
Runtime Support for Region-Based Memory Management
in Mercury

Quan Phan
Department of Computer Science,

K.U.Leuven,
Celestijnenlaan, 200A, B-3001 Leuven,

Belgium
quan.phan@cs.kuleuven.be

Zoltan Somogyi
National ICT Australia and

Department of Computer Science and
Software Engineering,

The University of Melbourne, Australia
zs@csse.unimelb.edu.au

Gerda Janssens
Department of Computer Science,

K.U.Leuven,
Celestijnenlaan, 200A, B-3001 Leuven,

Belgium
gerda.janssens@cs.kuleuven.be

Abstract
Applying region-based memory management (RBMM) to logic
programming languages poses a special challenge: backtracking
can require regions removed during forward execution to be “res-
urrected”, and any memory allocated during a computation that
has been backtracked over must be recovered promptly, without
waiting for the regions involved to come to the end of their life.
In this paper, we describe how we implemented runtime support
for RBMM in the logic programming language Mercury, whose
specialized implementation of the language constructs involved in
backtracking required equally specialized support. Our benchmark
Mercury programs run about 25% faster on average with RBMM
than with the usual Boehm garbage collector, and for some pro-
grams, RBMM achieves optimal memory consumption.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers, Memory management

General Terms Languages, Performance

Keywords Region-based memory management, logic program-
ming, Mercury

1. Introduction
Runtime garbage collection has become the standard approach to
memory management in the implementation of modern program-
ming languages: it provides memory safety, good memory reuse,
and reasonable performance. In this approach, decisions about
which parts of memory can be reused are made completely at run-
time, which can incur significant overheads.

Region-based memory management [13] is a recent technique
for avoiding these overheads. It is based on the idea of grouping
heap objects having the same lifetime into regions; reclaiming
entire regions at the end of their lifetime makes collection very
fast. All the decisions about which objects are allocated into which
regions and when the regions should be created and removed are
made at compile-time. Since the pioneering work about RBMM
for functional programming (specifically SML) [13], there have
been several improvements and new developments in that context
[1; 2; 6], and the idea has also been adapted to object-oriented [4]
and logic programming [8; 10] languages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’08, June 7–8, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-60558-134-7/08/06. . . $5.00

In [10], a static region analysis was developed for the pure logic
programming language Mercury. This program analysis detects
the regions which will be used by a program, and decides when
they will be created and removed based on their liveness. It then
transforms the original program by annotating it with the inferred
information. The memory consumption of the region-annotated
programs reported in [10] showed that RBMM can actually reclaim
garbage early. However, this information was collected by using a
region simulator because the runtime system of Mercury had not
been extended to support the annotated programs.

In this paper we describe the design and implementation of the
runtime support needed by such annotated programs in the runtime
system of Mercury. The main challenge is to deal correctly and
efficiently with backtracking, a feature unique to logic program-
ming, without seriously affecting the performance of deterministic
programs. Moreover, unlike Prolog systems, the Mercury imple-
mentation generates highly specialized code for several program
constructs, which means that runtime support for RBMM has to be
specialized too, both to fit into the Mercury implementation and to
ensure that the efficiency of Mercury programs is maintained and
even improved.

In Section 2 we briefly introduce Mercury, and show how the
RBMM program analysis in [10] annotates Mercury programs with
region information. Section 3 shows the basic extensions to the run-
time system needed to support RBMM in deterministic programs,
while Section 4 describes our handling of backtracking. Section 5
gives our experimental results. Section 6 concludes with compar-
isons to related work.

2. Background
2.1 Mercury

Mercury is a pure logic programming language intended for the
creation of large, fast, reliable programs [11]. While the syntax of
Mercury is based on the syntax of Prolog, semantically the two
languages are very different due to Mercury’s purity, its type, mode,
determinism and module systems, and its support for evaluable
functions. (Mercury treats functions as predicates with the return
value as an extra argument, so in the rest of the paper we will talk
only about predicates.)

Mercury has a strong Hindley-Milner type system very similar
to Haskell’s. Mercury programs are statically typed; the compiler
knows the type of every argument of every predicate (from decla-
rations or inference) and every local variable (from inference).

The mode system classifies each argument of each predicate as
either input or output; there are exceptions, but they are not rele-
vant to this paper. If input, the argument passed by the caller must
be a ground term. If output, the argument passed by the caller must

be a distinct free variable, which the predicate will instantiate to
a ground term. It is possible for a predicate to have more than
one mode; the usual example is append, which has two princi-
pal modes: append(in,in,out) and append(out,out,in). We
call each mode of a predicate a procedure. The Mercury compiler
generates separate code for each procedure.

Each procedure has a determinism, which puts limits on the
number of its possible solutions. Procedures with determinism det
succeed exactly once; semidet procedures succeed at most once;
multi procedures succeed at least once; while nondet procedures
may succeed any number of times.

The subset of Mercury [9] we deal with in this paper does
not support higher order programming (including typeclasses), or
predicates and functions defined by foreign language code. The
reason is that these language constructs present some challenges
for region analysis, and the region analysis in [10] does not yet
handle them. However, the distinction between the full language
and the subset does not matter for this paper, since the language
constructs we omit do not impose any new requirements on the
runtime system or on the compiler’s code generator.

2.2 Mercury Code inside the Compiler

The compiler converts all predicate definitions into an internal
form. For our subset of Mercury, this internal form is given by this
abstract syntax, in which a sequence of goals separated by commas
is a conjunction, while a sequence of goals separated by semicolons
is a disjunction:

predicate P : p(x1, . . . , xn) ← G | f(x1, . . . , xn) = r ← G
goal G : x = y | x = f(y1, . . . , yn) | p(x1, . . . , xn) |

(G1, · · · , Gn) | (G1; . . . ; Gn) | not G |
(if Gc then Gt else Ge) | some [x1, . . . , xn] G

As this shows, the Mercury compiler internally converts any
predicate definition with two or more clauses into a single clause
with an explicit disjunction. The clause bodies themselves are
transformed into superhomogeneous form, in which each atom (in-
cluding clause heads) must be of one of the forms p(X1,...,Xn),
Y = X, or Y = f(X1,...,Xn), where all of the Xi are distinct.

Inside the compiler, every goal (compound goals as well as calls
and unifications) is annotated with mode and determinism informa-
tion. For unifications, we show the mode information by writing <=
for construction unifications, => for deconstruction unifications, ==
for equality tests, and := for assignments. The compiler reorders
conjunctions as needed to ensure that goals that consume the value
of a variable always follow the goal that produces its value. We
show a Mercury program in this abstract syntax in Figure 1. This
artificial program handles various lists of integers. It has no intu-
itive meaning, but it does illustrate the various kinds of interactions
between regions and backtracking that we need to handle. We will
use it as our running example. (The !IOs represent the state of the
world being threaded through. For completeness, we include the
definitions of member and length whose behaviour, as we will
see, is of no importance to RBMM.)

In the rest of the paper, we will ignore negation, since not G
can be implemented as if G then fail else true. Note that
in Mercury (unlike in Prolog), the condition of an if-then-else may
succeed several times. This will be clear from the determinism
annotation on the goal representing the condition, and many parts
of the compiler, including the implementation of RBMM, handle
conditions of different determinisms differently.

Another situation in which determinism information is im-
portant is existential quantification. (Mercury also supports
universal quantification, but the compiler internally converts
all [x1, . . . , xn] G to not some [x1, . . . , xn] not G, so we
do not have to deal with it.) If some [. . .] G quantifies away all

main(!IO) :- % mode(in, in), semidet
(1) X <= [1, 3, -1, 3], member(X, L) :-
(2) A <= [-2], L => [H | T],

(3) (if p(X, A, B, Y) then (H == X ; member(X, T)).
(4) io.write(B, !IO),

(5) io.write(Y, !IO) % mode(in) = out, det.
else length(L) = N :-

(6) io.write(X, !IO), (L == [], N := 0
(7) io.write(A, !IO) ; L => [_ | T],

). N := length(T) + 1

).

:- pred p(list(int), list(int), list(int), list(int)).
:- mode p(in, in, out, out) is semidet.
p(X, U, V, Y) :-

(1) X => [H | T],
(2) (if H < 0 then

(3) Y <= [H],
(4) (if member(H, U)

(5) then V := U
(6) else V <= [H | U]

)

else
(7) p(T, U, V, Y1),

(8) (if length(V) > length(Y1)
(9) then fail
(10) else Y <= [H | Y1]

)
).

Figure 1. Our running example.

the output variables of G, then different solutions of G would be
indistinguishable, so even if G can have more than one solution,
some [. . .] G will not. We call such a quantification a commit, and
we handle commits differently from other quantifications.

2.3 Memory Management for Mercury

Mercury allocates memory for structured terms from the heap. The
heap has traditionally been managed by the Boehm-Demers-Weiser
conservative garbage collector for C [3], since Mercury compiles to
C. Using the Boehm collector is very convenient and it works well
in practice, but it does have drawbacks.

The main drawback is that allocating memory requires a func-
tion call. Mercury programs, like those written in other declarative
languages, allocate memory at a much higher rate than imperative
language programs (due to the absence of destructive updating), so
this is a significant source of overhead.

A second drawback is the absence of instant reclaiming. Prolog
implementations can simply remember the heap pointer when en-
tering a disjunction and restore it when backtracking to any of the
later disjuncts, instantly reclaiming all the memory allocated since
execution entered the previous disjunct. The Boehm collector can-
not do this, since it does not allocate memory cells in chronological
order. (One could link cells together in this order, but the resulting
overhead would vastly outweigh the potential gain.)

The paper [5] proposed a solution to these drawbacks: a native
garbage collector for Mercury. It allocated memory with a simple
increment of the heap pointer, and allowed instant reclaiming by
saving and restoring the heap pointer. Benchmarks proved that
this approach could achieve significant speedups over the Boehm
collector. Unfortunately it could also yield slowdowns, because the
system had to preserve enough information to allow the collector
to reconstruct the types of all values on the heap, since without this
information, pointers cannot be correctly identified and traced, and
because the engineering of the collector itself could never catch up
with the amount of effort put into tuning the Boehm collector.

With region-based memory management, we do not need to
preserve type information, yet allocating and collecting memory
are still very simple and fast. As we will see later, we do incur
some other kinds of overhead, but we expect that these will be
significantly smaller than the benefits we get from fast allocation

and collection (including instant reclaiming) will give us overall
speedups. Our experimental data bears this out.

2.4 Region-Based Memory Management for Mercury

In logic programming languages, the existence of backtracking re-
quires the notion of liveness to be divided into two parts. A vari-
able, memory location, region and so on is forward live at a pro-
gram point if it can be accessed during forward execution from that
program point, and it is backward live at a program point if it can
be accessed in backward execution (e.g., after backtracking to a
choice point established before that program point). The two no-
tions of liveness are independent: all four combinations of forward
and backward liveness and deadness are possible.

The region analysis and transformation described in [10] has
been implemented in the Mercury compiler. It analyzes programs
(so far, only programs that fit into one module), decides which
region to make each allocation in and when each region should
be created and removed, and annotates the program with those
decisions. This analysis considers only forward liveness. At the
program point at which a region becomes forward dead, it will
insert an instruction to reclaim that region’s memory. Figure 2
shows a version of our running example from Figure 1 after this
transformation.

main(!IO) :- member(X, L@R7) :-
create(R1), L => [H | T],

(1) X <= [1, 3, -1, 3] in R1, (H == X ; member(X, T@R7)).

create(R2),
(2) A <= [-2] in R2, length(L@R8) = N :-

(if (
create(R3), L == [], N := 0

(3) p(X@R1, A@R2, B@R2, Y@R3) ; L => [_ | T],

then N := length(T@R8) + 1
(4) io.write(B, !IO),).

remove(R2),
(5) io.write(Y, !IO),

remove(R3)
else

(6) io.write(X, !IO),

remove(R1),
(7) io.write(A, !IO),

remove(R2)
).

p(X@R4, U@R5, V@R5, Y@R6) :-
(1) X => [H | T],

(if
remove(R4),

(2) H < 0
then

(3) Y <= [H] in R6,

(4) (if member(H, U@R5)
(5) then V := U

(6) else V <= [H | U] in R5
)

else
(7) p(T@R4, U@R5, V@R5, Y1@R6),
(8) (if length(V@R5) > length(Y1@R6)

(9) then fail
(10) else Y <= [H | Y1] in R6

)
).

Figure 2. Region-annotated version of the program.

The instruction create(R) binds the region variable R to a
newly created region, while the instruction remove(R) reclaims
the region to which R is bound. Regions can (and usually do) live
across procedure boundaries, and region variables are passed as
extra parameters in procedure calls.

In our example code, we use the postfix @Ri to annotate both
actual and formal parameters with their region variables. We also
annotate each unification that constructs a new memory cell with
the region from which the cell will be allocated. For example, in

main, the skeleton of the list X is in region R1, that of the list A is
in R2; the skeletons of the lists generated by the call to p, B and
Y, are in R2 and R3, respectively. Note that there are no regions
for the elements of the lists because they are of type int, which is
a primitive type in Mercury, and they are stored right in the first
words of the cons cells in the skeletons. In the call to p in the
condition of the if-then-else, R1, R2, and R3 are passed as actual
region parameters, corresponding to the formal parameters R4, R5,
and R6 in the definition of p. (R2 and R5 are duplicated only for
exposition.)

Regarding the lifetime of the regions, in main, R1 and R2 are
created before the construction of the two lists X and A. main creates
R3 before the call to p at (3), and p will use this region to store the
skeleton of Y. All the remove instructions for regions are added
after the last forward uses of the terms stored in them. member and
length will only read from their input regions.

To execute the region-annotated programs, the runtime system
of Mercury needs to be enhanced to work with the heap memory
organized in terms of regions, and to provide support for backtrack-
ing in the context of RBMM, including instant reclaiming. We will
discuss this necessity in detail in Section 4.

3. Runtime Support for Regions in Deterministic
Programs

In this section we describe our implementation of regions and of the
region management operations needed for deterministic programs.
This aspect of our implementation is generally similar to the “stan-
dard” RBMM implementations for SML and Prolog, which are de-
scribed in detail in [7; 8].

In our system, a region is a singly linked list of fixed-size region
pages. Each region page has a data area, an array of words that
can be used to store program data, and a pointer to the next region
page to form the single-linked list. (In the newest region page of
a region, this pointer is of course null.) The handle of the region
(the way the rest of the system refers to it) is the address of the
region header. Besides some other fields that we will introduce
later, the header structure includes a region size record: a pointer
to the newest region page, and a pointer to the next available word
in the newest region page. Since region pages have a fixed size,
these two values implicitly also specify the amount of free space
in the newest region page. To avoid fragmentation, we store each
region header at the start of the data area of its region’s first region
page. Figure 3 shows a region with two region pages; the shaded
areas represent memory allocated to user data.

� � � �
� � � �
� � � �

� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

R

free words

next_avail_word

region size record

newest_region_page

region header

null
next_region_page

data area

(stored in the data area
of the first region page)

Figure 3. The data structure of a region R.

There is no bound on region size. When a region is created it
will contain only one region page, but it can be extended by adding
more region pages when necessary. The program maintains a global
list of free region pages. If the free list runs out, the program
requests a big chunk of memory from the operating system, divides
it into region pages, and adds them to the free list. When a region
needs to be extended, we take a region page from the free list and
add it to the region as its new last region page, and then update
the region’s size record. When a region is reclaimed, we return all

its region pages to the free list. An allocation into a region always
happens in its newest region page simply by increasing the pointer
to the next available word. When the free amount in this region
page is not enough for an allocation, we extend the region before
allocating.

The advantage of this implementation is that the basic region
management actions are bounded in time. Disadvantages are that
there is no natural size for the region pages [12], and that if the
remaining space of a region page is not enough for an allocation,
that space will be wasted when a new region page is added.

4. Runtime Support for Backtracking
Backtracking introduces two issues that need to be handled: re-
claiming the memory allocated by the computations backtracked
over, and ensuring that regions are reclaimed only when they are
dead with respect to both forward and backward execution. The first
issue obviously has to be handled at runtime. For our initial imple-
mentation, we have chosen to deal with the second issue, backward
liveness, in the runtime system too. We expect this to give us the in-
sights we will need later to redesign the program analysis to handle
backward liveness both safely and precisely. Moreover, our current
system can serve as a reference for that work.

In Mercury, disjunctions are the main source of backtracking be-
cause they provide alternatives. But an if-then-else is just a special
kind of disjunction: (if C then T else E) is semantically equiv-
alent to (C,T ; not some [· · ·] C, E). Operationally, Mercury will
try C. If C succeeds, Mercury executes T ; if C fails, it executes E
as if C had never been tried. The handling of commit (Section 2.2)
is related to the handling of backtracking because committing to
a solution may prune some alternatives of relevant disjunctions.
Therefore, we need to provide runtime support for backtracking
in the context of these three language constructs.

Our running example in Figure 2 illustrates our two tasks.
Task 1: Preventing the reclamation of backward live regions.
The condition of the if-then-else in the main predicate is the call
to the semidet procedure p. The RBMM transformation marks the
region R1 for removal in the call because it is forward dead (it is
not used in the then part) even though it is backward live (it is
used in the else part). We must make sure that R1 is not actually
removed while it is backward live. In this case, that means we need
to delay the reclamation of R1 until we reach the then part; it is
not safe to actually destroy R1 if the condition fails. We therefore
distinguish reclaiming a region, which makes the memory of the
region available for other uses and thus potentially destroys its
contents, from the operation of removing a region, which causes
the region to be reclaimed only when it is safe to do so. Basically, a
region is removed when it is forward dead, and it is reclaimed when
it is both forward and backward dead.
Task 2: Reclaiming the memory used by backtracked-over
computations. The call to p has two output arguments, B and Y.
main tells p to put any cells for B in R2. The condition is extended
with a create instruction to create R3 so that p can put Y into it.
If the condition succeeds, we must leave both regions alone. If the
condition fails, we should restore R2 to its size before the condition,
and we should reclaim R3 in its entirety.

We now define several runtime concepts that we will use in the
rest of the paper.
Old vs new regions. A region is old with respect to a point during
the execution of a program if it was created before that point,
otherwise it is new with respect to that point. We also refer to old
regions as the existing regions. To allow efficient checks whether a
region is old or new, we maintain a global region sequence number
counter (starting at one) and include a sequence number field in
region headers. When we create a region, we timestamp it by setting
its sequence number from the global counter, and increment the

counter. If at a point during the execution of the program (such as a
resumption point where the program resumes when backtracking)
we save the current sequence number, then all the regions which
are created before that point, i.e., the old regions with respect to
the point, will have their sequence numbers smaller than the saved
value; ones which are created after that point, i.e., the new regions
with respect to the point, will have their sequence numbers greater
than or equal to the saved value. When the program backtracks
to the save point, we can use the saved value to check whether a
region has been created before or after the point. In the context of
RBMM, the memory that we want to reclaim at a resumption point
will be new allocations into existing regions, and new regions in
their entirety (since they have been created by the computation we
have just backtracked over).
Region list. To do instant reclaiming of new regions, knowing
the sequence numbers of the new regions is not enough; we also
need to reach them. We therefore link all the live regions into
a doubly-linked region list (using two additional pointers in the
region header). We maintain a global pointer to the head of the list,
which will be the newest live region. When a region is created we
add it to the head of the region list; when a region is reclaimed we
remove it from the list. We maintain the invariant that the region list
is ordered by regions’ creation time, newest first. To reclaim new
regions, we can traverse the region list from its head and reclaim
each region until we meet an old one.
Region size snapshots. To do instant reclaiming of new allocations
into an existing region, we need the old size of the region. When
we need to remember the size of a region at a point, we can save its
region size record at that point.
Protection. We will prevent the destruction of backward live re-
gions by protecting them so that when a removal happens to the
region during forward execution, the removal will be ignored.
Changes to live regions by a goal. When providing support for
backtracking, sometimes we want to know about the changes which
may be caused by a goal to the set of regions the goal may refer
to. This means we need to know about any new regions the goal
creates, any live regions the goal removes, and any live regions
in which the goal performs allocations. We refer to these sets of
regions as the goal’s created, removed, and allocated sets, respec-
tively. The region analysis of [10] computes, for each procedure,
the set of regions which are input to it (inputR), the set of regions
which it will create (bornR) and the set of regions it will removed
(deadR). The created, removed, and allocated sets of goals can be
computed from this in a fairly straightforward manner.
Changes to live regions by a goal: creation. Only create instruc-
tions and procedure calls may create regions. A create instruction
always creates the region in its argument. A procedure call will cre-
ate the regions that are the actual region parameters corresponding
to the formal parameters in the bornR set of the called procedure.
For a compound goal, its created set is the set of all regions created
inside it, including those that are also removed by it.
Changes to live regions by a goal: removal. We can similarly use
remove instructions and the deadR sets of procedures to compute
the removed set of each goal. Since we only care about the old re-
gions which are removed inside a goal, we exclude regions created
inside the goal (i.e., the goal’s created set) from its removed set.
Changes to live regions by a goal: allocation. A region is allo-
cated into in construction unifications and procedure calls. A con-
struction unification will allocate into the region with which it is
annotated. A procedure call may allocate into any region in its in-
put set (inputR). A program analysis could find out which subset
is actually allocated into, but the implementation of such an anal-
ysis would be complicated, especially for multi-module programs.
Instead, we use the conservative approximation and assume that a
call may allocate into any region in its inputR set.

Changes to live regions by a goal: an example. Take the condition
of the if-then-else in the procedure p in Figure 2 as an example
goal. We say that the region R4 is removed in the condition because
R4 is live before the condition and remove(R4) has been added
to the condition. Or take the condition of the if-then-else in main.
We say region R3 is created in the condition because create(R3)
has been inserted into the condition, while region R1 is removed in
the condition because it is live before the condition and is removed
in the call to p. We assume that both regions R1 and R2 can be
allocated into during the condition (the call to p); since, in fact, p
may allocate only into R2, this is a safe (if imprecise) assumption.

We provide the runtime support for backtracking for a program
by generating extra supporting code at the right places to achieve
our goals. In the next three subsections we will describe in detail
the support for disjunctions, if-then-elses, and commits.

4.1 Support for disjunction

Although the Mercury language does not specify the language’s
search strategy, the Mercury compiler supports only one search
strategy: depth-first search with chronological backtracking, so that
the disjuncts of each disjunction are tried in order. Given a disjunc-
tion (g1; ...; gi; ...; gn), we refer to g1 as the first dis-
junct, to the gis for all 1 < i < n as middle disjuncts, and to gn as
the last disjunct of the disjunction. We will also use “later disjunct”
to refer to any gi for i > 1.

A disjunction can have any determinism. The most general
determinism is of course nondet, but if one of the disjuncts always
has at least one solution, then the disjunction as a whole does
too, so a disjunction can also be multi. And if the disjunction
has no outputs (which happens frequently for disjunctions in the
conditions of if-then-elses), then the disjunction as a whole cannot
have more than one solution, which means that it will be either
det or semidet, depending on whether it has an always-succeeding
disjunct. (Typical programs do not contain det disjunctions, since
they are equivalent to true.)

For our purposes, the important distinction is between nondet
and multi disjunctions on the one hand, in which backtracking may
reach a later disjunct from code executed outside the disjunction,
after the success of a previous disjunct, and semidet and det dis-
junctions on the other hand, in which backtracking to a later dis-
junct is possible only from code within an earlier disjunct. Since
we do not care about the minimum number of solutions of each dis-
junction, our support treats multi disjunctions the same as nondet
ones and det disjunctions the same as semidet ones. In the follow-
ing, we will therefore talk only about nondet and semidet disjunc-
tions. We consider nondet disjunctions first, since they are more
general.

Figure 4 shows in pseudo-code form the supporting code we
added to a nondet disjunction. We insert code at the following
points: (d1) which is the start of the first disjunct, (d2) which
represents the start of every middle disjunct, and (d3) which is the
start of the last disjunct. These code fragments communicate using
shared data in what we call a disj frame. Each entry to a disjunction
creates a new disj frame. Since multiple nested disjunctions can be
active at the same time, we link these frames together to form the
disj stack (this is possible due to chronological backtracking). The
disj stack is not a separate stack; we reserve space for its frames in
the usual stacks used by the Mercury language implementation. We
maintain a global pointer to the top disj frame on the disj stack.

A disj frame has a fixed part and a nonfixed part. In Figure 5,
the fixed part is the 4-slot box separated by a thick line from the
nonfixed part. The four slots in the fixed part are:
• The prev disj frame slot holds the pointer to the previous

disj frame, (or null if there is none).

...,
((d1): start of the disjunction and also of the first disjunct

(a) push a disj frame
(b) save the global region sequence number

(c) save region size records and their number
g1

; ...
; (d2): start of a middle disjunct

(a) do instant reclaiming of new regions

(b) do instant reclaiming of allocations in old regions
gi

; ...
; (d3): start of the last disjunct

(a) do instant reclaiming of new regions

(b) do instant reclaiming of allocations in old regions
(c) pop the disj frame

gn
), ...

Figure 4. RBMM runtime support for nondet disjunctions.
• The saved seq num slot holds the value of the global region

sequence number at the time when the disjunction was entered.
• The num prot region field gives the number of regions which

are protected by a semidet disjunction (which we will discuss
later). For a nondet disjunction, this slot will contain zero.

• The num size rec field gives the number of region size
records saved in the nonfixed part.

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

(saved sequence number)
(previous disj frame)

num_prot_region
num_size_rec

(number of protected regions)

region_id
(number of saved region size records)
(handle to a protected region)

...

region_id

record
size

A saved size record

prev_disj_frame
saved_seq_num

Figure 5. The structure of a disj frame.

Disj-protecting backward live regions. Consider a region which
was created before the execution of a disjunction. Assume that this
region is removed during forward execution, either by the code of a
disjunct, or after the success of that disjunct by code following and
outside the disjunction, but that this region is backward live with
respect to a later disjunct of the disjunction. In this case, we need
to make sure that if the region is removed during forward execution,
it will not be actually reclaimed. Of course, the instruction that
removes the region may not be reached because forward execution
may fail before it gets there. But in general, we have to assume that
the remove instruction will be executed, and that if the region may
be needed after backtracking, we will need to prevent it from being
reclaimed during the forward execution. We achieve this by disj-
protecting such regions as follows. At the start of the disjunction,
i.e., at (d1), we push a disj frame on the disj stack and save the
current global sequence number into the saved seq num slot of the
disj frame. A region is disj-protected by a disj frame if its sequence
number is smaller than the sequence number saved at the disj frame.
The remove instruction will only reclaim a region if the region is
not disj-protected. There is an invariant that if a region is protected
by a disj frame, it is also protected by all the later frames on the disj
stack. This means that to check if a region is disj-protected or not,
we only need to check if it is protected by the top disj frame.

The program will no longer backtrack into a disjunction after
starting the execution of its last disjunct. This means that no regions
need to be protected any more by this disjunction. Therefore, at the
start of the last disjunct, i.e., at (d3), we disj-unprotect them by
popping the disj frame. The regions which had been previously
been protected only by this disj frame will be reclaimed when
execution reaches their remove instructions.

Instant reclaiming of new regions. When the program backtracks
to a later disjunct, we want to reclaim all the regions that have been
created during the computation that has just been backtracked over,
i.e., all the regions that were created after entry to the disjunction.
At (d1), we saved the global sequence number in the disj frame.
Therefore at the start of a later disjunct of the disjunction, i.e., at
(d2) and (d3), we just need to traverse the region list, and reclaim
all the regions we see until we encounter a region whose sequence
number indicates that it was created before the disj frame.
Instant reclaiming of new allocations in old regions. When arriv-
ing at a later disjunct, we want to restore all the regions that existed
before the disjunction to the sizes they had when entering the dis-
junction, recovering any memory that has been allocated in them.
To restore the size of a region, we need to save the region’s size
record in the nonfixed part of the disjunction’s disj frame at (d1) so
that we can restore the region’s size at (d2) and (d3). We need three
slots for each region: one for the region handle so that we know to
which region the saved record belongs, and the other two for the
record itself (see Figure 5). To be able to loop through the saved
records and restore the regions at (d2) and (d3), we store the num-
ber of saved records in the fixed num size rec slot. The first saved
record can be located by taking the address of the frame, and adding
both the size of the fixed part and the number of slots for protected
regions (which is zero in this case of nondet disjunctions).

The set of regions that existed before the disjunction and that
may be allocated into by code following the disjunction is not
available to the compiler. In theory, we could implement a global
analysis to make it available, but such an analysis would be very
complicated, especially for multi-module programs. Even if such
an analysis existed, we would still have a big problem, which is
that the number of regions in this set is not bounded, and in many
cases the set would contain tens, hundreds or even thousands of
regions. Saving and then restoring the sizes of that many regions
can take a significant amount of both memory and time. We do not
want this overhead to outweigh the benefits of instant reclaiming.

In our implementation, we have chosen to save and restore
the sizes of only the regions that are locally forward live before
the disjunction. (This information is readily available inside the
Mercury compiler.) This may lead to some missed opportunities for
recovering memory, but since nondet disjunctions are quite rare in
most Mercury programs, we do not expect this to be too much of a
problem. (We will see below that we do not miss memory recovery
opportunities for semidet disjunctions.)

We save and restore the sizes of all regions that are locally
forward live at the start of the disjunction (the number of these
regions governs how much space we reserve for the nonfixed part
of the disj frame). We save and restore the sizes even of regions that
are never allocated into before backtracking, since (in the absence
of the analysis mentioned above) we do not know which ones of
those are. This may lead to some unnecessary saving and restoring,
but since in typical programs the number of regions whose size we
save and restore at a disjunction is usually relatively small, we do
not expect the memory or runtime cost of these unnecessary saves
and restores to be all that significant.
Specialized treatment of semidet disjunctions. Because at most
one disjunct of a semidet disjunction may succeed, when one of its
disjuncts is reached, it means that all the previous disjuncts have
failed and more importantly that the execution has not passed out-
side the disjunction’s scope. Therefore, we only need to provide
runtime support for a semidet disjunction if in its scope there is
some change with respect to the set of existing regions. This ba-
sically means that the runtime support for nondet disjunctions de-
scribed above will only be applied to semidet disjunctions whose
created, removed and allocated sets are not all empty. In our prac-
tical experience with Mercury, most semidet disjunctions contain

only tests, and rarely make changes to the heap. Therefore the sup-
port we describe below is needed only by a relatively small fraction
of semidet disjunctions.

For a semidet disjunction, the Mercury compiler generates code
such that when one of its non-last disjunct succeeds, the execution
will commit to it and not go back to try any later disjuncts. This
means the code we add at (d3) may not be reached after the success
of a non-last disjunct, causing two problems. First, the disj frame
will not be popped. Second, the regions which are protected by this
disjunction will not be reclaimed at the start of the execution of the
last disjunct as in the case of nondet disjunctions. Our solution is
to do these two tasks at the end of any non-last disjuncts, i.e., after
their success at (e1) and (e2) as in Figure 6.

...,
((d1): start of the disjunction and of the first disjunct

(a) push a disj frame

(b) save the global region sequence number
(c) save region size records and their number

(d) save protected regions and their number
g1

(e1): end of the first disjunct

(a) reclaim protected regions
(b) pop the disj frame

; ...
; (d2): start of a middle disjunct

(a) do instant reclaiming of new regions
(b) do instant reclaiming of allocations in old regions

gi

(e2): end of a middle disjunct
(a) reclaim protected regions

(b) pop the disj frame
; ...
; (d3): start of the last disjunct

(a) do instant reclaiming of new regions
(b) do instant reclaiming of allocations in old regions

(c) pop the disj frame
gn

), ...

Figure 6. RBMM runtime support for semidet disjunction.

To solve the first problem, we pop the frame at (e1.b) and
(e2.b). To solve the second problem, at (d1) we loop through the
regions in the disjunction’s removed set. If a region is already
protected, we do not want it to be reclaimed in the disjunction and
its remove instructions inside the disjunction will be ineffective
anyway, so we do not need to do anything. If a region is not already
protected, we save its handle in the nonfixed part of the disj frame.
At the end, we store the number of region handles we saved in the
frame’s num prot region slot. The code at (e1.a) and (e2.a) will
loop through the saved handles, and reclaim all the saved regions
(they were logically removed during the disjunct but their remove
instructions were thwarted by the protection of this disjunction.)

At (d1.c), we save the sizes of only the regions in the disjunc-
tion’s allocated set. Since execution cannot leave a semidet dis-
junction, we do not miss any memory recovery opportunities by
restricting ourselves to these regions.

4.2 Support for if-then-else

The condition of an if-then-else (ite) can be either semidet or
nondet. In most Mercury programs, the overwhelming majority are
semidet, and this is the case we will look at first. Such if-then-elses
share some properties with semidet disjunctions. If the condition
succeeds, the execution will never enter the else part, and if the
condition fails, the failure must have occurred in the scope of the
condition.

Like disjunctions, if-then-elses need to protect regions from be-
ing reclaimed while backward live. But in the case of if-then-elses,
we can restrict out attention to regions removed in the condition
(i.e., in the condition’s removed set), since this is the only part of

the code in which the if-then-else itself can make a region backward
live. When execution reaches the start of the then part, backtrack-
ing to the else part is no longer possible, which means that any
regions that have been marked for removal in the condition have to
be reclaimed for real, unless they are protected by a surrounding
scope.

Also, if-then-elses, like disjunctions, should do instant reclaim-
ing of memory allocated by backtracked-over computations. In the
case of if-then-elses, this means that at the start of the else part, we
should recover any memory allocated by the condition.

In general, we only need to provide support for changes to
regions which occur inside the condition. This is good, because
the conditions of if-then-elses are often very simple, containing
only one or a few tests. Conditions whose created, removed and
allocated sets are all empty are therefore fairly common. For such
if-then-elses, the mechanisms we describe below are unnecessary,
and so we optimize them away. If at least one these three sets is not
empty, we add code at the starts of the condition, the then part, and
the else part, i.e., at points (i1), (i2), and (i3) in Figure 7.

(if
(i1): start of the condition

(a) push an ite frame
(b) save the protected regions and their number
(c) save size records and their number

...
then

(i2): start of the then part
(a) reclaim the ite-protected regions
(b) pop the ite frame

...
else

(i3): start of the else part
(a) unprotect the ite-protected regions

(b) do instant reclaiming of new regions
(c) do instant reclaiming of allocations in old regions
(d) pop the ite frame

...
)

Figure 7. RBMM runtime support for if-then-else with semidet
condition.

For each if-then-else, we use a data structure called an ite frame
to store the information used for its runtime support. As with disj
frames, we embed ite frames in the ordinary stacks used by the
Mercury implementation, and link them together into the ite stack,
with a global variable pointing to its top. The structure of an ite
frame is exactly analogous to that of a disj frame, the only differ-
ence being that the first slot of the fixed part, prev ite frame,
holds a pointer to the previous ite frame (or null if there is none).
Ite-protecting backward live regions. Since the compiler knows
the regions in the removed set of the condition (in our example,
R1 is such a region), we will stop them from being reclaimed
by ite-protecting them at the entry to the if-then-else. To allow
us to ite-protect regions, we add to the region header a pointer
field, ite protected, which is set to null when a region is cre-
ated. A region is ite-protected if its ite protected field is not
null. The remove instruction will now only reclaim a region if its
ite protected field is null and it is not disj-protected. (We do
not use the same protection mechanism as in the case of disjunc-
tion. The reason for this will be explained when we describe how
we handle if-then-elses with nondet conditions.) Before entering
the condition, i.e., at (i1), we push an ite frame, and then iterate
over the to-be-protected regions. If one of these regions is already
protected for a surrounding disjunction or if-then-else, we ignore it.
Otherwise, we protect it by setting its ite protected field, which
is currently null, to point to the ite frame. For such a protected re-
gion, we add its handle to a region id slot in the nonfixed part of
the ite frame. Then we also put the final number of regions we pro-

tect in this way into the frame’s num prot region slot. We do this
so that we can loop over all the regions protected by this ite frame
in two places: at the start of the then part (i2.a), where we reclaim
all these regions (giving delayed effect to the remove instructions
in the condition), and at the start of the else part (i3.a), where we
undo their protection by resetting their ite protected fields to
null.
Instant reclaiming. When the condition fails, we want to reclaim
both the new regions created inside it and any new allocations into
old regions. In our example in Figure 2 we want to reclaim all of
R3 and some of R2.

To reclaim new regions, at (i1.a) we save the current sequence
number into the new frame’s saved seq num slot, and at (i3.b), we
add code that traverses the region list and reclaims all the regions
until meeting an old region.

To reclaim new allocations into an old region, at (i1.c) we save
its size record into the nonfixed part of the ite frame. Although it
is reasonable to do this for the regions in the allocated set of the
condition, it would be wasteful to reclaim new allocations into the
regions which will be reclaimed right at the start of the else part.
Unfortunately, while the compiler knows which old regions have
remove instructions at the start of the else part, it does not know
which of these will actually reclaim their regions, since it does not
know which regions are protected by surrounding code. We handle
this uncertainty as follows. We generate code at (i1.c) for every old
region which is live at that point. For those that are not removed at
the start of the else branch, this code always saves their size records
unconditionally. For those that are removed at the start of the else
branch, this code checks whether they are protected, and saves their
size records only if they are. This is an optimization because the
test to see if a region is protected takes less time than saving its size
record, and restoring it if the condition fails. We record the number
of size records we saved in the num size record slot, so that code
at (i3.c) can restore them all.

The final action of an if-then-else with a semidet condition is to
pop the ite frame at either (i2.b) or (i3.d).
if-then-else with nondet condition. Unlike Prolog, Mercury al-
lows the condition of an if-then-else to have more than one solu-
tion. If the condition is nondet, then execution can backtrack into
the condition from the then part or later code. This poses two prob-
lems we need to solve.

First, since the condition can succeed more than once, the code
we add at the start of the then part (i2) can also be executed more
than once. Because we need the ite frame every one of these times,
we cannot let the code pop it at (i2.b); we must keep it until after
the last time it may be used, i.e., after the last execution of the
condition. We arrange for this to happen by modifying the way the
code generator handles the failure of the condition.

Normally, the code generator arranges for failures of the con-
dition before the condition succeeds for the first time to cause a
branch to the start of the else part, while a failure of the condition
after it has succeeded represents a failure of the if-then-else as a
whole, and will be handled accordingly, in whatever way the sur-
rounding context demands. For example, if the if-then-else is one
disjunct of a disjunction, its failure will cause execution to resume
at the start of the next disjunct. We call the place to branch to on
failure of the whole if-then-else the failure continuation.

We modified the code generator so that if the nondet condition
needs support for region operations, i.e., it has a nonempty created
set, removed set or allocated set, we branch to the failure continua-
tion only after we execute code to pop the ite frame, the same code
that for semidet conditions we would execute at (i2.b).

Second, the condition being nondet means that it must include,
directly or indirectly, a nondet disjunction (since this is the only
Mercury construct that can introduce nondeterminism). Therefore

we must ensure that the supporting code fragments we generate for
the if-then-else and the disjunction inside it do not step on each
other’s toes.

Our support for if-then-elses with semidet conditions provides
ite-protection for regions in the condition’s removed set that are not
yet protected before the if-then-else. For such a region in a nondet
condition, there are two cases. The first case is when the region
is removed before the first nondet disjunction inside the condition.
That means that when the remove instruction is executed, the re-
gion is ite-protected but not disj-protected. The remove instruction
will (correctly) not reclaim it. Later on, the region will be reclaimed
when the condition succeeds for the first time by the supporting
code added at (i2). Because the program may backtrack into the
condition and may reach the then part again, when the region is
reclaimed at (i2.a), we need to nullify its entry in the ite frame so
that it will not be wrongly reclaimed again the next time execu-
tion reaches (i2.a). This explains our saving of the pointer to the ite
frame in the ite protected field in the region header of a pro-
tected region.

In the second case, the region is removed after the start of the
first disjunction in the condition, either in the disjunction itself
or at some point after it. In an execution containing a non-last
disjunct, when the remove instruction is encountered the region
is not reclaimed because it is both ite- and disj-protected. We need
to ensure that if the condition succeeds and execution reaches the
then part, the region should not be reclaimed at (i2) because it may
be needed when the execution goes back into the condition. We
therefore put different code at (i2.a) if the condition is nondet; this
code will reclaim a region only if it is not currently disj-protected
(Figure 8). The region will remain both ite- and disj-protected
until the execution enters the last disjunct, at that time it will lose
its disj-protection (Section 4.1). When the remove instruction in
the condition is executed after this, it will not reclaim the region
because it is still ite-protected, but the code at (i2.a) will reclaim it.

for each saved region_id
if region_id != null && !is_disj_protected(region_id)

reclaim the region;
region_id = null

Figure 8. Code at (i2.a) for if-then-else with nondet condition.

When the nondet condition fails, in both cases above, the region
is only ite-protected, not disj-protected. It is because in the first
case, the region is never disj-protected and in the second case, the
failure happens only after all the disjuncts of the nondet code have
been tried and failed, and the region has been disj-unprotected at
the start of the last disjunct. This situation is exactly the same as
when a semidet condition fails. Therefore the code at (i3) is exactly
the same for nondet conditions as for semidet conditions.

4.3 Support for commit

When the goal inside a commit succeeds for the first time, we
commit to that solution by discarding the inner goal’s outstanding
alternatives. We call the point in the code where this happens the
commit point. If the inner goal is nondet (rather than multi), it may
also fail. When it fails, the compiler’s failure-handling mechanism
causes execution to pass through a failure point before the program
resumes forward execution at the resumption point of the next
surrounding goal. The failure point is there to allow the execution
of some cleanup code. We add code to support region operations
at two or three points in Figure 9: the entry point of the commit
(c1), the commit point (c2), and the failure point (c3); if the inside
goal has determinism multi, we do not modify (c3) as execution
will never reach there.

Consider a region that is in the removed set of a commit goal. If
it is already protected by a disjunction or if-then-else when execu-

some [...]
(c1): entry to the commit

(a) push a commit frame
(b) save the sequence number

(c) save the pointer to the top disj frame
(d) save the to-be-reclaimed old regions and their number

(the inner goal)

(c2): commit point

(a) reclaim the saved old regions
(b) reclaim the new regions

(c) restore the state of the disj stack
(d) pop the commit frame

(c3): failure point
(a) restore status of the saved regions

(b) pop the commit frame

Figure 9. RBMM runtime support for commit.

tion arrives at (c1), then the region should not be reclaimed by any
code inside the commit, and the mechanisms we have described
so far are sufficient to ensure this. If the region is not already pro-
tected at (c1), then the region should be reclaimed before execution
reaches (c2). Ensuring this needs a new mechanism because the
goal inside a commit will contain, directly or indirectly, at least
one disjunction that can succeed more than once (if it did not, it
would have at most one solution, and there would be no commit
operation), and the runtime support for this disjunction will protect
the region from being reclaimed during the execution of its non-last
disjuncts. On the other hand, we cannot simply insert code at (c2) to
reclaim the region, since it can already be reclaimed by its remove
instruction in the execution of the last disjunct before reaching (c2).
We do not need to worry about the case when regions are protected
only by semidet disjunctions or by if-then-elses inside a commit,
since these constructs, if any, protect regions only temporarily, and
ensure that any regions that are removed inside them and are not
protected when the execution enters them will be reclaimed before
the execution exits them.

As before, our solution involves a new embedded stack, the
commit stack. We push a new commit frame at (c1), and fill in its
fixed fields, which will be discussed later. Following this will be the
code that, for each region in the removed set of the commit goal,
checks whether the region is already protected. If it is, that region
is left alone. If it is not, we add the handle of the region to the
commit frame’s nonfixed part, and record the address where this
handle is stored in the commit frame in the region’s own header,
in a new field called commit slot. This way, when a region that
should be reclaimed inside the commit actually survives to (c2) due
to the protection of an inner disjunction, code at (c2) can iterate
through all the region handles in the commit frame and reclaim
those regions. However, we cannot do this for regions that are
actually reclaimed inside the commit (whose remove instructions
were executed in the last disjuncts). That is why, when we reclaim
a region, we check whether its header’s commit slot field is null.
If not, then it will contain the address of a pointer to the region
header from a commit frame and the reclaim operation will replace
that pointer in the commit frame with a null. Making the loop at
(c2.a) ignore such nulled-out region handle pointers ensures that
each region recorded in the commit frame’s list is reclaimed exactly
once, and that this will happen as soon as possible.

If the goal inside the commit fails, we need to undo the update of
the saved regions’ commit slot fields, so at (c3.a) we reset them
all to their original values. To make this possible, we save each
original value in the commit frame next to the pointer to the region
header from which it is taken. This effectively chains together all
the entries referring to a given region in the commit stack. The
reclaim operation will set to null not just the first slot in this chain,
but all of them.

This mechanism is sufficient to correctly handle any old regions
that are in the commit goal’s removed set. To handle any new
regions (regions created inside the commit) that are also removed
inside the commit, we record the current region sequence number
in the commit frame at (c1). When a new region is removed in the
commit, if it is not protected, it is reclaimed. If it is protected, we
mark it so that at the commit point we can reclaim it. We add a
field destroy at commit to the region header, and we augment
the remove instruction again so that when a protected, new region
is removed in a commit, the remove instruction will set the region’s
destroy at commit field to true. At the (c2.b) part of the commit
point, we traverse the region list until meeting an old region, and
reclaim the new regions whose destroy at commit field is true.

We do not need to worry about instant reclaiming of new regions
in the created set and of new allocations into regions in the allocated
set of the commit, since that will be done by the construct(s)
surrounding the commit.

At the commit point, the Mercury execution algorithm throws
away all the remaining alternatives of the goal inside the commit.
To reflect this, at (c2) we need to restore the embedded disj stack to
the state it had at (c1). This is why at (c1), we save the current disj
stack pointer in a fixed slot in the new commit frame, and at (c2),
we restore the disj stack pointer from there. The regions protected
by the disj frames thrown away by this action will be exactly the
ones removed by the code at (c2.b).

The layout of commit frames is shown in Figure 10, with the
fixed and nonfixed parts are separated by a thick line. The meaning

(saved sequence number)
prev_commit_frame
saved_seq_num
saved_disj_sp
num_saved_region

(disj stack pointer)

region_id
(number of saved regions)

(previous commit frame)

...
prev_commit_slot

(handle to a saved region)
(original commit slot of the saved region)

Figure 10. The structure of a commit frame.

of the first two fields should be clear. The third field contains the
value of the disj stack pointer at the time when the commit was
entered. The last field gives the number of region handles and saved
commit slot fields actually stored by the code at (c1.d) in the
nonfixed part.

5. Experimental evaluation
We have implemented the algorithms presented in the previous
sections in the Melbourne Mercury compiler, specifically in the
backend which generates low-level C code. We use region pages
of size 2048 words, in which 2047 are available to store program
data. When needed, we request blocks of 100 region pages from the
OS. However, we get very similar results with other values of both
parameters.

Our experiments used a set of small benchmark programs. With
the exception of boyer, all these programs, were previously de-
scribed and used in [10], though we changed the input data of
primes and queens to increase their runtime and memory demands.
While we would have liked to test our system with bigger, more re-
alistic programs, we were prevented from doing so by the region
transformation’s current lack of support for higher order code and
multi-module programs. The experimental machine was a PC with
two 2.8 GHz Pentium 4 CPUs, 512 MB of RAM, running Debian
GNU/Linux 3.1 SMP.

We measured the memory consumption of the RBMM system.
The region behaviour of the benchmark programs was reported in
[10] using a region simulator. Here we collected the data from the
working RBMM system. For each benchmark, we give the total
number of regions created during its execution, and the maximum

number of regions coexisting during its run. We also include the
total number of words allocated and the maximum number of words
that coexist. SLR is the Size of the Largest Region and S (%) is the
saving, calculated by 1 - Max words/Total words. The results in
Table 1 are consistent with the results of [10]. RBMM achieves
optimum memory management in nrev (which reverses a list of
5000 integers), in primes (which finds all primes less than 20000),
and in qsort (which sorts a list of 100000 integers).

Regions Words used SLR S (%)Total Max Total Max
boyer 12 3 430,683 143,561 143,505 66.67
crypt 416 3 3,442 94 64 97.27
dna 2,082,005 8 18,926,797 4,590,797 4,096,000 75.74
life 50,303 102 894,336 8,208 6,486 99.08
nrev 5,002 2 25,015,000 10,000 10,000 99.96
primes 2,264 1 5,221,386 39,998 39,998 99.23
qsort 200,002 21 5,865,744 200,000 200,000 96.59
queens 4,545,702 2 121,453,230 114 90 99.99

Table 1. Memory use result.

We also compared the runtime performance of our benchmark
programs compiled in two ways, using the Boehm garbage collec-
tor and using RBMM. (The Boehm collector uses 1024 word pages
and heuristically expands the heap on demand.) To eliminate the
uncertainty involved in measuring small times, we ran each pro-
gram many times in a loop. Each benchmark has a row in Table 2
that gives the number of iterations, the actual execution times with
Boehm gc and with RBMM, the Boehm system’s gc time (all in
seconds, all for user mode only), the number of collections exe-
cuted by the Boehm collector, and the savings achieved by using
RBMM instead of the Boehm collector (given by 1 - RBMM run-
time / Boehm runtime).

Iter Boehm gc RBMM Savingruntime gc time # gc’s runtime

boyer 2,000 15.00 2.00 89 14.55 3.0%
crypt 100,000 17.43 2.14 98 14.74 15.4%
dna 40 16.67 5.06 219 14.72 12.2%
life 200 11.58 1.14 51 12.13 -4.7%
nrev 40 20.08 6.33 284 8.25 58.9%
primes 100 19.26 3.46 149 12.64 34.4%
qsort 80 13.44 3.79 143 7.27 45.9%
queens 5 18.47 3.81 172 12.24 33.7%

Table 2. Time result.
The RBMM system gets clearly better runtime for six out of

eight benchmark programs, a little better in boyer, and slightly
worse in life. On average, using RBMM is about 25% faster.

In four programs, dna, nrev, primes, and qsort, the compiler
does not need to generate any extra code either to protect backward
live regions or to do instant reclaiming. The programs are deter-
ministic and the conditions of the if-then-elses in them are simple
tests. RBMM does reclaim the temporary data in an optimal way
for nrev, primes, and qsort. For dna some temporary data is not
put in a separate region by the region analyser, which is the reason
for the existence of a large region. The overhead of allocating in
this region explains the relatively lower saving of 12%.

So for these deterministic programs, we get the benefits of
RBMM with only a little overhead being required to support non-
determinism, such as for maintaining the region list and checking
in the remove instruction to see if a region is protected. In these
four programs, we gain an average speedup of 38% using RBMM
compared to using the Boehm collector.

crypt and queens are the only two programs among our bench-
marks that contain nondet disjunctions. We can consider them to be
the exceptions because in practice, almost all Mercury predicates
(98+%) have at most one solution. Most of the extra code is to sup-
port these disjunctions. (They contain only one commit operation
each.) In crypt, the support for disjunction protects one region and

takes care of instant reclaiming of new regions (reclaiming 95% of
the words used in total). In queens, we again protect one region
and do instant reclaiming of new regions (now 90% of the words
used in total). Another 10% of words is reclaimed by the support
for instant reclaiming of new allocations in existing regions, though
this requires saving and restoring 12,356,378 region size records.

For these two programs, RBMM being faster shows that the
overhead for the runtime support they need is clearly smaller than
the time needed by the Boehm collector.

For the deterministic programs boyer and life, the only extra
code is for supporting if-then-elses. As procedure calls appear in
the conditions of if-then-elses, region size records of the input
regions are stored in the ite frames (116,952 for boyer and 355,576
for life). This turns out to be pure overhead, as the programs only
allocate in new regions and no instant reclaiming is needed. This
is because we approximate the regions which may be allocated
into. This probably explains the slight gain in boyer and the small
loss in life. Additional experiments in which no region size records
were saved at all, show that boyer and life run about 18% faster
without any loss opportunities for reclaiming memory. We intend
to investigate general algorithms for finding out which region size
records are worth saving.

Compilation time is higher when using RBMM, with the in-
crease ranging from 3% to 66%, and averaging 17%, almost all due
to the program analysis (which has not yet been tuned). Comparing
the object files generated by the two systems, the object files using
RBMM are larger, with the increases ranging from 28% to 104%,
and averaging 57%. Allocations are done by function call with both
Boehm gc and RBMM, but as we showed in Section 4, RBMM
also needs extra supporting code. For now, these use macros, since
conditionally incrementing a virtual machine register is easier in
macros (you cannot pass the address of a real register implementing
a virtual machine register to a function). If code size ever becomes
a problem we could move most of the work of these macros into
functions. The memory used by embedded frames is negligible in
all our benchmarks.

6. Conclusion
The work in [10] augmented Mercury programs with region in-
formation. We have taken that work further by extending the run-
time system of Mercury to actually realize region-based memory
management for Mercury programs 1. Our extensions can support
backtracking correctly without incurring significant overhead in de-
terministic programs. Our experiments show that using RBMM in-
stead of the Boehm collector yields speedups for most of the bench-
mark programs. For some benchmarks, RBMM achieves optimum
memory consumption.

Our work is not the first to provide runtime support for region-
based memory management for logic programming languages. In
[8], the authors presented extensions to the WAM to implement
region-based memory management for Prolog. The main differ-
ences between their work and ours are that Mercury supports if-
then-elses with conditions that can succeed more than once, and
the Mercury implementation generates specialized code for many
situations that Prolog handles with a more general mechanism (e.g.,
Mercury has separate implementations for nondet and semidet dis-
junctions). The first difference required new algorithms, while the
second posed an engineering challenge in keeping overheads down,
since any given overhead would hurt Mercury more than Prolog due
to Mercury’s higher speed.

We have met that challenge. Whereas [8] reports that introduc-
ing RBMM into their Prolog system gave a speedup for only three

1 Current, RBMM-enabled versions of Mercury can be downloaded from
http://www.cs.mu.oz.au/research/mercury/download/rotd.html.

out of six benchmark programs, and the overall average speedup
was only 8%, our results show speedups for seven out of eight
benchmark programs, with an overall average speedup of 25%. We
can therefore say that our implementation often incurs very modest
runtime overhead.

The main limitation of our work is that currently, the program
analysis underlying our system supports only a subset of Mercury.
We intend to work on extending the analysis to handle the rest of
the language, including higher-order code, foreign language code
and multi-module programs. These extensions to the analysis will
not require any changes to the runtime system we have presented.
We also want to extend the program analysis to deal with back-
ward liveness and to study how we can exploit that information to
simplify the runtime system. We then can compare the effective-
ness and complexity of this approach to protecting backward live
regions.

7. Acknowledgements
We would like to thank the rest of the Mercury team and the
anonymous referees. Quan Phan is supported by GOA /2003/08
and FWO Vlaanderen.

References
[1] A. Aiken, M. F ähndrich, and R. Levien. Better static memory man-

agement: Improving region-based analysis of higher-order languages.
In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 174–185. ACM Press,
1995.

[2] L. Birkedal, M. Tofte, and M. Vejlstrup. From Region Inference to
von Neumann Machines via Region Representation Inference. In
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles of
Programming Languages, pages 171–183. ACM Press, 1996.

[3] H. Boehm, and M. Weiser. Garbage collection in an uncooperative
environment. Software - Practice and Experience, 18:807–820, 1988.

[4] S. Cherem and R. Rugina. Region analysis and transformation for
Java programs. In Proceedings of the 4th International Symposium on
Memory Management, pages 85–96. ACM Press., Oct. 2004.

[5] F. Henderson. Accurate garbage collection in an uncooperative en-
vironment. In Proceedings of the 3rd International Symposium on
Memory Management, pages 150–156. ACM Press., 2002.

[6] F. Henglein, H. Makholm, and H. Niss. A direct approach to control-
flow sensitive region-based memory management. In Principles and
Practice of Declarative Programming., pages 175–186. ACM Press.,
2001.

[7] H. Makholm. A region-based memory manager for Prolog. In Pro-
ceedings of the 2nd International Symposium on Memory Manage-
ment, pages 25–34. ACM Press., 2000.

[8] H. Makholm and K. Sagonas. On enabling the WAM with region
support. In Proceedings of the 18th International Conference on Logic
Programming. Springer Verlag., 2002.

[9] Mercury language reference. http://www.cs.mu.oz.au/research/mercury/
information/doc-latest/mercury ref.

[10] Q. Phan and G. Janssens. Static region analysis for Mercury. In Pro-
ceedings of the 23rd International Conference on Logic Programming,
pages 317–332. Springer, 2007.

[11] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm
of Mercury, an efficient purely declarative logic programming lan-
guage. The Journal of Logic Programming, 29(1-3):17–64, October-
December 1996.

[12] M. Tofte, L. Birkedal, M. Elsman, and N. Hallenberg. A retrospective
on region-based memory management. Higher-Order and Symbolic
Computation, 17:245–265, 2004.

[13] M. Tofte and J.-P. Talpin. Region-based memory management. Infor-
mation and Computation., 132(2):109–176, Feb. 1997.

