
Towards Software Transactional Memory for Real-World
Programs

Benjamin Mellor
Supervisor: Zoltan Somogyi

Honours Report 2008-2009

Abstract

Parallel programming is becoming more and more important as commonly available ma-
chines begin to grow in their capability for parallel execution. Parallel streams of execution
that operate on shared data to achieve a common task need to be carefully synchronised. The
standard way of achieving this synchronisation is to use locks, but lock-based programming
is difficult and error-prone, making parallel programs costly and unreliable.

Another method of providing synchronised access to shared data is the transactional
memory model. Software Transactional Memory (STM), implementing this model purely
in software and thus compatible with today’s hardware, has been an area of much research in
the last decade.

This report describes the implementation of a sophisticated STM system using recently
developed techniques as well as novel innovations. This implementation is for the logic pro-
gramming language Mercury, building on an earlier and simpler STM implementation.

Contents

1 Introduction 1

2 Background 2
2.1 Mercury . 2
2.2 Lock-based Synchronisation . 3
2.3 Software Transactional Memory . 4

2.3.1 Conflict Detection and Acquire Strategies 6
2.3.2 Blocking and Alternatives in Transactional Code 7

3 The Original Prototype STM System 7

4 Non-blocking STM 9
4.1 Consistency Without Locks . 10

4.1.1 Validation . 10
4.1.2 The Commit Phase . 12

4.2 Data Layout . 15

5 Partial Roll-back with Checkpoints 18
5.1 Impure STM Goals . 23
5.2 Limitations of the Checkpoint System . 24

6 Planned Future Extensions 25
6.1 Access Visibility . 25
6.2 Eager Acquire . 26
6.3 Contention Management . 27
6.4 Transaction Execution and Roll-back by Continuation Passing 28
6.5 Application-specific Settings . 30

7 Conclusion 31

8 Acknowledgements 32

A Continuation-based Write and Commit 33

B Code Comparison of the Prototype and the New STM System 34

List of Algorithms

1 Pseudo-code for the read operation . 12
2 Pseudo-code for the validation algorithm . 12
3 Pseudo-code for the commit phase . 15
4 Transaction roll-back by exception handling . 19
5 Checkpointed execution for single transaction goals 20
6 Checkpointed execution for or_else alternatives 21
7 Pseudo-code for the entry-point predicates . 22
8 Reading transaction variables with continuations 29
9 Writing transaction variables with continuations 33
10 Committing with continuations . 33

1 Introduction

It seems obligatory to introduce a discussion of software transactional memory with the note that
the rapid growth in processor speeds, which the computing world has been accustomed to for
decades, has all but halted. Progress in the design of CPUs is instead resulting in increasing the
number of tasks that can be executed in parallel. Already basic entry-level desktop computers
near-universally have dual-core processors, and quad-core processors are readily available. With
this development comes an increasing need for parallelism to be utilised within single applications
for acceptable performance. Therefore, there is an increasing need for programmers to produce
applications in which multiple processes execute in parallel and coordinate to achieve some shared
task.

Parallel programming introduces the complexity of reasoning about simultaneous threads of
execution acting on the same shared data. The standard approach to managing these difficulties
is to synchronise the parallel processes using locks to ensure that certain sections of code are
not executed in parallel with each other. Lock-based parallel programming, however, is widely
acknowledged as a difficult and error-prone task. Several classes of bugs that can result from
mistakes in this area cannot be found by static analysis, and can sometimes be difficult to find
even with the most rigorous testing, as they are only triggered under precise timing conditions
while executing tasks in parallel. All of this increases the cost of developing high performance
parallel software.

Software transactional memory (STM) is a relatively recent approach to the development of
parallel applications. In this approach, the programmer designates sections of code as transactions,
and it is the STM system’s responsibility to execute these transactions as if they were atomic — as
if the entire body of the transaction were executed at a single moment of time. This is achieved by
optimistically running transactions, but keeping enough bookkeeping to transparently abort and
restart transactions when necessary, similar to the way concurrency of transactions is managed in
database systems.

In a language with strong static checks, misuse of the transactional system can be detected at
compile time, and a wide range of the difficult-to-find bugs that can occur in parallel programs
simply cannot occur. Furthermore, the transactional model increases the extent to which program-
mers can apply purely local reasoning when writing a single part of the parallel program, whereas
in lock-based programming the internal details of how locks are used in various unrelated parts
of the system must often also be considered for correct results. These properties make parallel
programs based on software transactional memory easier to develop and easier to maintain, hav-
ing the potential to dramatically decrease the costs of producing parallel programs, and therefore
widen the class of programs that are worth the effort of parallelising.

While very simple coarse-grained locking approaches outperform STM systems for low levels
of parallelism, and highly tuned fine-grained locking approaches often outperform STM systems
at all levels of parallelism, STM promises to combine the simplicity and reliability of coarse-
grained locking with the high scalability of fine-grained locking. If achieved, this would make it an
attractive approach for many applications. The class of applications for which STM is well-suited
is determined by the overheads incurred by the system; the lower the overhead for the “fast path”
of mostly uncontended access, the lower the number of cores needed for STM-based programs to
out-perform approaches based on coarse-grained locking.

This report describes the an STM system implemented for the language Mercury. Mercury is
a pure logic programming language under development at the University of Melbourne. My STM
system is built on an earlier implementation of STM for Mercury, and uses advanced techniques
recently developed, with the aim of producing a system closer to being attractive for real-world
use. It also incorporates two novel contributions: a strategy for logging writes that avoids the
need to search a write set for transactional reads to find earlier writes by the same transaction,
and a system of checkpoints that mitigates the cost of aborting transactions by allowing them to
resume execution part-way through instead of rolling back to the start, in some circumstances.

Section 2 briefly describes the Mercury language, and gives more background on software trans-
actional memory and the motivation for using it. Section 3 describes the earlier implementation of

1

STM for Mercury, and sections 4 and 5 provide detailed descriptions of the improvements I have
made to this system. Section 6 describes features of the system I have planned for, but are not
yet implemented, while section 7 concludes with a discussion of future areas of research.

2 Background

2.1 Mercury

Mercury is a logic programming language developed at the University of Melbourne, with an
emphasis on reliability and efficiency. It was designed to support the development and maintenance
of large software systems. The syntax of Mercury is derived from that of Prolog, but the two are
semantically quite different. Some of the key features are described below, largely taken from
material found in [15], and [25]; a more complete description of the language can be found in [1].

Mercury contains a strong type system based on a many-sorted logic type system derived
from the Hindley-Milner type system. Mercury supports parametric polymorphism as well as
higher-order types.

Mercury has a strong mode system. A mode of a predicate specifies the initial and final
instantiation states of arguments in a call to that predicate. A predicate can have multiple modes;
each is a procedure. For example, one mode of the standard append/3 predicate is append(in,
in, out). A call to that procedure must have the first two arguments instantiated before the call
(“in”), and must have the last argument free before the call (“out”). The mode guarantees that
output variable will be bound to the result when the procedure returns (and the input variables
will remain bound to their values). The modes in which a predicate can be used must be declared
or inferred. A called predicate imposes a set of constraints on the instantiation states of arguments
in the call: input variables must be ground at the time of the call, and output variables will be
ground after the call. The compiler will attempt to rearrange goals in a procedure so that all
variables are produced before they are consumed. If that is not possible then the program will
be rejected by the compiler. The end result is that we will always know, at compile time, which
mode of a predicate is called at each call site, and which variables are instantiated when.

Mercury also has a strong determinism system. Determinism is associated with procedures and
indicates how many solutions, if any, a procedure could return. The four main determinisms are
“det”, “semidet”, “multi” and “nondet”. A procedure with determinism det will always succeed
and produce exactly one solution. A semidet procedure will also produce a single solution if it
succeeds but can possibly fail, producing no solutions. Procedures with determinisms multi and
nondet are capable of producing more than one solution. Procedures that are nondet can also
fail whilst procedures that are multi must produce at least one solution. Another determinism a
procedure can have is erroneous. This determinism identifies procedures which will never properly
return, and is used by predicates that will always throw an exception or halt the program.

The mode system can also record the uniqueness of a term. A term is “unique” if there is
only one live reference to it. A term which has no live references to it is said to be “clobbered”.
With these instantiations, the argument mode di (destructive input) can be used to indicate an
instantiation mapping from unique to clobbered, and the argument mode uo (unique output)
maps from free to unique. With uniqueness, it is possible to allow for destructive updates whilst
maintaining declarative semantics. Mercury uses this method to handle I/O. Mercury views I/O
predicates as describing a relationship between two states of the world: the one before the action
and the one after. The difference between the initial and final I/O states includes the effect of the
action, and the effects of all other actions executed by other programs since the creation of the
initial I/O state. An I/O predicate uses the di and uo modes to destructively update the state of
the world. Since the world has only one state at any one time, the old states of the world can no
longer be used. This prevents backtracking over predicates which perform I/O.

Mercury also has a purity system. By default all Mercury goals are pure — their results
depend only on the values of their input arguments — but it is possible to write impure Mercury
code. Impure goals are annotated with impure, and predicates containing such goals must also

2

be marked impure, unless the programmer explicitly promises to the compiler that the predicate
implements a pure interface. An informal way to think about the compiler’s treatment of impure
goals is that their position in the “left-to-right” order of execution cannot be changed, since their
results may depend on being executed in their positions as written. Much code that interfaces
with other languages is necessarily impure; the compiler assumes foreign language code is impure
unless promised otherwise by the programmer. Nevertheless, Mercury wrappers can often provide
a pure interface; this is how many of the pure predicates used to do I/O are implemented, for
example.

2.2 Lock-based Synchronisation

The use of threads within a single process to achieve parallel execution, rather than using multiple
processes, is often attractive for a number of reasons. Threads are relatively cheap to create and
manage. As they share the same address space, threads also permit the parallel execution streams
to share data very efficiently. This comes with a cost, however; access to data that is shared
between threads must be carefully coordinated in order to ensure that program invariants are
maintained.

The traditional method for synchronising access to shared data is to use locks. A lock is a
software object, usually provided by the operating system, which can be held by a single thread
at a time. If a thread requests a lock that is currently available, it becomes the lock-holder until it
explicitly releases the lock. If the lock is already held by another thread, the thread requesting the
lock blocks until the lock becomes available. It is guaranteed that when a lock becomes available,
exactly one of the threads waiting for the lock will be granted the lock and allowed to continue as
the lock holder.

Locks are used in data synchronisation by identifying critical sections of code, and creating an
association between locks and critical sections; when a thread wishes to execute a critical section,
it must acquire the associated locks beforehand, and release the locks afterwards. This ensures
that only one thread can be running the critical section at a time. Provided all the code that
manipulates the shared data is properly contained in critical sections, this ensures that threads
will never see the shared data in an intermediate state while another thread is modifying it.
Identifying the critical sections, and determining what lock(s) are needed to protect each one is
the most significant challenge in designing concurrent programs.

Coarse-grained locking uses a small number of locks (perhaps only one) to protect access to
the shared data of the program. This strategy is simple and direct, and usually minimises the
overhead of acquiring and releasing locks. However, for many programs the total amount of shared
data is much larger than the amount of data accessed in any one critical section. Coarse-grained
locking seriously limits the benefit such programs can receive from parallel execution, as completely
independent critical sections are often unable to execute in parallel.

Fine-grained locking makes use of a much larger number of locks. A common strategy is
to associate each shared object with a lock used to protect access to that object individually.
This allows critical sections that access disjoint sets of objects to execute in parallel, allowing
performance to scale much more effectively with the number of processors available to execute the
program. If the granularity is too fine, the overheads of acquiring and releasing locks can become
significant, but there are much more serious problems with this synchronisation strategy.

With fine-grained locking schemes, each critical section will usually need to hold a number of
locks to safely execute. The particular set of locks is usually determined at runtime based on the
arguments to the procedure containing the critical section. The central problem is that these locks
must be requested one at a time (in some cases the need for some locks may be determined based
on data protected by other locks), and multiple threads requesting a common group of locks in
different orders can result in deadlock: a set of threads, each of which is blocked waiting for a lock
held by another thread in the set, with the result that none of them will ever resume execution or
release the locks they are holding. The need to avoid deadlock requires complex and precise locking
protocols, which are difficult to design and easy to make a mistake in following. The compiler is
usually incapable of enforcing the locking protocol (or checking that the protocol is correct in the

3

first place), and the bugs caused by these failures may only show up under extremely precise timing
conditions during parallel execution, making them very difficult to reproduce, and hence to debug
(especially as compiling programs for debugging, or with extra debugging messages inserted, will
change the timing characteristics of the program).

There are other problems associated with lock-based synchronisation as well. Convoying is
the loss of parallelism that results when a thread holding a lock is unexpectedly delayed, and
many other threads queue up “behind” it. They must then run one at a time when the lock
finally is released, further reducing parallelism. Pre-emptive scheduling techniques used by modern
operating systems can add an unbounded amount of delay to the time a thread holds locks. The
memory hierarchy can also add delays that are essentially random from the point of view of the
programmer, as execution stalls while waiting for data to reach the CPU cache from main memory,
or even from virtual memory stored on disk. Priority inversion is another problem, when both
high-priority and low-priority threads access the same data. The operating system will normally
run the high-priority thread in preference to the low-priority one, but if the low-priority thread
already holds a lock when the high-priority thread requests it, there is nothing that can be done;
the high-priority thread will be forced to wait for the low-priority one. Furthermore, if there are
other medium-priority threads in the system (possibly not even part of the same process), the
operating system will typically prefer to spend execution time on the medium-priority tasks than
the low-priority one, preventing it from running and releasing its locks, and so also delaying the
high-priority thread. Effectively, the high-priority thread’s priority is reduced to that of the low-
priority thread it is forced to wait for, until it is actually able to run again. Priority inheritance
is one well-known technique for addressing priority inversion, but it must be implemented in the
operating system, and may not be available.

Perhaps the most serious problem with lock-based synchronisation, however, is that it is not
composable; it is in general not possible to combine correctly synchronised lock-based operations
into correctly synchronised composite operations. Consider a module that encapsulates the concept
of a bank account, supporting withdraw and deposit operations, and internally using a separate
lock to protect access to each account1. This scheme, on its own, is impossible to deadlock. But
when a client module needs to implement an atomic transfer operation between two accounts,
the natural method of implementing it (as a withdraw from one account followed by a deposit
to the second account) will fail; it will be possible for other threads to observe a state in which
the transferred money is in neither account, as separate locks are acquired and released around
the two sub-operations. The transfer operation, which logically is a simple combination of the
withdraw and deposit operations, has quite distinct synchronisation requirements; the locks for
both accounts must be held for both operations (with the added complexity of having to ensure
that executing transfer(AccountA, AccountB, Amount) in parallel with transfer(AccountB,
AccountA, Amount) cannot result in a deadlock). This cannot be achieved unless the lock acquis-
ition is separated from the withdraw and deposit operations, and the locks are made public and
exported from the module. They must also potentially be exported from the client module to any
further clients, to allow still higher level operations to be correctly synchronised. Since all levels
of the program may need access to the locks, their use also cannot be an internal implementation
detail of any operation, and must be carefully documented so that the locking protocol can be
followed by the program as a whole. This has the consequence that the difficulties of writing
correct lock-based code cannot be left to experts and hidden inside software libraries; all of the
programmers working on a program that uses locks to synchronise access to shared data will have
to deal with these issues, significantly increasing the complexity and cost of developing such a
system.

2.3 Software Transactional Memory

An alternative approach to synchronising shared data is transactional memory. It was originally
proposed as a hardware mechanism by Maurice Herlihy and J. Eliot Moss, based on an extension

1This example is covered in more detail, including Mercury code, in [15].

4

of multiprocessor cache-coherency protocols[9]. Nir Shavit and Dan Touitou proposed adopting
the transactional model, but providing an implementation completely in software[21]. Software
transactional memory has been the subject of much research in the last 15 years, promising a new
methodology for developing parallel programs that combines the conceptual simplicity of coarse-
grained locking with fine-grained locking’s ability to scale to highly parallel execution. Early STM
systems incurred large overheads, and so failed to out-perform sequential execution without a large
number of processors, but as more sophisticated implementation techniques have been developed,
software transactional memory has begun to appear to be an attractive alternative to lock-based
synchronisation for many applications.

The idea of transactional memory is to provide access to shared in-memory data in a way
similar to that provided by database transactions. It is an optimistic synchronisation technique;
instead of ensuring that only one thread at a time may execute a critical section, all threads are
allowed to execute transactions, and the underlying system promises to detect and abort execution
of transactions that become “unsafe”. This requires that the entry and exit points of transactions
are known to the system, and that all code executed by a transaction is safe to re-execute any
number of times, which typically excludes all I/O operations, as well as permanent modifications
of globally visible in-memory data, from being performed inside transactions.

At a broad level, all implementations of software transactional memory achieve this in the same
way. When a transaction is entered, a transaction log is created. All access to transaction variables
are recorded to this log. When the transaction reaches its end, the system must prove that the
recorded accesses in the log are still valid in the current global state of the system. If so, the
transaction commits, otherwise it aborts. A transaction that aborts is transparently re-executed
until it successfully commits. Most practical STM systems will detect the need to abort at other
times as well as at the end of the transaction.

What exactly constitutes a transaction variable varies across implementations; all of the fol-
lowing schemes have been used:

• A transaction variable is a container-like data structure containing a single value.

• Each word of memory (usually excluding the local stack) is considered a separate transaction
variable.

• Each object (usually excluding those on the local stack) is considered a separate transaction
variable.

• Instances of a class inheriting from a particular abstract base class are transaction variables.

Data not stored in a transaction variable, whatever the notion of transaction variable that is in
use, is considered to be outside the responsibility of the STM system, and is not synchronised.
The way transaction variables are accessed also varies considerably. Sometimes special read and
write operations are provided for transaction variables. Sometimes a variable is first opened for
either read only access, or for read-write access, which returns a reference that can be used to
access the data stored in the variable (this scheme is reminiscent of the way files are accessed
in many languages, except the reference returned usually permits direct manipulation, unlike a
file descriptor which must be manipulated through special interface procedures). Other systems
simply allow normal operations on transaction variables, and the STM system must redirect these
accesses to the log.

Demarcating sections of code as abortable transactions does not provide reliable synchronisa-
tion alone. Just as is the case for database transactions, the STM system must be able to ensure
that transactions conform to certain safety properties; informally we require that the history of
transactions executed in an application is equivalent to some alternative history in which the
transactions were executed serially. It might seem like the safety criteria for STM system would
match ones studied in the context of transactional database systems, such as linearisability[12],
serialisability[16], etc, but many STM implementers have argued for the need for properties that
these criteria do not formally provide. Guerrauoui and Kapałka have argued that none of the
standard correctness criteria used in the database world are sufficient for the purposes of STM,

5

and formally define the opacity [5] correctness criterion. Informally, opacity extends serialisability
with the constraint that even transactions that eventually abort may not observe a state incon-
sistent with an alternate serial history of the transactions. In this report I use this requirement,
but only informally.

2.3.1 Conflict Detection and Acquire Strategies

A common classification of STM systems is to split them into eager and lazy STM systems. This
involves two separate issues that are often conflated: the acquire strategy, and write logging.

The terms “eager STM” and “lazy STM” take their names from the eager and lazy acquire
strategies. When a transactions wishes to write to a transaction variable, it must acquire the
variable sometime between when the write is discovered (when the programmer’s transactional
code executes a write) and when the transaction attempts to commit. Acquiring a variable is a
globally visible declaration of the transaction’s intent to write to the variable, and must prevent
any other transactions from reading or writing the variable until it is released by the acquirer
committing or aborting. Systems using the eager acquire strategy acquire variables as soon as a
write is executed, while those using the lazy acquire strategy acquire all the transaction’s written
variables just before attempting to commit.

This has a direct effect on the way in which conflicts between transactions are detected, but
also on the nature of such conflicts. The usual definition of conflicts between transactions states
that two transactions conflict if they both access the same transaction variable, and at least one
of the accesses is a write. I would prefer to refer to these as potential conflicts, since a reader and
a writer can both commit consistently if the reader commits first.

When writes are acquired eagerly, a transaction that attempts to read a variable after it has
been acquired by some other transaction will be prevented from continuing; it must either (a)
abort and restart, (b) abort the writer so that it can read the variable, or (c) wait for the writer
to release the variable. This means many conflicts between transactions can be noticed early
and one of them aborted rather than wasting work executing a transaction that will only abort
later, although there is always the possibility that a writer will acquire a variable only after it
has already been read. In effect, such STM systems attempt to maintain the property that most
active transactions can commit if they do not access any more variables.

When writes are acquired lazily, a reader will only be blocked by a writer that is in the process
of committing. As such, most conflicts are only noticed after the writer has committed (which
causes the reader’s observed state to become invalid). In such cases the reader simply has to abort;
there is no choice of aborting the writer or waiting until after the writer is done with the variable.
This permits two transactions to both continue to run until one of them commits, even if at most
one of them can commit, potentially wasting work. There are several advantages to this strategy,
however. When two transactions conflict, aborting one of them early is a mistake if the other later
has to abort for another reason; the aborted transaction might have gone on to commit if it had
been allowed to continue. Also, eager acquire systems detect potential conflicts, not true conflicts (a
write-write conflict is a true conflict, and two symmetric read-write conflicts make a true conflict);
thus they abort (or at best delay) one of a pair of conflicting transactions when under lazy acquire
both may have gone on to commit, achieving full parallelism. STM systems using lazy acquire
are much less prone to livelock than eager acquire systems. Livelock occurs in STM systems when
the attempt to execute some set of transactions repeatedly causes all of them to abort, resulting
in no progress being made. When an eager acquire system detects a (potential) conflict between
two transactions, one of the transactions will usually abort. The aborted transaction re-executes
and is very likely to eventually access the same variable that caused the conflict again. If the
other transaction involved in the conflict is still running, a new conflict will be detected, and if
the re-executing transaction is allowed to continue this time, livelock is practically guaranteed to
result. With lazy acquire on the other hand, a transaction can only cause others to abort when it
commits or just before it commits, so a stable livelock situation is almost impossible.

The other issue that is often referred to under the umbrella of “lazy vs eager STM” is the write
logging strategy. The first alternative is redo-logging, in which a transaction’s writes are stored

6

privately in a log, and “redone” to the real transaction variables when the transaction commits.
The other is undo-logging, in which a transaction writes directly to transaction variables, keeping
a log so that the writes can be “undone” if the transaction aborts. The reason the write-logging
strategy is sometimes not identified as a separate issue from the acquire strategy is that only an
eager acquire system can support undo-logging, and the ability to use undo-logging has often been
the motivation for adopting eager acquire, so that it has been taken as self-evident that an eager
acquire system also uses undo-logging.

2.3.2 Blocking and Alternatives in Transactional Code

An STM system provides guarantees on what state will be observed by a transaction only in terms
of consistency with a possible sequential ordering. It could also happen that the programmer would
like to be able to prevent a transaction continuing based on program level conditions. It would be
easy to include a self-abort capability in the interface to the STM system, but a far more elegant
construct was developed in Concurrent Haskell[6]. That construct is the retry operation.

A transaction retries only when instructed to by the program. In its simplest form, the retry
operation is equivalent to a self abort. However, if the retrying transaction were to re-execute right
away, it would be quite likely to observe the same state again, and thus retry again, and so on until
a change to a transaction variable finally changes the execution path taken in the transactional
code. This would be a form of spin-lock, and would very wasteful. Blocking locks are far more
appropriate than spin locks in most situations, and the same reasoning applies here. Therefore,
the retry operation blocks the thread executing the transaction. The thread is only re-scheduled
when another transaction commits a write to one of the transaction variables read by the retrying
transaction, allowing it to possibly take a different execution path. This provides a simple and
elegant way for transactional code to block until an arbitrary condition is met.

A further construct introduced in [6] is the or_else operator. This allows transactional code
to be combined as alternatives. The STM system executes A or_else B by first running A. If A
completes successfully, then the transaction is considered complete. If A retries, however, then B is
attempted. If B also retries, then the entire transaction retries, blocking on the variables read by
either A or B. Of course, either A or B could contain further nested or_else alternatives, creating
quite complex flow control. This allows blocking implementations of transactional actions to be
easily converted into non-blocking ones that return a success/failure indicator, and vice versa.

3 The Original Prototype STM System
My project has built upon Leon Mika’s 2007 honours project[15]. In this project he developed an
STM system for Mercury, which I will hereafter refer to as the prototype system.

The basic concepts and syntax used for writing transactional code in Mercury were developed
by Mika, and I have not changed these aspects of the system. Figure 1 shows a simple artificial ex-
ample of how these constructs are used. A transaction variable is created with new_stm_var, with
a starting value. Mercury’s view of transaction variables are simply values of the type stm_var(T),
which contain a value of type T, and can only be accessed with the predicates read_stm_var and
write_stm_var. The atomic scope is a new type of goal introduced to Mercury by Mika. It re-
quires two parameters, outer and inner. The outer parameter identifies either a state variable2
or a pair of regular variables which identify the unique I/O state before and after the transaction is
executed. The inner parameter identifies the unique “state of the STM system” at the beginning
and end of one particular execution attempt of the transaction. This STM state serves much the
same purpose as the I/O state; it encapsulates the “side effects” of code that accesses transaction

2The concept of a “state variable” is a Mercury innovation over Prolog syntax. A state variable, which is written
as a regular variable name with “!” prepended, stands for two variables wherever it appears (typically an input
argument followed by an output argument). This provides a convenient way to “thread” arguments through a series
of calls without having to explicitly name all the intermediate values. The compiler interprets the order in which
the goals containing a state variable are written as implicitly identifying which outputs and inputs are matched,
and thus the order in which the goals must be executed.

7

new_stm_var(0, TVar, !IO),
atomic [outer(!IO), inner(!STM)] (

read_stm_var(TVar, X, !STM),
write_stm_var(TVar, X+1, !STM)

)

Figure 1: Syntax for using STM in Mercury

variables, the threading of the STM state explicitly provides the execution sequence of the goals
that access transaction variables, and its uniqueness prevents backtracking over such accesses.

Mika’s implementation provides a lazy STM system with redo-logging, a preference I have also
kept. Undo-logging is often an attractive feature for an STM system for an imperative language
such as C, since programmers using such languages expect to be able update small parts of large
objects in-place. In a pure declarative language such as Mercury, data terms are immutable;
most data structures are “updated” by constructing new values and using them in place of the
old. When a value is constructed as a small update to a large structure, however, the two values
can usually share large parts of their sub-structure. This means that when an immutable value
is retrieved from a transaction variable with read_stm_var, it is simply a reference to the same
data that is still stored in the variable; if the value “contained” in the variable is later updated,
the earlier retrieved reference will still be valid. If the data stored in transaction variables were
updated in-place, using the undo-log strategy, then read_stm_var would have to copy the entire
term to be sure it was not later over-written. Thus using undo-logging in a declarative language
like Mercury would actually entail more copying, and less direct access to the values stored in
transaction variables.

Mercury does have a concept of unique values that can be destructively updated because the
compiler statically guarantees that the updating code has the only reference to the value. While
it would be possible to allow unique values to be placed into transaction variables and destructive
update to be performed on them, this would be a strange understanding of the “unique” concept;
we expect the values stored in transaction variables to be referenced many times, as they constitute
shared data, and the “unique” values would also have to have secret references to them kept to be
re-instated when transactions abort (which would again involve more copying). Instead, unique
values are simply prevented from being placed into transaction variables by the declared mode of
write_stm_var.

The prototype system also provides an implementation of the retry and or_else concepts.
The implementation of retry is simply a predicate that can be called to retry the current trans-
action; or_else would normally be used by the programmer in the form of special syntax in the
atomic scope. See Mika’s honours report for a more detailed description of this interface.

While the prototype system proved that STM could fit quite well into the Mercury language,
it contains a number of deficiencies when considered for practical use. It does not ensure opacity,
and so could in some circumstances allow applications to fail to terminate, when an analysis based
on an “as-if-serial” understanding of transactional semantics would conclude that this was not pos-
sible. Mika’s system also incurs significant overheads while executing transactions; a transaction
containing n access to transaction variables consumes O(n2) time searching its own log. It also
uses a simple implementation based on a single global lock, which limits achievable parallelism,
and provides no possibility for contention management (see section 6.3).

My project was to improve the STM system, with the goal of getting closer to a system that
was attractive for use in real software projects. In this section I will describe the significant
differences of my implementation compared to the prototype. These improvements consist of
both utilising more advanced techniques for implementing STM systems (some of which were
not widely published at the time of Leon Mika’s honours project), and some innovations I have
not seen described elsewhere. My most novel contributions are a system of checkpoints allowing
transactions to sometimes only rollback partially after an abort, and a strategy for logging writes

8

that avoids the need to search the transaction log when reading variables.
Since this report is mainly concerned with the internal implementation details of STM systems,

I do not devote space to the programmer-level interface to the STM system used in Mercury. Leon
Mika’s honours report[15] has a more detailed description of this interface, which is unchanged in
the new system.

4 Non-blocking STM

A major motivation for adopting software transactional memory is to avoid problems associated
with lock-based programming. These problems can be divided into two categories. Problems such
as deadlock and consistency errors result either from failure of programmers to follow the locking
protocol, or from an incorrect locking protocol. Other problems, such as convoying, vulnerability
to thread failure, and priority inversion, can occur even if all the locks are correctly used. Using
a software transactional memory implementation based on locks avoids the first class of problem
(assuming that the STM system is correctly implemented and that a program does not mix the
use of locks with transactions), but problems of the second class can still occur. It is therefore
desirable to have an efficient non-blocking implementation of software transactional memory.

Non-blocking synchronisation algorithms can be classified according to the progress guarantees
they provide. For a system of processes contending for access to some set of shared data:

1. Wait-free[8] methods guarantee that all processes will make progress in a finite number of
operations. Neither starvation nor livelock can occur.

2. Lock-free methods guarantee that some process will make progress in a finite number of
operations. Starvation can occur, but not livelock.

3. Obstruction-free[10] methods guarantee that any process will make progress in a finite num-
ber of operations if no other process performs conflicting operations. Livelock and starvation
are both potential problems.

In the context of software transactional memory, making progress can be understood as success-
fully committing a transaction. These progress guarantees can obviously only be provided for
transactions that are themselves always of finite duration.

Wait- or lock-free implementations are obviously desirable, but involve a significant perform-
ance trade-off that seems to be unavoidable. The problem is that wait- or lock-freedom requires
much more coordination between transactions so that they can observe protocols about which
transactions can acceptably be aborted. This in turn requires much greater visibility of a trans-
action’s actions, which tends to make even read-only accesses (which should ideally be fully par-
allelizable) interfere with each other, as consistency must be negotiated between threads during
meta-data updates.

The much weaker guarantees of obstruction-freedom permit more efficient implementations.
A common technique is to provide an obstruction-free STM system with a relatively separate
contention manager, a module responsible for making decisions about which transaction to abort
when a conflict is detected. The contention manager can provide pragmatic assurance of progress
to a system, even when no theoretical guarantees are possible. Furthermore, it is possible to choose
contention management algorithms that do provide the system with the stronger guarantees of
lock- or wait-freedom, provided the contention management interface is sufficient. Since contention
managers are much simpler and easier to change than the entire STM implementation, and since
the optimal contention management strategy is in general workload dependent, the ideal situation
seems to be for a base-line obstruction-free STM system to provide a family of contention managers
for the application programmer to choose from, or even facilities for writing application-specific
contention managers. This then allows the trade-off decision between efficiency and guarantees of
progress to be made for each application.

9

4.1 Consistency Without Locks

The prototype implementation makes use of a single global lock to provide consistency. This
lock is held during the final validation and commit/abort phase, thus simply ensuring atomicity.
Implementing STM with non-blocking techniques requires careful design, as both validation and
attempting to commit are extended operations, and it now cannot be assumed that other trans-
actions are not committing writes while these operations are in progress.

The prototype system has an interesting property that is not maintained by my implementa-
tion. I refer to this as ideal laziness — the only way a transaction ever causes another to abort
is by committing, and only if the commit is successful. This means that it is not possible for
livelock to occur. A non-blocking system with this property would be lock-free. However, the
ideal laziness of the prototype is critically dependent on its use of a single global lock, so it cannot
be straightforwardly transformed into an ideally lazy non-blocking system.

4.1.1 Validation

How to perform validation itself is the first challenge. The declarative nature of Mercury makes
this slightly different than for object-based STM systems implemented for languages such as C
and Java. Those systems typically create a new copy of the data stored in a transaction variable
when it is opened for write access; the programs then use normal imperative code to update this
new copy in-place, and finally when the transaction commits the new copy is made the current
version of the transaction variable. This guarantees that every write will change the address of
the object stored in the transaction variable3.

However, Mercury’s data terms are immutable4. Consequently, transaction variables are not
“opened for read access” and “opened for write access”; reads retrieve values, and writes supply new
values. The advantage of this is that only single words are copied in and out of the STM system
(above the increased copying naturally displayed by pure declarative languages); for Mercury terms
larger than a single word, the word will point to memory cells containing extra data, and these
memory cells can quite safely be shared between transactional and non-transactional references
to the same value. The disadvantage, however, is that it is entirely possible for a transaction
to write a value into a variable that is not just equivalent to one that earlier occupied the same
variable, but is the exact same value with the same memory address. While seeming harmless
enough, this possibility means that validation based purely on the values or addresses stored in
transaction variables cannot ensure consistency if other commits can occur during the validation
sequence. Consider a transaction T that has reads of V1 and V2 in its log, and where V1 still has
the value observed by T but V2 does not. It is possible that after successfully validating V1 but
before validating V2 both variables are overwritten, but that V2 is actually restored to the value
T has observed. Observing this value again is a false indicator of consistency; V1 and V2 never
simultaneously had the values needed. For sound validation, we need to prove the existence of a
single moment in time when all variables in the log had their observed values. Therefore we must
be able to detect whether a write has been committed to a variable, not just whether the variable
still has the value we last observed.

There is another consistency problem that must be solved. Some designs for STM systems[7, 20]
provide for consistency between transactions that commit, but do not provide the guarantee that
transactions that abort will not observe an inconsistent state before they abort. In these designs,
a transaction that observes an inconsistent state would be doomed to abort during pre-commit
validation, but in the meantime it runs on the basis of inconsistent data; a violation of opacity.
The obvious way to prevent this is to validate the entire read set so far before every read, which
is very expensive, requiring O(n2) overhead for a transaction performing n reads.

3This is not true for undo-log systems, which write the original data in-place. These systems also cannot trust
that a write to a variable previously read will be accompanied by a change in its address. In general an STM system
must be designed carefully if changes of address are to be reliable indicators of writes, otherwise the system must
use the techniques I discuss, or something equivalent.

4I briefly mention in section 3 why the exceptions to this are not relevant to STM.

10

Techniques for tolerating this inconsistency that have been proposed include trapping excep-
tions and memory faults, and discarding such errors if the transaction’s log is not valid, under
the assumption that the error only occurred due to faulty data. Likewise periodic validation of
long running transactions could potentially be used to break infinite loops caused by inconsistent
data. However, these mechanisms are awkward, and in library-based STM systems for imperat-
ive languages cannot completely rule out the possibility that some irreversible operation will be
erroneously carried out by a transaction that read bad data. Procedures called in the transaction
may even decide to print an error message and terminate the program if they receive unexpected
input. It is up to the programmer to be sure that, even for observed states that arbitrarily break
normal program invariants, nothing will go wrong. But this is exactly the sort of reasoning that
makes concurrent programming with locks so difficult, which STM is supposed to obviate the need
for. This is made all the worse because the natural intuitive understanding of transactions that
execute “as if serially” promises that such inconsistent states cannot occur. Nonetheless, in the
context of a strongly typed declarative language, where data is immutable and I/O operations
are statically prevented from occurring inside transactions, there is little a transaction could do
based on bad data that can’t be undone by rolling back the call stack and letting the garbage
collector reclaim all the new values created. Therefore it may be interesting to allow the system
to optionally run with weaker consistency guarantees as a performance boost. Even in a language
like Mercury, however, non-termination and exceptional conditions such as divide-by-zero errors
may occur which the programmer would expect to be impossible from an intuitive idea of trans-
actional semantics. I do not believe requiring programmers to reason about such transient states
is acceptable for a realistic STM system, and many STM designers concur.

The solution to both the inadequacy of purely value- or address-based validation and the inef-
ficiency of validating the log on every read, is to use timestamp-based validation[18]. Timestamp
based validation uses timestamps for both transactions and variables to reason about whether
accesses are consistent. TL2[3] introduced a very efficient scheme based around a global counter.
When a transaction begins, it takes the current value of the global counter as its timestamp.
When a transaction commits, it increments the global counter and writes the new value of the
global counter into the variables it has written, ensuring that their timestamps are greater than
those of any transactions that started before the time of the commit. Therefore, if a variable has
a timestamp less than or equal to that of the accessing transaction, it must have had its current
value when the transaction started. This indirectly proves that it had its value at a time when
all the other variables in the transaction’s log had the values recorded in the log, since they will
have been checked against the same timestamp as well. This is the result required for internal
consistency. Note that it is still possible for external consistency to be violated (the other vari-
ables in the read set might not still have the values they had at the beginning of the transaction),
which will only be detected during commit-time validation, but if the observed state is internally
consistent then the transaction will not do anything the programmer could not be prepared for.

In TL2, a transaction simply aborts if the timestamp check fails. This wastes effort re-executing
transactions due to easily resolvable “conflicts”. If a transaction T with timestamp T.ts reads a
variable V with timestamp V.ts, and V.ts > T.ts, but all other variables in T ’s log still have
their current values, then consistency would not be compromised by allowing the read of V . An
alternative is to use extensible timestamps[17]. The intuition is that, if T ’s log is valid when it
reads V , then T is equivalent to a transaction that started now and performed its current work
instantaneously. Therefore when a transaction accesses a variable with a larger timestamp, instead
of aborting it re-reads the global counter and takes this value as its timestamp, and then performs
a full validation with this new timestamp as shown in the pseudo-code of algorithms 1 and 2.
The call to abort is assumed to not return normally, instead returning to the beginning of the
transaction.

We maintain the invariant that whenever a transaction performs a full validation, it first sets its
timestamp to a fresh read of the global counter (this step is actually Incorporated into validate
in the pseudo code and in my implementation). Thus, checking each variable’s timestamp against
the transaction’s timestamp establishes that they have not changed since validation started. Given
that, if we also observe that each variable’s value matches the logged value then we know that a

11

Algorithm 1 Pseudo-code for the read operation
read(Transaction, TVar):

Snapshot = current_value_and_timestamp(TVar)
if Snapshot.ts > Transaction.ts then :

validate(Transaction)
Transaction.log.record_read(TVar, Snapshot.value)
return Snapshot.value

Algorithm 2 Pseudo-code for the validation algorithm
validate(Transaction):

Transaction.ts = global_counter
for each Record in Transaction.log

Snapshot = current_value_and_timestamp(Record.var)
if Snapshot.ts > Transaction.ts

or Snapshot.value != Record.value then :
abort(Transaction)

point in time existed when every variable had its observed value (just before validation started).
This does mean that reading a new variable is no longer an O(1) operation; a pathological

schedule of commits can force a transaction to spend O(n2) time performing validation on each
of n reads. However, with TL2’s simple scheme the same schedule would instead cause the same
transaction to abort n times. Executing n prefixes of a transaction is far worse than validating n
times. It takes a transaction slightly longer to abort when the new value is not consistent with
the existing log, but aborting is a time-wasting operation anyway; it is preferable to optimise for
avoiding aborts than to optimise aborts themselves.

During a full validation, the transaction aborts if a logged variable’s timestamp is greater than
that of the transaction, even if the logged value matches. This corresponds to the case where
writes have been committed to the transaction, but the observed value has either remained or
been restored by multiple commits. By similar reasoning to that used for an initial read, it would
be possible to treat the transaction as an equivalent one that started later, if we establish that all of
its reads remain valid at the current time. However, because of the possibility of other transactions
also overwriting logged variables while validation is in progress, this would require obtaining a new
timestamp and restarting validation from the start. To maintain non-blocking semantics we would
have to place an arbitrary limit on the number of times this is permitted to happen. Furthermore,
we identify when values are the same by pointer equality, not full value equality, so we can only
detect this situation when exactly the same value is restored to a transaction variable. Given the
rarity of this case, it is probably not worth attempting this recursive validation. Much of the same
effect could instead be had by treating writes that put back the same value as reads, preventing
unnecessary conflicts from being detected in the first place.

4.1.2 The Commit Phase

The above process ensures consistency for running transactions. We also need to ensure that a
transaction can commit in a way that preserves consistency and atomicity, despite the fact that
other transactions are active (and possibly committing) throughout. Zhang et al[26] investigate the
issues involved in the design of commit sequences for timestamp-based STM systems, and present
several specific commit sequences. The commit sequence I have implemented in my system, which
I describe below, is based on the V4 algorithm from their paper.

The timestamp-based strategy I have presented requires that when a transaction commits the
global counter must be incremented, and that all to-be-written transaction variables have their
timestamps updated. A transaction must also prove that all the variables it has read still have

12

their observed values. Finally, it must make the new values of its writes the current values of
those variables, but the combination of validating reads and updating writes must be an atomic
operation.

The semantics of acquiring transaction variables is crucial here. Simply calling validate at the
end of the transaction establishes that a point in time existed when all variables read had their
observed values. But that point in time was just before validation started; even during validation
some of the read variables may be overwritten by other transactions’ commits. This opens up the
possibility that consistency will be violated in other transactions’ reads.

I will illustrate with an example. Consider transactions T1 and T2, and transaction variables
V1 and V2. T1 is in the process of committing, and has validated its reads, including V1, but
has not yet finalised its commit. When it does it will commit a write to V2. At this point V1 is
overwritten by another commit, and then T2 reads both V1 and V2.

The key question is what should happen when T2 reads V2, in order to maintain a consistent
as-if-serial order of transactions? Since T2 has read a value for V1 that is later than the value
of V1 used by T1, in the serial ordering it must come after T1, and therefore it should read the
value for V2 that is written by T1. But this assumes that T1 does in fact commit, which is not
yet established; another transaction could abort T1. Until T1 commits or aborts, the logical state
of V2 is unstable, depending on whether T1 will commit or abort in the future. T2 could itself
abort T1, in order to fix this state, but T1 is in its commit phase and has already completed its
commit-time validation; it is almost guaranteed to successfully commit, and is a much safer ‘bet’
for the system to give preference to. If this is the first time T2 has read V2, then T2 does not
depend on any particular value for V2, it just needs to get one. Waiting a little to give T1 the
chance to commit has a high chance of not requiring either transaction to abort, but T2 must be
allowed to abort T1 eventually, or non-blocking progress has been compromised (consider what
would happen if the thread running T1 crashed in this state). Deciding exactly what to do in this
case is the problem of contention management. Algorithms 1 and 2 have not taken into account
the possibility of acquired variables; they need to be modified so that reading the current value
and timestamp of a variable can fail, and if this happens the contention manager is invoked. I
discuss this more in section 6.3.

This is the reason that the status of having acquired a transaction variable must represent
not just globally visible exclusive permission to write to that variable, but must also prevent
any other transactions from reading that variable as well. This property makes it possible for a
transaction to establish that it is safe for it to commit, and go on to do so, regardless of what other
transactions do after it has established safety (unless they actually abort it). This includes the
possibility that a transaction T may commit at a later point in real time than other transactions
who overwrite variables in T ’s read set. These other transactions will have later timestamps, even
though they actually complete their commits first. Perhaps counter-intuitively, this possibility is
actually safe, provided T acquires the variables in its write set before attempting to validate its
read set. Validation establishes that at some point t in time T ’s read set was valid; if the variables
in T ’s write set were acquired before t, then only transactions that do not depend on any variables
in T ’s write set can have committed after t, and so T can be either inserted into the serial ordering
before these other transactions or left out, depending on whether it eventually commits or aborts,
without compromising consistency.

The use of a global counter that is updated when transactions commit presents an opportunity
for optimisation. Validation during commit does not necessarily need to be a full run of the
validate algorithm discussed in the previous section. If the transaction observes that the global
counter still matches the value of the transaction’s timestamp, then no other commits have taken
place since this timestamp was obtained. Since a validation was performed when the timestamp
was obtained, which proved that the transaction was valid at that time, and no other writes have
been committed since then, the transaction must still be valid. In these cases “validation” during
commit can consist of observing the counter. If the counter does not match the transaction’s
timestamp, then a full validation must be performed.

The global counter is a potential bottleneck; since every committing transaction must modify
it, transactions executing their commit sequences in parallel are forced to serialise at this point.

13

We would like to reduce this overhead if possible. One obvious way to avoid doing this is to not
update the counter for read-only transactions and for transactions that abort, since neither group
should have any effect on other transactions. In fact, since read-only transactions have no writes
that need acquiring or new timestamps and cannot invalidate any other transaction, they do not
need an extended commit phase at all — provided they have ensured internal consistency while
in-progress, they simply need to check one last time that they haven’t been aborted by some other
transaction.

If we want to avoid updating the global counter for a transaction that aborts, transactions
must validate before the counter is updated. However, there is a subtle problem with this idea
when combined with the idea of skipping validation if the global counter hasn’t changed. Consider
two transactions that both attempt to commit and have both acquired all of their variables. They
next need to prove that their reads are still current. If both transactions last validated (obtaining
new timestamps) after the most recent commit by any transaction, both can observe the global
counter to still match their own timestamp, and may decide to skip validation. But if there are
symmetric read-write conflicts between them (each has read a variable the other has written),
then they cannot both commit! We need at least one of them to validate in order to notice the
other’s acquire. The key issue is that the status of having acquired a variable is supposed to be a
globally visible property. But if it is possible for a transaction to commit without running a full
check on the variables it has read, then the acquire is not globally visible. Essentially, now the
process of acquiring variables cannot be considered complete until the global counter is updated.
This forces other transactions to run a full validation in their commit phase, which ensures they
will notice the committing transaction’s acquires. But since validation in the commit phase must
take place after variables have been acquired, this implies that we cannot validate before updating
the counter!

Another way of reducing contention on the shared counter is to allow some transactions that
commit in parallel to share timestamps. A transaction T attempting to commit must update the
global counter using a compare-and-swap operation5. Before that it must have read the global
counter to calculate the incremented new value; call the time at which the global counter was read
time t. If the compare-and-swap fails, then some other transaction has incremented the counter
since time t, and so a full validation must be performed to ensure that T notices any of its acquires
and committed, as discussed earlier. However, if T had already acquired all of its variables before
time t, then the update that has been done by some other transaction was also after T acquired
its variables. This update will suffice to make later transactions validate and notice T ’s acquires
— we don’t need to repeatedly try to increment the global counter until we succeed. This allows
a set of transactions to commit with the same timestamp. For this to happen, though, all of them
must have completed their acquires and read the global counter before any of them attempt to
update the counter. From this state, the first transaction to attempt to update the counter, T0,
will be successful, and may have concluded that it doesn’t need to perform a full validation, and
so miss any acquires by other transactions in the set. Therefore, in the serial order of transactions,
T0 must come before any others in the set. The rest of the transactions in the set will all fail to
update the counter, and will run a full validation. Since they have all already acquired all their
writes before any of the validations started, they are guaranteed to be completely independent
from each other if the validations succeed, and also guaranteed not to depend on any variables
written by T0. Therefore any serial order putting the remaining transactions after T0 is consistent,
and all of them may commit safely.

The issues I have discussed above are the origin of the trade offs explored in the various commit
sequences of Zhang et al[26]. The strategy adopted in their V4 algorithm, which according to their
results performs well in many conditions, is the only one I have implemented thus far, and is shown
in algorithm 3. After writes are acquired, the timestamp is speculatively checked and a validation
run if necessary. Then the timestamp is incremented; if this fails then a second validation is

5Compare-and-swap is a machine-level atomic operation. It takes as parameters an address, an old value, and
a new value. If the old value is still stored at the address, it stores the new value there and returns true — this is
done atomically so the value stored at the address cannot be modified in between. Otherwise it leaves the value
stored at the address unchanged and returns false.

14

Algorithm 3 Pseudo-code for the commit phase
commit(Transaction):

acquire_writes(Transaction.log)
SnapTS = global_counter
if Transaction.timestamp != SnapTS then :

validate(Transaction)
Transaction.timestamp += 1
if not compare_and_swap(&global_counter, SnapTS,

Transaction.timestamp) then :
validate(Transaction)

update_acquired_vars_timestamps(Transaction)
commit_and_release_writes(Transaction)

necessary. Note carefully that validate has the side effect of reading the global counter into
Transaction.timestamp! Therefore just before the compare-and-swap, Transaction.timestamp
is either equal to the value of the global counter read into SnapTS, or to the value of the global
counter read during validation. The timestamp written into the acquired variables just before
they are released is required to be some value greater than the timestamp that existed when
they became unavailable for reading, so that transactions with timestamps earlier than this will
re-validate upon reading the new values. This is satisfied by the transaction’s timestamp at
the point update_acquired_vars_timestamps is called. It is assumed that acquire_writes,
update_acquired_vars, and commit_and_release_writes are appropriately implemented to call
abort rather than return if they cannot complete successfully.

An important note here is that this commit phase sometimes validates twice. The first is
an attempt to discover that the transaction is invalid before updating the global counter. This is
likely to speed up an application consisting of many very short transactions. In such an application
validation is short, so it is unlikely that the global counter is updated by another transaction, so
the first validation is likely to be able to serve as the single necessary one during commit. For
longer transactions however, it is probably more important to avoid validating twice than to
avoid serialising transactions unnecessarily on the counter — furthermore, the validation of longer
transactions takes longer, greatly increasing the chance that the global counter will be modified
during the first validation, so longer transactions are both more affected by double validation
and more likely to do so. There is no reason why all transactions need to use exactly the same
commit sequence, and the size of the transaction log can be consulted during commit. Therefore,
if an appropriate cut-off point were identified, it would be possible to have smaller transactions
use the given algorithm to commit, and longer transactions use a slightly different algorithm that
guarantees they will validate only once.

4.2 Data Layout

So far my description of the STM system has treated transaction variables themselves rather
abstractly. My discussion has just assumed that current values and timestamps can be retrieved
from them, that they can be acquired, and that updated versions are atomically released when
a transaction commits. In this section I discuss how transactional meta-data is organised in the
system, so as to achieve these properties. The prototype system’s use of a single global lock
and lack of timestamp-based validation allows transaction variables to be represented as simply
a reference to the value they contained. A non-blocking system requires a more complicated
representation. The scheme I have chosen is similar to those of RSTM[14] and DSTM[11], and is
shown in figure 2.

A value being manipulated in the STM system is always stored together with a timestamp.
The data value itself is treated as completely opaque by the STM system, and is an ordinary
Mercury value. The Mercury implementation allows all values to be passed around as a single

15

Figure 2: Data layout in the STM system.

machine word; the interpretation of that word is type-dependent, and may involve references to
memory cells elsewhere. Mercury’s pure declarative nature ensures that these other memory cells
will never be modified6, so the STM system does not need to worry about them. Combined with
this fact, Mercury’s strong, statically checked, polymorphic type system allows the STM system
to forgo recording the types of the data stored; the type checker is responsible for ensuring that a
given transaction variable is always used to retrieve and store values of the same type.

Transaction variables are represented by a variable header containing a data reference, and can
be in either the owned or unowned states. The owned or unowned status of the transaction variable
is indicated by a tag in the low-order bit of the data reference, so a single atomic instruction can
update both the status and the data reference.

In the unowned state, the variable header’s data reference points directly to the current logical
value and timestamp of the transaction variable. Identifying the current logical value of an owned
transaction variable is more complicated. In the owned state, the data reference instead points to
an ownership record, which identifies old and new versions of the variable’s value and timestamp,
and the transaction descriptor of the transaction that currently owns the variable. A transaction
descriptor stores the meta-data needed by the thread running each transaction (including the log
and the timestamp, which we have seen in the discussion in section 4.1). It contains only one
“public” field, which may be both read and written by other transactions — the transaction’s
status (other private fields of the transaction descriptor are not shown in figure 2). This status is
one of ACTIVE, ABORTED, and COMMITTED. If the owner’s status is COMMITTED, then the new value
of the variable is current. If the owner is ABORTED, then the old value is current. If the owner is
ACTIVE, then the transaction variable is acquired and must not be accessed without first aborting
the owner, in order to ensure consistency. However, a transaction always uses the new value if it
is itself the owner.

After identifying whether to follow the new or old reference however, a transaction accessing an
owned variable must then double-check that the variable header still points to the same ownership.
This prevents a race in which, after the ownership is identified but before the owner’s status is
checked, the thread that ran the owner begins a new transaction (or makes another attempt at
the same transaction) and reuses its transaction descriptor.

To acquire a variable, a transaction allocates a new data record containing the value and
timestamp of the new version (the timestamp may not be final, but no other transaction will read
it until and unless this transaction commits). It then allocates a new ownership record pointing
to its own descriptor, the data record of the “current” version of the variable, and the newly
constructed data record. It then uses a compare-and-swap to change the data reference in the
variable to a pointer to the ownership record, with the low-order bit of the pointer indicating the
variable is owned.

When a transaction commits, it need only use a compare-and-swap to change its status field to

6Under some circumstances Mercury allows data to be modified in-place, but such data is not permitted to be
stored in transaction variables. See section 3 for more discussion.

16

COMMITTED. This has the effect of simultaneously releasing all acquired variables and changing
their logical values to the values written by the transaction. Likewise, when a transaction aborts it
sets its status to ABORTED, releasing any variables it had acquired. To abort another transaction,
its status is compare-and-swapped to ABORTED. It will not notice that it has aborted until the
next time it calls an operation provided by the STM system, but setting its status to ABORTED
instantly frees up all of its acquired variables for use by other transactions.

After a transaction commits or aborts, it enters a cleanup phase, in which it sets all of its owned
variables back to the unowned state (with the appropriate value). This phase is not necessary in
that failure to perform it does not impede any other transaction, but the just-finished transaction
is likely to perform this quicker than other transactions, as the cache of the CPU that has been
executing it is likely to contain many of the variables the transaction has been accessing (this is
particularly true for a transaction that has just committed, as the commit sequence manipulates
the meta-data of all acquired variables just before finalising the commit). Any other transaction
that accesses an owned variable in a final state (with a committed or aborted owner, possibly
because it has just aborted the owner) performs the cleanup itself, early. This incurs no additional
overhead in the case of a new transaction wishing to own the variable — it is just a matter of where
the old value of the new ownership record comes from. If an owner’s compare-and-swap fails when
attempting to clean up after itself, this indicates that some other transaction has accessed the
variable in the meantime, so the owner does nothing and moves on. The owner’s cleanup phase is
however necessary before beginning a new transaction and reusing a transaction descriptor. The
thread must ensure there are no more references to its transaction descriptor so that its new status
is not mistaken as identifying the version of its previously finalised writes.

I have previously made reference to situations that must be treated carefully because of the
possibility of a transaction descriptor being reused. An obvious way to avoid this issue would be
to simply allocate a new transaction descriptor for every transaction, letting the garbage collector
deal with the old ones when they are no longer referenced. The main reason for not doing this is to
allow for contention management strategies that need book-keeping which persists across aborts
— simple and obvious strategies such as increasing a transaction’s priority if it repeatedly aborts
would be impossible if every re-execution of a transaction began with a newly allocated descriptor.

There is an issue with this scheme for a system that uses lazy acquire. If a transaction reads
a variable it has previously written, but not yet acquired, it should return the previously written
value, not the current value as defined above. The usual approach is to search the write set before
every read, to see if the variable has already been written. Spear at al[23] suggest that evaluation
of the trade-off between eager and lazy acquire “appears to have been clouded by the fact that
many comparisons between eager and lazy STM have used TL2[3] as the lazy representative”, and
cite lookups in TL2’s linear write buffer as a major source of overhead (even though TL2 uses a
bloom filter to try to avoid these lookups). They show that if the write set is implemented as a
data structure with efficient lookup characteristics, such as a hash table, then the performance of
lazy acquire systems can match that of eager acquire systems.

I have devised an alternative method of solving the same problem. The method for obtaining
the current logical value of a transaction variable must already be prepared to find an owned
variable and determine which version to use based on the owner. We could use this capability to
find previously written values where we ordinarily look for the values of variables if a transaction
was able to own a variable without acquiring it. This requires differentiating between two different
kinds of active transactions, and so we replace the ACTIVE transaction status with two new status
codes: ACTIVE_LAZY and ACTIVE_EAGER. When a transaction reads an owned variable it treats an
ACTIVE_LAZY owner the same as an ABORTED owner; it uses the old value (unless, of course, it is
itself the owner).

It is very easy to support both eager and lazy acquire with this scheme. Lazy transactions
begin in the ACTIVE_LAZY state and acquire all their writes in the commit phase simply by using
compare-and-swap to update their status from ACTIVE_LAZY to ACTIVE_EAGER. Eager transactions
simply begin in the ACTIVE_EAGER state. The decision to use eager or lazy acquire could even be
made on a per-transaction basis, though I have not examined the usefulness of such a feature.

The “lazy acquire” gained by this scheme is not identical to the normal meaning of lazy acquire,

17

however. It allows any number of readers to execute in parallel with a single writer, but conflicts
between writers must be resolved early, as only a single transaction can own a variable at a time.
It would be possible to allow multiple writers to co-exist by having either the new or old pointers in
an ownership record contain a tagged data reference as in the variable header itself, thus possibly
forming a chain of ownership records. The overheads of such a system would be intolerable,
however, and the benefit very small. The chief advantage of lazy acquire is that it allows readers
of a variable to execute in parallel with writers of the same variable, as some of the readers may
commit before a writer commits and invalidates them, achieving parallel use of the same data.
The advantage of allowing multiple writers to execute in parallel is much more questionable, as
at most one of them can commit and the time spent speculatively executing the rest is wasted
work. The only potential advantage lazy acquire can claim is that aborting all but one of these
transactions early will increase wasted work if the transaction that is allowed to continue later
aborts for another reason, while one of the aborted transactions might have been able to commit.
Spear et al refer to this “partially lazy” acquire as mixed invalidation[24], and describe a system for
implementing it that is very similar to the one I have described here. Their discussion approaches
the concept specifically with the goal of detecting write-write conflicts eagerly while delaying the
detection of read-write conflicts. They do not discuss the impact of this mixed invalidation on
write set lookups, though it does not seem likely that their system would look up writes in a
separate write set when it could find them from the transaction variables themselves.

A further advantage of using this representation is that the write set can be implemented as
a simple linear data structure without compromising performance. Since now the only thing it is
used for is a traversal of all writes (during the commit phase, or when cleaning up after an abort
or commit), there is no benefit to it being anything other than a simple extensible array. There
is a small performance penalty, in that reading owned variables is necessarily more complicated
than reading unowned ones, and variables are owned much more of the time with this scheme
than with true lazy acquire. However I expect this to be more than compensated for by avoiding
lookups in the write set, which would affect all transaction reads regardless of whether any other
transaction is interested in writing the variable.

5 Partial Roll-back with Checkpoints

The prototype Mercury STM implementation includes the retry and or_else constructs originally
developed in Concurrent Haskell[6]. I have described the meaning of these in section 2.3.2.

Consider a transaction which reads and writes some transaction variables, then enters a nested
transaction. The nested transaction contains a call to retry, and has or_else alternatives. When
the retry is reached, transaction execution must roll-back, but only to the beginning of the nested
transaction. Likewise, writes must be abandoned before the execution of the or_else alternative,
but only those of the nested transaction, not its parent. This requires that the nested transaction’s
log is kept separate from that of the parent in some way. These capabilities can be generalised
and used even without the presence of nested transactions making use of retry and or_else,
to provide a “checkpoint” system for transaction execution. The basic idea is to split the log
into segments, chained together, and validate them in chronological order. When validation of
a particular log entry fails, it is known that every earlier log segment contained only valid log
entries. Therefore, if we could roll-back the transaction to the state it had just before the invalid
log segment was created, we could save repeating the work done in some prefix of the transaction.

In both the prototype implementation and my system, the mechanism used to implement
transaction roll-back is exception handling. Algorithm 4 shows pseudo-Mercury for a procedure
that might be generated from an atomic block in the user’s program. It is greatly simplified (and
sweeps under the rug complexities of passing the unique STM state across the exception handling
interface), but shows the essential logic. Appendix B shows the actual code used to implement a
simple transaction in both the prototype and new STM systems, which gives a fuller appreciation
of the complexities involved.

A new predicate must be generated corresponding to each atomic scope, so that recursion can

18

Algorithm 4 Transaction roll-back by exception handling
atomic [outer(!IO), inner(!STM)] (

do_something(Input, Output, !STM)
or_else

do_something_else(Input, Output, !STM)
)

=⇒

atomic_scope_0(Input, Output, !STM) :-
try (

do_something(Input, Output),
commit(!STM)

catch stm_exception_abort ->
discard_log(!STM),
atomic_scope_0(Input, Output, !STM)

catch stm_exception_retry ->
discard_writes(!STM),
try (

do_something_else(Input, Output, !STM),
commit(!STM)

catch stm_exception_abort ->
discard_log(!STM),
atomic_scope_0(Input, Output, !STM)

catch stm_exception_retry ->
block_until_read_vars_change(!STM),
discard_log(!STM),
atomic_scope_0(Input, Output, !STM)

)
).

19

Algorithm 5 Checkpointed execution for single transaction goals
stm_goal(Goal, Output, !STM) :-

create_checkpoint(Checkpoint, !STM),
try (

Goal(Output, !STM)
catch stm_exception_abort(CaughtCheckpoint) ->

(if CaughtCheckpoint = Checkpoint then
rollback_to_checkpoint(Checkpoint, !STM),
stm_goal(Goal, Output, !STM)

else
throw(stm_exception_abort(CaughtCheckpoint))

)
).

implement re-execution. The code originally contained in the atomic scope is executed inside an
exception handler, allowing the STM system to simply throw an stm_exception_abort exception
whenever it detects a reason to abort. Likewise the implementation of the retry predicate is
to simply throw stm_exception_retry. The prototype system generates code to implement this
logic when compiling each atomic scope, and consequently atomic scopes with multiple or_else
alternatives generate chains of nested exception handlers inside the retry arms. My system in-
stead implements this logic in higher order predicates in the Mercury library, so all the compiler
is responsible for is factoring out the contents of atomic scopes into separate predicates and con-
structing a few higher-order calls. Higher-order code is often less efficient in Mercury than normal
code, so it might seem preferable to generate specialised versions of this code for each atomic
scope, as in the prototype system, but exception handling in Mercury is implemented by passing
a higher-order term to a try predicate, so there is no getting out of it. I do arrange in my system
that the closures constructed to be passed into the STM system are the very same ones that are
passed into the exception system, so that no additional overhead is incurred constructing closures
that wrap closures.

Note that nested transactions need a different structure; aborts should be uncaught so that
they propagate to the topmost level, and retries are not caught in the final or_else alternative.
Only the outermost transaction should contain the code to wait and then re-execute. In the
prototype implementation, commit called by a nested transaction merges its log entries back into
the parent’s log. My system does not call commit in a nested transaction.

It should be immediately obvious that when execution is inside multiply-nested transactions,
there will be several layers of exception handler live on the call stack. Each level of transaction will
already have its own log, so when an inconsistency is found during validation in a log with depth N ,
the system has enough information to conclude that the prefix of the transaction executed up to the
creation of a particular exception handler is still valid. To avoid re-executing that prefix, we only
need a way of targeting a thrown exception to a particular handler. The mechanism for doing this
is shown in algorithms 5 and 6, this time using higher-order code that is closer to the library code
found in my implementation (the pseudo-code shown in algorithm 4 resembles the generated code
produced by the prototype implementation). The key point is that stm_exception_abort now has
a parameter, indicating which checkpoint should catch the exception. Internally, a checkpoint is in
fact identified with a log segment; when the validation routine in the runtime finds an invalid entry
it returns the address of the log segment that contained the entry as a “checkpoint”. The library
then throws an exception containing that checkpoint, which will be caught by the exception handler
set up at the point where the checkpoint (log segment) was created. rollback_to_checkpoint
discards all log segments from the indicated checkpoint onwards (including the checkpoint itself,
which contained the first invalid entry), ready for a new one to be created again in the recursive
call.

A point that may not be immediately appreciated is that the “rollback” that happens when

20

Algorithm 6 Checkpointed execution for or_else alternatives
or_else(Goal, OrElseGoal, Output, !STM) :-

create_checkpoint(Checkpoint, !STM),
try (

Goal(Output, !STM)
catch stm_exception_abort(CaughtCheckpoint) ->

(if CaughtCheckpoint = Checkpoint then
rollback_to_checkpoint(Checkpoint, !STM),
or_else(Goal, OrElseGoal, Output, !STM)

else
throw(stm_exception_abort(CaughtCheckpoint))

),
catch stm_exception_retry ->

disown_writes(Checkpoint, !STM),
or_else_retried(Goal, OrElseGoal, Checkpoint, Output, !STM)

).

% Encapsulate the second exception handler, which would otherwise
% be in the stm_exception_retry arm above, making it harder to read.
or_else_retried(Goal, OrElseGoal, OuterCheckpoint,

Output, !STM) :-
create_checkpoint(Checkpoint, !STM),
try (

OrElseGoal(Output, !STM)
catch stm_exception_abort(CaughtCheckpoint) ->

(if CaughtCheckpoint = Checkpoint then
rollback_to_checkpoint(Checkpoint, !STM),
or_else_retried(Goal, OrElseGoal, OuterCheckpoint, Output, !STM)

else if CaughtCheckpoint = OuterCheckpoint then
rollback_to_checkpoint(OuterCheckpoint, !STM),
or_else(Goal, OrElseGoal, Output, !STM)

else
throw(stm_exception_abort(CaughtCheckpoint))

)
).

21

Algorithm 7 Pseudo-code for the entry-point predicates
atomic_transaction(Goal, Output, !IO) :-

get_stm_state(STM0, !IO),
top_level_transaction(Goal, Output, STM0, STM),
set_stm_state(STM, !IO).

top_level_transaction(Goal, Output, !STM) :-
try (

stm_goal(Goal, Output, !STM),
commit(!STM)

catch stm_exception_abort(_) ->
rollback_to_top(!STM),
top_level_transaction(Goal, Output, !STM)

catch stm_exception_retry ->
block_until_read_vars_change(!STM),
rollback_to_top(!STM),
top_level_transaction(Goal, Output, !STM)

).

nested_transaction(Goal, Output, !STM) :-
stm_goal(Goal, Output, !STM).

a transaction retries before calling or_else_retried does not discard the log segment. Variables
written by the goal that retried are reset, as the effects of these writes must neither be seen by
the alternative goal nor eventually committed, but the log segment is left with its reads intact.
This is necessary in case the alternative goal also retries; if the entire transaction retries, then
it must block until the values of any of the variables it read are changed. Thus, a transaction
that attempts each of a number of or_else alternatives in turn executes with an increasingly long
chain of log segments. The chain cannot grow without bound for a finite transaction, as it resets
whenever the entire transaction retries, but the presence of this chain and the checkpoints it
represents could significantly reduce wasted work when variables read by a recent alternative goal
are invalidated by other transactions. The “abort to top” strategy would require re-executing all
alternative goals (which will do exactly the same thing as before, and so retry) until one is reached
that read the invalidated variable. Checkpointing allows execution to restart immediately at the
particular alternative goal that needs to be re-executed.

The “entry-point” predicates are shown in algorithm 7. atomic_transaction is the entry-point
for running an STM transaction as an I/O action, while nested_transaction is an STM action.
These two predicates, along with or_else seen in algorithm 6, are the interface that programmers
could use to run transactions; the atomic scope syntax, which is usually more convenient, can
be easily transformed into calls to these predicates by the compiler (although I have not yet
implemented the required changes to Mika’s source-to-source transformation to target this simpler
interface instead of the prototype system, so atomic scopes are currently broken).

The predicate top_level_transaction is not visible to users, but implements most of the
actual logic of atomic_transaction, which is why I have presented it along with the “entry
point” predicates. The atomic_transaction predicate merely “translates” between the I/O state
and the STM state, while top_level_transaction contains an extra layer of exception handling,
to implement the blocking semantics of retry when all or_else alternatives have been exhausted,
and is the target of recursion to implement re-execution.

Programmers can add checkpoints to their transactions simply by introducing nested transac-
tions. Indeed, this is the only real purpose of a nested transaction with no or_else alternatives,
which would otherwise be equivalent to just directly executing the nested transaction’s code (this
is exactly how the prototype system views and implements nested transactions with no alternat-

22

try(Goal, Result),
(

Result = ok(Output)
;

Result = exception(E),
(if E = ... then

...
else if E = ... then

...
else

rethrow(Result)
)

)

Figure 3: Typical pattern for using the try predicate

ives). The STM system is transparently capable of rolling back to the beginning of any nested
transaction, or the beginning of any or_else alternative.

5.1 Impure STM Goals
As described above, the checkpoint capability is, unfortunately, fairly ineffective. The major
reason for this is the location of the call to commit, inside top_level_transaction. Transactions
perform their most stringent validity checks during the commit sequence, and so this is the most
likely time for aborts to be discovered. At the point commit is called, however, execution has
left the scope of all the exception handlers set up to catch checkpointed aborts; there is no
alternative but re-executing the entire transaction from the beginning (indeed, there is little point
to implementing an abort from here by throwing an exception). Checkpoints are only of any use
in reducing wasted re-execution work in the case when an abort is discovered during transaction
execution. Even then, if execution has left the nested transaction that needs re-executing, the
abort must be sent to a “higher” transaction that is still executing. More formally, execution will
restart to the beginning of the inner-most transaction that encloses both the earliest location that
accessed a variable which has been invalidated, and the location of the current execution.

In section 6.4 I discuss a radically different way of executing transactions that greatly improves
the utility of checkpoints, which I have designed but not implemented. My system as implemented
does include a refinement of the system outlined above, however, which gains a small improvement
to the chance of a checkpoint being applicable, and also reduces the overhead of using the exception
handling machinery to implement transaction roll-back.

In the algorithms presented in the last section, I used a convenient high level notation to
express exception handlers using try and catch. Mercury does have very similar syntax, but this
is translated by the compiler into code that uses the higher-order try predicate. This predicate
takes a higher-order closure, which must produce a single output argument. An example of how
this is typically used is shown in figure 3.

If more than one output is needed, the closure must wrap them in a tuple; the Mercury compiler
can automatically transform the code used in a try goal so that it does this. This exact same
transformation is needed for code inside an atomic scope, and for the same reason; the higher-
order predicates that are used by the underlying implementation need a closure that only has one
output argument. In the case of the atomic scope, however, the closures also need to take a pair
of arguments (one “destructive input” and one “unique output”) for the STM state. This means
that when the closure is passed into the exception handling system, another closure has to be
generated with only a single output argument; this argument is a pair containing the output STM
state argument wrapped up together with the output argument of the STM closure, which is itself
probably a tuple wrapping the outputs of the programmer’s original code. Constructing multiple

23

layers of closure containing multiple layers of tuple-packing is needless work, and may interfere
with the compiler’s ability to optimise away some of the inefficiencies of using higher-order code.

The way I have addressed this issue paves the way for increasing the effectiveness of checkpoints,
at the expense of considerably messier code inside the STM library module, though it implements
substantially the same algorithms as outlined in the previous section.

In algorithm 7, it can be seen that the “source” of the STM state, which is threaded through
the transaction system and the user’s transaction code, is a call to get_stm_state, and it is
eventually “consumed” by set_stm_state. All get_stm_state does is retrieve a pointer to the
statically allocated transaction descriptor for the executing thread, while set_stm_state is a no-
op (it exists mainly to avoid depending, at this level, on the fact that transaction descriptors are
statically allocated). If these calls could be moved inside the individual transaction goals, the
STM state wouldn’t have to cross the boundaries of the exception system at all, and the STM
closures would have just one output argument, matching up exactly with the exception handler’s
closures.

Since the transaction goals do not have access to the I/O state, doing this requires
get_stm_state and set_stm_state to be impure. This has the further results that the STM
closures, and consequently the interface predicates atomic_transaction, nested_transaction,
and or_else, are also impure. Calls to them can be pure only when the closures provided would
be pure if it were not for the call to get_stm_state. All of the predicates implementing the
“scheduling” logic of the STM system must now be impure as well; the required impurity annota-
tions and the loss of conceptual clarity in the implementation are the main cost of this strategy;
any compiler optimisations that are prevented by this impurity would have been inapplicable due
to the threaded STM state variables anyway.

Since using these predicates correctly is more difficult, and users of the STM system obviously
shouldn’t know about an internal detail like get_stm_state, I have introduced parallel versions
of the interface predicates. There are pure versions that take closures which need STM state
arguments, and construct the corresponding impure closures before passing them on to the rest of
the STM system; these versions have all the potential efficiency issues outlined above. There are
also impure versions of the three interface predicates, contained in a “private interface” which will
not be documented in the Mercury library documentation. These versions take impure closures
which have only an output argument, and assume the closures themselves call get_stm_state
and put_stm_state. These predicates should not be used by users directly; rather they will be
used in the code generated by the compiler from atomic scopes. The compiler will insert a call
to get_stm_state into the predicates it generates that contain the user’s code, along with the
output tuple-packing.

Since there is now a “secret” interface that relies on being used correctly by the compiler, I
also introduce the notion that calls to commit should be moved into the STM goals themselves.
The predicates which are used as alternatives at the top level of a transaction (i.e. all those
appearing as the main goal or an or_else alternative of an top-level atomic scope) will have a call
to commit inserted into them by the compiler. This means that when a top-level transaction with
a number of or_else alternatives attempts to commit to any one of those alternatives, it will still
be within the scope of all the checkpoint exception handlers. This additional detail makes the
impure interface dangerous for anyone other than the compiler to use directly, as the behaviour
of the system will be very strange if closures contain calls to commit when they shouldn’t, or vice
versa. A closure should contain a call to commit if and only if it eventually will be passed to
atomic_transaction rather than nested_transaction (possibly indirectly, via or_else, which
is the same for both top level and nested transactions), which may not be obvious at the point
the closure is constructed if this interface is used in general ways by the programmer.

5.2 Limitations of the Checkpoint System

Overall, even with the enhancement from using impure STM goals, the checkpoint system is only
of limited use. It only provides a significant benefit with long and complex transactions under
heavy contention, when many “large” aborts are happening. While this could potentially increase

24

the level of contention for which an application with complex transactions is still usable, it does
not help the fast path of executing small non-contending transactions.

While the cost of the extra log segments themselves is small, the added complexity of the
exception handlers could have a much more significant cost. A programmer who wishes to avoid
unnecessary exception handling scopes can always do so, by calling sub-goals directly rather than
putting them inside nested transactions, but when multiple exception handlers are live on the stack
the abort process requires each handler to catch the exception and check to see whether execution
should restart at that level, or be thrown further outward. All those exception handling scopes
must also be passed “on the way out” when no exception is raised. This overhead is incurred for
every checkpoint, regardless of whether it actually prevents re-execution work. Without sufficient
cases where work is saved, the application will run slower than if it had used fewer checkpoints.

Experimental evaluation is needed to analyse the costs and benefits of using checkpoints
as implemented by this system. Whether they help or hinder performance is probably highly
application-dependent. Fortunately the cases where something equivalent to the checkpoint sys-
tem is necessary correspond exactly to those cases where a nested transaction is the only way to
express the meaning of the program (i.e. when using nested transactions with or_else altern-
atives); in other cases, the programmer can choose whether or not to use a nested transaction
based on whether they expect a checkpoint to be of use. Thus it should be safe to always create
a checkpoint for every nested transaction.

6 Planned Future Extensions

I have implemented a system with the features described in detail in the previous sections. This
implementation is not quite fully functional, however, and some more work is needed to bring it
to a minimal state of completeness.

One problem is that the source-to-source transformation implementing the atomic scope syntax
has not yet been changed to produce calls to the higher order library predicates instead of the
large body of generated code emitted by the prototype; this change will be fairly mechanical, as
the information used in the transformation is exactly the same, so the general framework can be
reused.

The use of retry and or_else alternatives is not fully functional either, primarily because the
blocking mechanism does not work with the new implementation. Again, this will be substantially
similar to that in the prototype system, the existing mechanism just needs to be appropriately
worked into the structure of the new implementation.

A much more critical problem is that there is a race-condition bug in my implementation of this
system, which I discovered when I attempted to benchmark the performance of the STM system.
Updates performed by transactions are occasionally being lost when there is high contention; the
probability of this happening is low enough that it was not observed in any of the the much more
controlled tests I was performing during the development of the system, but produces clearly
incorrect behaviour in more substantial programs. This issue will obviously have to be resolved
before the system is usable, and renders any detailed performance analysis fairly meaningless,
which is why this report does not contain any experimental performance evaluation.

In addition, there are several features I have prepared for while designing and implementing
the core, but which are not fully functional yet. In the following subsections I briefly discuss the
most significant.

6.1 Access Visibility

The system I have described in detail always uses invisible reads and visible writes, although I
intended the system to support both variants of read and write access.

Invisible reads are a key performance optimisation of more recent STM systems. The “invisible”
concept describes the fact that no other transaction can detect the read. Visible reads, on the
other hand, are observable by other transactions. This requires the presence of meta-data that is

25

read by all transactions, and updated for all accesses, causing significant synchronisation overhead
(even if it is merely that contained implicitly in the cache coherency protocols of multiprocessor
systems). There is an interesting trade-off, in that a transaction does not need to perform extra
work validating its visible reads; before committing a write to a variable that has been visibly
read, a writing transaction must first abort any visible readers. Therefore a transaction can
validate its visible reads simply by checking that the status field of its transaction descriptor is
not ABORTED. However, even this performance advantage is usually outweighed by the increased
meta-data contention.

Visible reads are necessary, however, for providing any sort of guarantee of progress or fairness.
When reads are invisible, writing transactions that attempt to commit are unable to detect the
transactions their writes will force to abort, and so cannot observe protocols concerning when
one transaction can abort another. The conflict will only be detected later, when no decision
can be made about which of the two transactions should be aborted, as one of them has already
committed.

The concept of write visibility is not normally discussed as a parallel of read visibility. Normally
visible writes are implied by eager acquire with undo-logging, and invisible writes are implied by
any form of redo-logging. The data layout I have used in my system separates these concepts
somewhat, allowing the possibility of writes being either visible or invisible, with the similar
distinction that transactions are responsible for checking the validity of their invisible writes, but
can assume they will be aborted before their visible writes are invalidated.

Writes are always visible in the current version of my system, as provided by the ownership
mechanism. There is potentially less reason to have invisible writes than invisible reads; suc-
cessfully committing writes fundamentally involves an update to data read by all transactions,
so much less is saved by keeping the writes private during execution. Further, the only way to
achieve invisible writes would be to buffer writes into a private log, requiring this log to be searched
before every read as discussed in section 4.2. If the write log were a simple linear structure, this
would add O(n) overhead to each of n reads. A more complex data structure could significantly
improve efficiency, at the cost of implementation complexity, and would still impose at least some
constant overhead. Since using visible writes mandates the use of mixed-invalidation, it is pos-
sible that multiple long-running transactions with many writes in common will live-lock without
good contention management. This prospect would be much less likely with invisible writes and
true lazy acquire, since in that case a transaction would only cause other transactions to abort
by committing. Livelock would still be possible, as it is possible that two transactions in their
commit phase will both abort each other due to acquiring variables before committing, but this
is exceedingly unlikely with lazy acquire.

There is no reason why read or write visibility must be an all-or-nothing decision. I have
designed my system to support transactions that may perform any given access either visibly or
invisibly, and allow the contention manager to decide at runtime how to perform each access. This
would allow the use of contention management policies such as the one described in [23], which
runs transactions using invisible reads by default for speed, but begins using visible reads for
transactions that repeatedly fail to commit, achieving low latency in the common case but even-
tually providing some assurance of likely fairness. I believe a similar strategy could be combined
with the Greedy contention manager[4], which provides a provable upper bound on the time taken
by the system (compared to an optimal off-line list scheduler) at the cost of using entirely visible
reads, to provide a system with a provable upper bound and good performance in the absence of
significant contention. The idea would be to ensure that transactions spend only a bounded time
in the “invisible” mode in which any priority they have cannot be guaranteed to be observed, thus
allowing a provable bound on the total execution time of the combination of this period and the
visible mode execution.

6.2 Eager Acquire

I have mentioned earlier that my system makes it fairly trivial to use either eager acquire or
lazy acquire (really mixed invalidation until invisible writes are implemented). I have not yet

26

contention_manager(OtherTrans, TVar, !STM)

cm_init_transaction(!STM)
cm_start_transaction(!STM)
cm_commit_transaction(!STM)

init_cm_status(CM)

cm_choose_read_mode(TVar, Visible, !STM)
cm_choose_write_mode(TVar, Visible, !STM)

Figure 4: Contention management interface

implemented a mechanism for making this determination, however, short of manually changing
the source code in a few places. At the very least, the source code should be changed so that there
is a single point of control for compiling this decision into the system, which would be a fairly
simple matter of introducing a small number of conditionally defined macros in the C runtime.

6.3 Contention Management

The contention management interface in my system is not fully implemented, and so I have not
implemented any contention management strategies. Figure 4 shows the interface a contention
manager must implement, while figure 5 shows the interface that is provided by the STM system
to contention managers. Apart from this, the contention manager is completely independent of
the rest of the STM system.

When a transaction discovers that it cannot access a transaction variable because of another
transaction, it calls contention_manager. OtherTrans is a transaction reference; this is a type
that is opaque at the Mercury level, but in the C runtime is a pointer to a transaction descriptor;
exactly the same C type as the STM state itself. The difference is that the unique STM state
conceptually identifies the state of the transactional system for the transaction being executed,
while a transaction reference is non-unique, and serves to identify another transaction. Different
operations are permitted on the two; a running transaction keeps private state (such as the log
segments) in its own descriptor, which is updated by predicates such as read_stm_var. Transaction
references are represented as a different Mercury type, so that such predicates cannot be used to
modify the private state of other transactions. The only operations permitted on a transaction
reference deal with the public part of a transaction’s state: its transaction status, and its contention
management status (see below).

An implementation of contention_manager may cause the calling transaction to abort, which
throws an exception. If it does not throw an exception, the calling transaction immediately repeats

get_cm_status(CM, !STM)
update_cm_status(CM_Old, CM_New, Success, !STM)

get_cm_status_of_other(OtherTrans, CM, !STM)
update_cm_status_of_other(OtherTrans, CM_Old, CM_New,

Success, !STM)

cm_abort_self(STM)
cm_abort_other(OtherTrans, !STM)

Figure 5: Interface provided to contention managers

27

whatever action it had failed at before calling contention_manager, assuming that some corrective
action has been taken (such as aborting the conflicting transaction or executing a wait). Thus the
strategy for resolving conflicts is completely encapsulated inside this predicate.

To give the contention manager slightly more information, cm_init_transaction is called when
a transaction first begins, cm_start_transaction is called every time a transaction begins forward
execution (once just after cm_init_transaction, and also just before execution resumes after
every abort), and cm_finalise_transaction is called after a transaction commits successfully.
Note that only top-level transactions are relevant here; the contention manager is unaware of the
presence of any nested transactions.

In cm_choose_*_mode, Visible is a boolean output argument, providing the contention man-
ager with control of individual access visibility. For current contention management algorithms
that I am aware of, the TVar parameter is not necessary, but is included to support possible con-
tention management strategies that identify highly contended variables and treat them differently.

The predicates get_cm_status and update_cm_status allow the contention manager to main-
tain some per-transaction state, called its contention management status. An implementation of
a contention manager must provide a type for this status as well as the predicates in figure 4. The
initial value of the contention management status should be provided by cm_init_transaction.
Likewise, get/update_cm_status_of_other allows access to the contention management status
of another transaction. Compare-and-swap update predicates are provided rather than simple set
predicates, since the contention management status is accessed concurrently by multiple threads.
A transaction’s initial contention management status must be provided by the implementation of
init_cm_status.

The contention manager also has access to cm_abort_self and cm_abort_other, if it determ-
ines that a conflict should be resolved by aborting a transaction.

This interface should be sufficient to implement many of the contention management strategies
that have been proposed, such as Polka[13], Greedy[4], and Patient[23].

6.4 Transaction Execution and Roll-back by Continuation Passing

As detailed in section 5, the mechanism for implementing roll-back of the execution state is by
exception handling. Every location to which execution may need to roll-back requires a predicate
which sets up an exception handler and then calls the code that will possibly roll-back. When an
exception is caught, the predicate always recursively calls itself, so that the exception handler will
be set up again in case the second attempt also aborts. It would be a lot simpler if the abort-
and-roll-back process could be implemented by simply calling the predicate at which execution
needs to resume, bypassing all this extra machinery. This can be achieved if transactional code is
written in continuation passing style.

Continuation passing style is most often seen in the context of functional languages. A function
written in this style takes an extra argument, representing the continuation of the call to the
function. Instead of returning a value normally, such a function calls the continuation, passing it
the “return value”; alternatively it may call some other continuation passing function, passing a
continuation to the called function also. If some function eventually returns a value directly, it
will pass back to the location where the first continuation passing function was called.

This idea is fairly easy to apply to transactional code in Mercury. At the lowest level, the only
places from which an abort can occur are the STM primitives read_stm_var, write_stm_var,
and the implicit call to commit at the end of a transaction. Algorithm 8 compares simple pseudo-
code for standard and continuation-based versions of these read_stm_var. Instead of return-
ing the read value in an output value or raising an exception if the transaction needs to abort,
read_stm_var_cont either passes the read value to the “normal continuation” passed in as an
argument, or calls an “abort continuation”. Corresponding pseudo-code for the continuation based
versions of write_stm_var and commit is shown in appendix ??, and is quite similar. Since
write_stm_var is a consumer of data rather than a producer its normal continuation does not
take a value argument. The Output argument (which is threaded through these calls regardless of

28

Algorithm 8 Reading transaction variables with continuations
read_stm_var(TVar, Value, !STM) :-

try_read_stm_var(TVar, Result, !STM),
(

Result = ok(Value)
;

Result = abort(Checkpoint),
throw(stm_exc_abort(Checkpoint))

).

=⇒

read_stm_var_cont(TVar, NormCont, Output, !STM) :-
try_read_stm_var(TVar, Result, Output, !STM),
(

Result = ok(Value),
NormCont(Value, Output, !STM)

;
Result = abort(AbortCont),
AbortCont(Output, !STM)

)

which continuation is called) represents the output of the entire transaction. The normal continu-
ation passed to commit_cont (which is not given access to the STM state) is expected to finally
bind Output to the necessary value once the transaction has committed successfully.

Without further support from the compiler, this scheme would require programmers to write
code in continuation passing style, at least partially. Calls can be made to ordinary non-
transactional predicates (predicates that do not take a pair of STM state arguments, basically)
in the direct style, but any call to the primitive STM operations will either call the continuation
it receives, or call into some earlier point of the transaction execution. Such calls must therefore
be made as tail-calls (the “rest” of a predicate calling a primitive STM operation must be split
off into a separate predicate anyway, in order to give a name to the normal continuation so it can
be passed to the primitive). In fact, since any predicate with access to the STM state may call
one of these primitives, all such predicates must be called as tail-calls, and must be written in
the continuation passing style. The Mercury compiler is able to optimise these tail-calls to avoid
consuming O(nk) stack space for a transaction with maximum call-depth n after k aborts.

The abort continuations are the obvious counterpart to checkpoints thrown as exceptions. They
would be stored in the log segments, in much the same way as the address of a log segment is
taken as the identifier of a checkpoint in my current implementation; when a nested transaction is
entered, creating a new log segment, it could store a reference to the closure that was given as the
body of the transaction. But there are much more interesting possibilities for such a system. The
checkpoint system based on exception handling requires that the scope of the exception handler
corresponding to a checkpoint is still live in order to abort to a checkpoint, which means that
checkpoints can only be created at particular points in the system. With the continuation-based
system, an abort is simply a tail-call to an appropriate closure. Any time a primitive STM
operation is called, it is passed a normal continuation, which is an appropriate target for a later
abort. Creating a checkpoint thus requires only splitting off a new log segment and storing a
reference to the continuation before it is called.

While creating a checkpoint for every primitive operation would likely be horrendously ineffi-
cient, due to the allocation of many tiny log segments, possibilities are opened up for checkpoints
to be automatically created at sensible places, without requiring the programmer to create nested
transactional structure for this purpose. This could possibly be done by the compiler based on

29

code analysis, or dynamically by the runtime system; a simple policy such as “create a checkpoint
for every N transaction variable accesses” would impose only a little overhead for reasonable N ,
but has potential to dramatically reduce the costs of aborting transactions — every checkpoint
created can remain useful all the way up to and including the attempt to commit.

The disadvantage of such a system, of course, is requiring programmers to program in
continuation-passing style, which is often difficult and error-prone. The only practical option is to
allow programmers to program in direct style, and transform their code into continuation-passing
style.

Transformations from direct style to continuation-passing style are well known. However,
transforming all of the code called from within an atomic scope would do too much; only “STM
actions” (predicates that take a pair of STM state arguments) need to be in continuation-passing
style. The transformation to continuation-passing style creates many small higher-order predicates,
which is likely to be a performance hit. Rompf et al[19] describe a selective transformation driven
by type annotations, which transforms only those parts of the program that actually need the
functionality of continuations. The techniques described seem likely to be of use in implementing
a transformation of transactional code into continuation-passing style.

There are some potential muddy patches for this approach, however. Mercury compiles modules
(mostly) independently. When a transaction calls an STM action predicate defined in another
module, the source code of that predicate may not be available to transform. It may perhaps
to be reasonable to enforce that predicates taking a pair of STM state arguments are always
transformed into this style when they are compiled, so we can assume that such predicates in
other modules will be transformed at the time when that module is (or was, or will be) compiled.
Polymorphic higher-order predicates can still pose a problem; an STM state pair is a quite natural
fit for the accumulator arguments to higher-order predicates such as foldl, when processing a
list of transaction variables, for example. When compiling the list module, the compiler has
no way of knowing that foldl will be called in this way. It seems inevitable that the exception-
handling approach to executing transactions would have to remain, even if a transformation into
continuation-passing style were the preferred implementation. An exception-based STM action
could be called from within continuation-based code by wrapping it in an exception handler, and
using the result of try to determine which continuation to call when it returns.

Since the checkpoints enabled by the continuation-passing style are so much more flexible than
the exception-based ones, some complications must be resolved that simply do not arise in the
implementation I described in section 5. For example, when an or_else alternative has retried in
the original scheme, its writes must be discarded, and will never be needed again; if the transaction
aborts to that alternative, it will start at the beginning of the alternative, before any writes were
made by it. With the continuation-based checkpoints, it is possible for a transaction to restart
part-way through an or_else alternative, even after it has retried. Either this possibility must
be carefully prevented, or when writes are “discarded” on retry they must still be available for the
rollback process to attempt to reinstate them.

The possible combination of exception-based checkpoints and continuation-based checkpoints
also complicates matters. An abort continuation must not be called to attempt to roll back “past”
a checkpoint exception handler. The STM system would have to throw an abort to be caught by
the inner-most exception handler that also encloses the desired abort destination, and from that
position the abort continuation could be called directly.

Despite the issues that would have to be overcome, I believe this is a promising approach for
further investigation.

6.5 Application-specific Settings

There are a number of parameters in this system (such as the contention management policy,
acquire strategy, access visibility, etc), even if the current system only implements one option
for most of them. Available research into STM systems leads me to expect that the “optimal”
setting for these parameters will be application dependent, or even dependent on a particular
workload for an application. However, changing these parameters in the current version of my

30

system requires modifying and recompiling the Mercury standard library module implementing
STM, and (in some cases) the entire Mercury system including the C runtime. This is not a very
practical arrangement. Ideally the user should be able to choose these parameters with either
command line arguments to the Mercury compiler or declarations in the program (the atomic
scope syntax can be very naturally extended to support setting per-transaction options, by adding
extra parameters besides the inner and outer state variables).

One way to provide much more flexibility for these decisions would be to make them dependent
on the values of environment variables, but that precludes the compiler optimising away the de-
cision logic when the value needs to remain constant (the Greedy contention manager, for example,
requires all transactions to always use visible accesses, which would allow cm_choose_read_mode
and cm_choose_write_mode to be optimised away by the compiler if inter-module optimisation is
enabled). An appropriate way to address this issue needs to be investigated.

7 Conclusion

The system I have implemented provides the framework for a practical software transactional
memory system. This system implements STM in a non-blocking manner, largely inspired by
descriptions of RSTM [14, 23], and uses timestamp-based validation[18] to minimise the overhead
of providing opacity[5]. The system allows the possibility of a contention manager providing
stronger progress guarantees. It uses mixed-invalidation, which is similar to lazy acquire for read-
write conflicts, but similar to eager acquire for write-write conflicts, to avoid the need to search
the write set on every read. This optimisation has probably been implemented before, as [24]
defines mixed-invalidation and compares a system that implements mixed-invalidation to one that
only approximates it, but they make no mention of the effect on write set lookups.

My implementation also makes use of a checkpoint system to mitigate the cost of aborting by
rolling back transactions only partially. I am unaware of any previous research that discusses such
a system.

Interested readers my find the source code of my implementation under
/home/mercury/bmellor/honours/mercury, on the departmental servers. This directory
contains a full CVS checkout of the Mercury system, with my changes applied. My implement-
ation is not at the time of writing stable enough to be incorporated into the main Mercury
codebase, but I intend to do the necessary cleanup work and submit it to the Mercury team in
the near future.

With a moderate amount of further work, as outlined in the previous section, and some general
optimisation of the system, I believe this system could be a practical alternative to lock-based
synchronisation for many applications. There are, of course, a number of avenues for further
research.

Given that the ideal characteristics of an STM system are workload dependent, adaptively
altering those characteristics at runtime is a promising idea. I have tried to design my system so
that little modification would be required to support this (for example, the contention manage-
ment interface potentially supports dynamic adaptation of access visibility and conflict resolution
policies), but suitable heuristics need to be investigated.

Contention management policies are an obvious area for future work. Besides implementing
policies proposed by existing research, there is scope for new policies to be developed. In particular,
most research into contention management has been done in the context of imperative languages
such as C/C++ or Java. Mercury programs have significantly different characteristics to those
assumed by this research, and there may well be different possibilities and requirements for good
contention management in a Mercury STM system. This needs exploration.

The checkpoint system presents opportunities for further research. As implemented, they do
not seem to be terribly helpful, but with further extensions (such as those possible if the execution
of transactions were based on continuations) there are many possibilities here. Heuristics for the
automatic creation of checkpoints (at runtime or compile-time) could be investigated. Another
possibility may be checkpoint-aware contention managers — can some approximation of “abort

31

the transaction that will lose the least work” be efficiently implemented?
I suspect some form of profiling feedback could be very useful. If profiling could identify

which transactions are likely to abort, which ones are likely to be read-only, which variables cause
the most conflicts, etc, then there is the possibility of fine-tuning various policies based on this
data. One example might be to attempt to insert checkpoints after strings of likely-uncontended
accesses before accessing a variable that is often contended. Mercury contains a deep profiler[2],
which could potentially be used to collect some of this information, but at present it does not
support programs that make use of exceptions, and so will not work for STM programs. It is
likely though that collecting data to be used to estimate the answers to questions such as “which
transactions are likely to abort?” would benefit from having the code compiled in a closer form to
the release version than a version compiled for general profiling, to minimise the effect of different
timing characteristics on abort rates. Exactly what profiling data would be useful and what could
be done with it would be an interesting area for further research.

Further research into the transactional model itself will also play an important role in de-
termining how widely it is adopted. The composability of transactions is often claimed as their
greatest advantage over lock-based synchronisation, but this advantage is often overstated. While
transactions themselves can be easily composed, logical units of code implemented using transac-
tions often cannot be composed. This is due to the way the transactional model forces code to be
refactored so that irreversible actions such as I/O are performed outside transactions; the natural
way to deal with this is to write procedures that encapsulate a transaction accessing shared data
together with related I/O actions. But now this combined procedure cannot be called from within
a transaction, and there is no way to combine two such procedures into an atomic procedure with
the effect of both — exactly the same problem that was cited for locks in section 2.2! One partial
way of addressing this problem is to allow transactions to request inevitability, a guarantee by the
system that the transaction cannot abort, which is only granted to one transaction at a time. Such
a transaction can safely perform irreversible operations, including I/O. A more radical idea is the
TIC (Transactions with Isolation and Cooperation) model[22], which allows transactions to break
the normal transactional model in ways that are not safe in general, but in a disciplined manner
that directs the programmer’s attention to the places that need special care, and prevents such a
loss of safety from being introduced accidentally (this is similar in spirit to Mercury’s treatment of
impurity). I believe that some such extensions will be necessary for software transactional memory
to achieve its promises, but it is not yet known which extensions are useful.

Beyond the STM system itself, there is the matter of data structures. STM implementations
that work on the basis of memory words transparently work on existing data structures. Systems
(such as my implementation) that use explicit transaction variables, while being more flexible in
terms of allowing the programmer to determine the granularity of sharing, require new data struc-
tures to be developed making this granularity of sharing explicit in the form of where transaction
variables appear. As an example, suppose a list of items needs to be shared. Should the data type
used be stm_var(list(T)), list(stm_var(T)), or stm_var(list(stm_var(T)))? Manipulating
such lists may be awkward, and involve the re-implementation of many standard list operations to
work on lists of transaction variables instead. More complicated data structures have even more
possibilities for corresponding transactional versions. How much of the process of re-implementing
them for use with transactions can be automated? Developments in this area could greatly enhance
the usability of software transactional memory.

8 Acknowledgements
I would like to thank my supervisor, Zoltan Somogyi, for all his support, even when I didn’t make
effective use of it. Thanks also to Leon Mika for breaking the ground before my work.

32

A Continuation-based Write and Commit
In section 6.4, I showed a comparison of pseudo-code for the exception-based and continuation-
based versions of read_stm_var. Since they are so similar, I did not explicitly show the corres-
ponding pseudo-code for write_stm_var and commit in the main body of my report. I do so
here, for interest’s sake, since there are small but significant differences that may be more fully
appreciated directly.

Algorithm 9 Writing transaction variables with continuations
write_stm_var(TVar, Value, !STM) :-

try_write_stm_var(TVar, Result, !STM),
(

Result = ok
;

Result = abort(Checkpoint),
throw(stm_exc_abort(Checkpoint))

).

=⇒

write_stm_var_cont(TVar, Value, NormCont, Output, !STM) :-
try_write_stm_var(TVar, Result, Output, !STM),
(

Result = ok,
NormCont(Output, !STM)

;
Result = abort(AbortCont),
AbortCont(Output, !STM)

)

Algorithm 10 Committing with continuations
commit(!STM) :-

try_commit(Result, !STM),
(

Result = ok
;

Result = abort(Checkpoint),
throw(stm_exc_abort(Checkpoint))

).

=⇒

commit_cont(ReturnCont, Output, !STM) :-
try_commit(Result, !STM),
(

Result = ok,
ReturnCont(Output)

;
Result = abort(AbortCont),
AbortCont(Output, !STM)

)

33

B Code Comparison of the Prototype and the New STM
System

To demonstrate the difference between my system and the prototype implementation, as well as
to permit a glimpse of the full complexities I have glossed over in the descriptions in my report
proper, I present here in full the “top layer” code needed to implement a simple example transaction
in both systems. Here “top layer” refers to the wrapper code that the rest of the program calls,
and which calls the code for the body of the transaction. The “bottom layer” would be the
internal implementation of read_stm_var, validate, etc, which I do not attempt to present here.
Predicates that are undefined in both sets of code are implemented by C code with access to the
STM support code in the runtime.

The code shown for my system can be found on the departmental servers,
in the file /home/mercury/bmellor/honours/mercury/library/stm.m, which con-
tains the STM library module. The files containing the STM support code in the
runtime are mercury_stm.h, mercury_stm_types.h, and mercury_stm.c, all found in
/home/mercury/bmellor/honours/mercury/runtime/.

The predicate used for this example is the transfer predicate from the bank account example,
implemented in terms of two assumed predicates withdraw and deposit:

:- pred transfer(int::in, stm_var(account)::in, stm_var(account)::in,
io::di, io::uo) is cc_multi.

transfer(Amount, AccountA, AccountB, !IO) :-
atomic [outer(!IO), inner(!STM)] (

withdraw(Amount, AccountA, !STM),
deposit(Amount, AccountB, !STM)

).

From this, the prototype system produces the following code, all generated by the compiler. I
have taken this example directly from the appendix of Leon Mika’s honours report[15].

:- pred transfer(int::in, stm_var(account)::in, stm_var(account)::in,
io::di, io::uo) is cc_multi.

transfer(Amount, AccountA, AccountB, IO0, IO) :-
’StmExpanded_toplevel_transfer_5_1_2’(Amount, AccountA, AccountB,

IO0, IO).

:- pred ’StmExpanded_toplevel_transfer_5_1_2’(stm_var(account)::in,
stm_var(account)::in, int::in, io::di, io::uo) is cc_multi.

’StmExpanded_toplevel_transfer_5_1_2’(AccountA, AccountB, Amount,
IO0, IO) :-

’StmExpanded_rollback_transfer_3_1_0’(AccountA, AccountB, Amount),
IO = IO0.

34

:- pred ’StmExpanded_rollback_transfer_3_1_0’(int::in,
stm_var(account)::in, stm_var(account)::in) is cc_multi.

’StmExpanded_rollback_transfer_3_1_0’(Amount, AccountA, AccountB) :-
promise_pure (

impure stm_create_transaction_log(STM0_Aux_1),
Closure_Aux_3 = ’StmExpanded_wrapper_transfer_6_1_1’(Amount,

AccountA, AccountB),
unsafe_try_stm(Closure_Aux_3, ExceptionResult_Aux_4,

STM0_Aux_1, STM_Aux_2),
(

ExceptionResult_Aux_4 = exception(ExceptUnivVar_Aux_6),
(

RollbackExcpt_Aux_12 = rollback_invalid_transaction,
type_to_univ(UnivPayload_Aux_11, ExceptUnivVar_Aux_6),
UnivPayload_Aux_11 = RollbackExcpt_Aux_12

->
impure stm_discard_transaction_log(STM_Aux_2),
’StmExpanded_rollback_transfer_3_1_0’(Amount, AccountA,

AccountB)
;

(
RollbackExcpt_Aux_10 = rollback_retry,
type_to_univ(UnivPayload_Aux_9, ExceptUnivVar_Aux_6),
UnivPayload_Aux_9 = RollbackExcpt_Aux_10

->
impure stm_lock,
impure stm_validate(STM_Aux_2, ValidResult_Aux_8),
(

ValidResult_Aux_8 = stm_transaction_valid,
impure stm_block(STM_Aux_2)

;
ValidResult_Aux_8 = stm_transaction_invalid,
impure stm_unlock

),
impure stm_discard_transaction_log(STM_Aux_2),
’StmExpanded_rollback_transfer_3_1_0’(Amount,

AccountA, AccountB)
;

impure stm_lock,
impure stm_validate(STM_Aux_2, ValidResult_Aux_7),
impure stm_unlock,
(

ValidResult_Aux_7 = stm_transaction_valid,
rethrow(ExceptionResult_Aux_4)

;
ValidResult_Aux_8 = stm_transaction_invalid,
’StmExpanded_rollback_transfer_3_1_0’(Amount,

AccountA, AccountB)
)

)
)

;
ExceptionResult_Aux_4 = succeeded(DummyResult_Aux_5)

)
).

35

:- pred ’StmExpanded_wrapper_transfer_6_1_1’(int::in,
stm_var(account)::in, stm_var(account)::in, stm_dummy_output::out,
stm::di, stm::uo) is cc_multi.

’StmExpanded_wrapper_transfer_6_1_1’(Amount, AccountA, AccountB,
Stm_ResultVar, STM0, STM) :-

withdraw(Amount, AccountA, STM0, V_17),
deposit(Amount, AccountB, V_17, STM),
Stm_ResultVar = stm_dummy_output,
promise_pure (

impure stm_lock,
impure stm_validate(STM, Stm_Expand_IsValid_Aux_0),
(

Stm_Expand_IsValid_Aux_0 = stm_transaction_valid,
impure stm_commit(STM),
impure stm_unlock

;
Stm_Expand_IsValid_Aux_0 = stm_transaction_invalid,
impure stm_unlock,
Stm_Expand_Rollback_Aux_1 = rollback_invalid_transaction,
throw(Stm_Expand_Rollback_Aux_1)

)
).

In my implementation, the code corresponding to the transfer predicate is as follows. This
code must be written by hand at the moment, but it can be seen that it would be quite easy to
mechanise this so that the compiler implements atomic scopes in terms of the new system instead
of the prototype.

:- pred transfer(int::in, stm_var(account)::in, stm_var(account)::in,
io::di, io::uo) is det.

transfer(Amount, AccountA, AccountB, !IO) :-
promise_pure (

impure impure_atomic_transaction(transfer_body(Amount, AccountA,
AccountB), _, !IO)

).

:- impure pred transfer_body(int::in, stm_var(account)::in,
stm_var(account)::in, {}::out) is cc_multi.

transfer_body(Amount, AccountA, AccountB, {}) :-
impure get_stm_state(STM0),
withdraw(Amount, AccountA, STM0, STM1),
deposit(Amount, AccountB, STM0, STM1),
commit(STM1, STM),
impure set_stm_state(STM).

As can be seen, only a small amount of code needs to be generated for each atomic scope in
the new system. The rest of the “scheduling” logic is in higher order library predicates, shown
below.

36

:- impure pred impure_atomic_transaction(impure pred(T), T, io, io).
:- mode impure_atomic_transaction(in(pred(out) is cc_multi), out, di, uo)

is cc_multi.

impure_atomic_transaction(Closure, Output, !IO) :-
some [!STM] (

impure get_stm_state(!:STM),
init_transaction(!STM),
impure top_level_transaction(Closure, Output),
end_transaction(!STM),
impure finalise_stm_state(!.STM)

).

:- impure pred top_level_transaction(impure pred(T), T).
:- mode top_level_transaction(in(pred(out) is cc_multi), out) is cc_multi.

top_level_transaction(Closure, Output) :-
impure get_stm_state(STM0),
start_transaction(STM0, STM1),
impure set_stm_state(STM1),
(try []

impure checkpoint_goal(Closure, Output)
then

true
catch stm_exc_retry ->

impure rollback_to_top,
impure top_level_transaction(Closure, Output)

catch stm_exc_abort(_) ->
impure rollback_to_top,
impure top_level_transaction(Closure, Output)

).

:- impure pred checkpoint_goal(impure pred(T), T).
:- mode checkpoint_goal(in(pred(out) is cc_multi), out) is cc_multi.

checkpoint_goal(Closure, Output) :-
some [!STM] (

impure get_stm_state(!:STM),
stm_create_checkpoint(Checkpoint, !STM),
(try []

impure Closure(Output)
then

stm_mark_checkpoint_inactive(Checkpoint, !STM),
impure set_stm_state(!.STM)

catch stm_exc_abort(Checkpoint) ->
rollback_to_checkpoint(Checkpoint, !STM),
impure set_stm_state(!.STM),
impure checkpoint_goal(Closure, Output)

)
).

37

References
[1] The Mercury Language Reference Manual. Technical report, Department of Computer Science

and Software Engineering, University of Melbourne, Melbourne, Australia, 2009.

[2] Thomas C. Conway and Zoltan Somogyi. Deep profiling: engineering a profiler for a declarat-
ive programming language. Technical report, Department of Computer Science and Software
Engineering, University of Melbourne, Melbourne, Australia, 2001.

[3] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Proceedings of the 20th
International Symposium on Distributed Computing, 2006.

[4] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Toward a theory of transactional
contention managers. In Proceedings of the 24th Symposium on Principles of Distributed
Computing, 2005.

[5] Rachid Guerraoui and Michal Kapalka. On the correctness of transactional memory. In
Proceedings of the 13th Symposium on Principles and Practice of Parallel Programming, 2008.

[6] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Composable memory
transactions. Technical report, Microsoft Research, 2006.

[7] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing memory trans-
actions. In Proceedings of the 2006 Conference on Programming Language Design and Imple-
mentation, pages 14–25, New York, NY, 2006.

[8] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13:124–149, 1993.

[9] Maurice Herlihy, J. Eliot, and B. Moss. Transactional memory: Architectural support for
lock-free data structures. In Proceedings of the 20th International Symposium on Computer
Architecture, pages 289–300, 1993.

[10] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization:
Double-ended queues as an example. In Proceedings of the 23rd International Conference
on Distributed Computing Systems, pages 522–529, 2003.

[11] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Software trans-
actional memory for dynamic-sized data structures. In Proceedings of the 22nd annual sym-
posium on Principles of distributed computing, pages 92–101, New York, NY, 2003. ACM.

[12] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems, 12:463–
492, 1990.

[13] William N. Scherer III and Michael L. Scott. Advanced contention management for dynamic
software transactional memory. In Proceedings of the 24th annual ACM symposium on Prin-
ciples of Distributed Computing, pages 240–248, New York, NY, 2005. ACM.

[14] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David Eisenstat,
William N. Scherer III, and Michael L. Scott. Lowering the overhead of nonblocking software
transactional memory. Technical report, Department of Computer Science, University of
Rochester, 2006.

[15] Leon Mika. Software transactional memory in Mercury. Technical report, Department of
Computer Science and Software Engineering, The University of Melbourne, 2007.

[16] Christos H. Papadimitriou. The serializability of concurrent database updates. Journal of
the ACM, 26(4):631–653, 1979.

38

[17] Torvald Riegel, Pascal Felber, and Christof Fetzer. A lazy snapshot algorithm with eager
validation. In Proceedings of the 20th International Symposium on Distributed Computing),
pages 284–298, 2006.

[18] Torvald Riegel, Christof Fetzer, and Pascal Felber. Time-based transactional memory with
scalable time bases. In Proceedings of the 19th Symposium on Parallel Algorithms and Archi-
tectures, pages 221–228, New York, NY, 2007.

[19] Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-class polymorphic de-
limited continuations by a type-directed selective CPS-transform. In Proceedings of the 14th
International Conference on Functional Programming, pages 317–328, New York, NY, 2009.

[20] Bratin Saha, Ali reza Adl-tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin
Hertzberg. McRT-STM: a high performance software transactional memory system for a
multi-core runtime. In Proceedings of the 11th Symposium on Principles and Practice of
Parallel Programming, pages 187–197, 2006.

[21] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the 14th
Symposium on Principles of Distributed Computing, pages 204–213, New York, NY, 1995.

[22] Yannis Smaragdakis, Anthony Kay, Reimer Behrends, and Michal Young. Transactions with
isolation and cooperation. In Proceedings of the 22nd annual ACM SIGPLAN conference on
Object-oriented programming systems and applications, pages 191–210, New York, NY, 2007.
ACM.

[23] Michael F. Spear, Luke Dalessandro, Virendra J. Marathe, and Michael L. Scott. A compre-
hensive strategy for contention management in software transactional memory. In Proceedings
of the 14th Symposium on Principles and Practice of Parallel Programming, pages 141–150,
New York, NY, 2009.

[24] Michael F. Spear, Virendra J. Marathe, William N. Scherer III, and Michael L. Scott. Conflict
detection and validation strategies for software transactional memory. In Proceedings of the
20th International Symposium on Distributed Computing, 2006.

[25] Peter Wang. Parallel Mercury. Technical report, Department of Computer Science and
Software Engineering, The University of Melboure, 2006.

[26] Rui Zhang, Zoran Budimlić, and William N. Scherer III. Commit phase in timestamp-based
STM. In Proceedings of the 20th Annual Symposium on Parallelism in Algorithms and Ar-
chitectures, pages 326–335, New York, NY, 2008.

39

	Introduction
	Background
	Mercury
	Lock-based Synchronisation
	Software Transactional Memory
	Conflict Detection and Acquire Strategies
	Blocking and Alternatives in Transactional Code

	The Original Prototype STM System
	Non-blocking STM
	Consistency Without Locks
	Validation
	The Commit Phase

	Data Layout

	Partial Roll-back with Checkpoints
	Impure STM Goals
	Limitations of the Checkpoint System

	Planned Future Extensions
	Access Visibility
	Eager Acquire
	Contention Management
	Transaction Execution and Roll-back by Continuation Passing
	Application-specific Settings

	Conclusion
	Acknowledgements
	Continuation-based Write and Commit
	Code Comparison of the Prototype and the New STM System

