to be
mutually exclusive, allowing the execution of at most one disjunct at runtime, if the clauses
or disjuncts each unify the same variable (or a copy of that variable) with distinct functors,
with these unifications all taking place before the first call in the clause or disjunct. For such
disjunctions, the Mercury compiler generates a switch (see the earlier section on indexing).
If a switch has a branch for every functor in the type of the switched-on variable, then
the switch guarantees that exactly one of its arms will be executed. If all the arms are
deterministic goals, then the switch itself is deterministic.

The Mercury compiler does not do any range checking of integers, so code such as:

factorial(0, 1).
factorial (N, F) :-
N > 0,
N1 is N - 1,
factorial(N1, F1),
F is F1 * N.

would be inferred to be “nondeterministic”. The compiler would infer that the two clauses
are not mutually exclusive, because it does not know about the semantics of >/2, and it
would infer that the predicate as a whole could fail because (a) the unification of the first
argument with O can fail, so the first clause is not guaranteed to generate a solution, and
(b) the call to >/2 can fail, and so the second clause is not guaranteed to generate a solution
either.

The general solution to such problems is to use a chain of one or more if-then-elses.

:- pred factorial(int::in, int::out) is det.

factorial(N, F) :-
(N<O->
unexpected($pred, "negative N")
; N=0 ->
F=1

N1 is N - 1,
factorial (N1, F1),
Fis F1 x N

).

The unexpected predicate is defined in the require module of the Mercury standard
library. Calls to it throw an exception, and unless that exception is caught, it aborts the
program. The terms $pred is automatically replaced by the compiler with the (module-
qualified) name of the predicate in which it appears.

9 All-solutions predicates.

Prolog’s various different all-solutions predicates (‘findall/3’, ‘bagof/3’, and ‘setof/3’)
all have semantic problems. Mercury has a different set of all-solutions predicates
(‘solutions/2’, ‘solutions_set/2’, and ‘unsorted_solutions/2’, all defined in the
library module ‘solutions’) that address the problems of the Prolog versions. To avoid
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the variable scoping problems of the Prolog versions, rather than taking both a goal to
execute and an aliased term holding the resulting value to collect, Mercury’s all-solutions
predicates take as input a single higher-order predicate term. The Mercury equivalent to
intersect(Listl, List2, Intersection) :-
setof (X, (member (X, Listl), member(X, List2)), Intersection).
is
intersect(Listl, List2, Intersection) :-
solutions(
( pred(X::out) is nondet :-
list.member (X, Listl),
list.member (X, List2)
), Intersection).
Alternately, this could also be written as

intersect(Listl, List2, Intersection) :-
solutions (member_of_both(Listl, List2), Intersection).

:— pred member_of_both(list(T)::in, 1ist(T)::in, T::out) is nondet.

member_of_both(Listl, List2, X) :-
list.member(X, Listl),
list.member (X, List2).
and in fact that is exactly how the Mercury compiler implements lambda expressions.
The current implementation of ‘solutions/2’ is a “zero-copy” implementation, so the
cost of ‘solutions/2’ is independent of the size of the solutions, though it is proportional
to the number of solutions.
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