
S KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT TOEGEPASTE WETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA
Celestijnenlaan 200A — B-3001 Leuven

Compile-Time Garbage Collection

for the Declarative Language Mercury

Promotoren :

Prof. Dr. ir. M. BRUYNOOGHE

Prof. Dr. ir. G. JANSSENS

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de toegepaste wetenschappen

door

Nancy Mazur

May 2004

S KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT TOEGEPASTE WETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA
Celestijnenlaan 200A — B-3001 Leuven

Compile-Time Garbage Collection

for the Declarative Language Mercury

Jury :

Prof. Dr. ir. J. Berlamont, voorzitter

Prof. Dr. ir. M. Bruynooghe, promotor

Prof. Dr. ir. G. Janssens, promotor

Prof. Dr. B. Demoen

Prof. Dr. ir. E. Steegmans

Prof. Dr. ir. A. King

(University of Kent, United Kingdom)

Prof. Dr. ir. Z. Somogyi

(University of Melbourne, Australia)

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de toegepaste wetenschappen

door

Nancy Mazur

U.D.C. 681.3∗D3

May 2004

c©Katholieke Universiteit Leuven – Faculteit Toegepaste Wetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke toe-
stemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2004/7515/45
ISBN 90–5682–505–4

Abstract

One of the key advantages of modern programming languages is that they free
the programmer from the burden of explicit memory management. Usually, this
means that memory management is delegated to the run-time system by the use
of a run-time garbage collector (RTGC). Basically, a RTGC is a dedicated process
that is run in parallel with the user program. Whenever the user program needs
to store some data, the RTGC provides the desired memory space. At regular
intervals, the RTGC reviews the uses of the allocated memory space, and recovers
those memory cells that have become garbage, i.e. , that can not be accessed any
more by the user program.

A complementary form of automatic memory management is compile-time
memory management (CTGC), where the decisions for memory management are
taken at compile-time instead of at run-time. The compiler determines the life-
time of the variables that are created during the execution of the program, and
thus also the memory that will be associated with these variables. Whenever the
compiler can guarantee that a variable, or more precisely, parts of the memory
resources that this variable points to at run-time, will never ever be accessed
beyond a certain program instruction, then the compiler can add instructions to
deallocate these resources at that particular instruction without compromising
the correctness of the resulting code. If the program instruction is followed by
a series of instructions that require the allocation of new memory cells, then the
compiler can replace the sequence of deallocation and allocation instructions, by
instructions updating the garbage cells, hence reusing these cells.

We study the technique of compile-time garbage collection in the context of
Mercury, a pure declarative language. A key element of declarative languages
is that they disallow explicit memory updates (which are common operations in
most other programming paradigms) but they rely instead on term construction
and deconstruction to manipulate the program data. This places a high demand
on the memory management and makes declarative languages a primary target
for compile-time garbage collection. Moreover, the clear mathematical founda-
tions of Mercury, being a pure declarative language, makes the development of
the program analyses that are necessary for CTGC feasible.

i

In this thesis we define a number of semantics for the logic programming
language Mercury and formally establish the equivalence between them; we use
these semantics to formalise the different program analysis steps that are needed
to implement a basic CTGC system for Mercury and prove their safeness. We
extend this basic CTGC system such that it is able to correctly deal with programs
organised into modules and we implement a complete CTGC system within the
Melbourne Mercury Compiler. To the best of our knowledge, this is the first
and only complete CTGC system that has ever been built for a programming
language.

Acknowledgements

As a little girl I was telling everybody I’d be "Dr. Ir. Nancy Mazur" one day,
without having the faintest idea what this meant. Today, a number of years later,
I am proud to say that I have reached this goal, and I do think I can say that I
know what it means now.

I would like to thank my supervisors, Professor Maurice Bruynooghe and Pro-
fessor Gerda Janssens for having given me the opportunity to work on this pro-
ject, for their guidance and confidence, for I surely was not an easy pupil. I thank
the members of my jury, Professor Bart Demoen, Professor Eric Steegmans, Pro-
fessor Andy King and Professor Zoltan Somogyi, for proofreading my work and
providing me with detailed and valuable comments.

Special thanks go to Professor Maurice Bruynooghe and Professor Zoltan So-
mogyi for making my visit to the University of Melbourne possible. I also thank
the members of the Mercury Team for helping me get started with the Melbourne
Mercury compiler. I would like to thank Peter Ross in particular. Without him,
the implementation of my system within the compiler would not have been pos-
sible.

Over the years I have been involved with the graduate course "Methodiek van
de Informatica". The contact with the students and the interesting evolution of
this course made this a valuable and fascinating experience for me. I would like to
thank Professor De Vlaminck and my MI-colleagues for sharing their enthusiasm
for this course with me.

I would like to thank the many colleagues at the department making it such
an interesting place to work. Special thanks go to Denise Brams, Karin Michiels,
Margot Peeters, Esther Renson and Lieve Swinnen for their daily assistance in
all these small yet necessary administrative tasks in which I’d be hopelessly lost.
Thanks also to our system administrators for making it all work.

Furthermore, I would like to thank Marc Denecker and Jacques Riche. It was
a pleasure sharing an office with you during my first year at the department,
and I still remember our fascinating yet sometimes endless ;-) discussions about
Logic Programming and The World in general. Dear Wim Vanhoof and Sofie
Verbaeten, I think we can proudly say that our little L.00.10 office was the best

iii

office ever. You made it happen. Thanks! Wim, our working trip to Australia
wouldn’t have been that fantastic if not with a travel mate like you. Moreover,
even at your busiest moments, you’d always have time for discussion and extra
encouragements. For all that and more, thank you.

Beloved friends, I know that in days of stress I can always count on you. Jo
and Barbara, Joris and Isobel, Raf and Lucie: you are great cooks! And I hope
we can continue our tradition for many other years. Wim, Nico and Siska, Dieter,
Stefan, Veerle (and Bandy), Raf, Luk and Hilary, Bart and Sandra, you adopted
me in your group and rewarded me with a great feeling of friendship. Thank
you. Polien, Patricia, Natasja, Sofie, you’re great young moms, and it is always
fascinating to discuss all possible baby-kids-issues with you.

Dear Kurt and our little Hannah, thank you for your love and incredible pa-
tience. Davidek i Kristien, kochana oma, dzięki. Ela i Stasio, Mama i Papa, wiem
że was nie mogłam dziękowac, ale znacze piosenkę “Róbmy swoje”, i dla tego:
dzięki, tak sobie.

Nancy Mazur
May 2004

Contents

Abstract i

Acknowledgements iii

Table of Contents v

Nomenclature x

1 Introduction 1
1.1 Memory Management . 1
1.2 An intuitive example . 3
1.3 Liveness Analysis . 6
1.4 Reuse Decisions . 7
1.5 Modules . 8
1.6 Versions . 8
1.7 Mercury . 9
1.8 Goal . 9
1.9 Overview of the Thesis . 10

2 Technical Background 13
2.1 Sets, Partially Ordered Sets, Complete Lattices 13
2.2 Logic Programming . 14
2.3 Variable Substitutions . 15
2.4 Existentially Quantified Term Equations 15

3 Mercury 21
3.1 Predicate Clauses . 22
3.2 Type Declarations . 23
3.3 Mode Declarations . 25

3.3.1 Specialised Unifications . 27
3.3.2 Selection Strategy . 27
3.3.3 Unique modes. 29

v

3.4 Determinism Declarations . 30
3.5 Modules . 31
3.6 Higher-Order Language Features . 31
3.7 Special Features . 33
3.8 The Melbourne Mercury Compiler 33

3.8.1 Compilation Scheme . 33
3.8.2 Interface Files . 34
3.8.3 Term Representation . 35
3.8.4 Run-Time Garbage Collector 36

3.9 Conclusion . 37

4 Core Mercury Syntax 39
4.1 Language Definition . 39
4.2 Implicit Information . 41

4.2.1 Program Point and Execution Path 41
4.2.2 Type Information . 44
4.2.3 Mode Information . 44
4.2.4 Determinism Information . 45

4.3 Simple Mercury . 47

5 Mercury Semantics 49
5.1 Introduction . 50

5.1.1 Abstract Interpretation . 50
5.2 Denotational Abstract Interpretation 51

5.2.1 Goal-(in)dependent Semantics 54
5.2.2 Mercury Semantics . 55

5.3 Simple Semantics . 56
5.3.1 Semantics: Terminology and Notation 56
5.3.2 Goal-Dependent Semantics SemS 59
5.3.3 Concrete Goal-Dependent Semantics 66
5.3.4 Precision of the Concrete Semantics 68
5.3.5 Well Definedness . 71
5.3.6 Possible Implementation . 72
5.3.7 Safe Abstract Goal-Dependent Semantics 72

5.4 Goal-Dependent Semantics SemM 74
5.5 Towards Goal-Independent Based Semantics 78
5.6 Differential Semantics . 80

5.6.1 Conditional Equivalence . 83
5.6.2 Concrete Differential Semantics 88
5.6.3 Abstract Differential Semantics, Relative Precision 90
5.6.4 Implementation Issues . 91

5.7 Goal-Independent Based Semantics 91
5.7.1 Equivalence . 94

5.7.2 Implementation Issues . 98
5.8 Adding Pre-Annotations . 98

5.8.1 Implementation Issues . 100
5.9 Overview of the different semantics 100
5.10 Mercury with Modules . 103
5.11 Conclusion . 104

6 Data Structure Sharing 105
6.1 Motivation . 105
6.2 Types, Terms, and Subterms . 106
6.3 Concrete Domain for Structure Sharing 114

6.3.1 From Data Structure to Collecting Sharing Sets 115
6.3.2 Operations . 117
6.3.3 Ordering . 119
6.3.4 Instantiated Concrete Semantics 120

6.4 An Abstract Domain for Structure Sharing 127
6.4.1 Additional Operations . 133
6.4.2 Instantiated Auxiliary Functions 133

6.5 The Analysis System . 140
6.6 Related Work . 140
6.7 Conclusion . 141

7 In Use Information 143
7.1 Introduction . 143
7.2 Forward Use . 145
7.3 Backward Use . 146

7.3.1 Basic Denotational Definition 147
7.3.2 Instantiations for bu . 151

7.4 Analysis Based Backward Use . 153
7.5 Related Work and Conclusion . 156

8 Liveness Information 161
8.1 Introduction . 161
8.2 Data Structures as Lattices . 162

8.2.1 Concrete Data Structures . 162
8.2.2 Abstract Data Structures . 166

8.3 Concrete Liveness . 168
8.3.1 Operations, Ordering . 173
8.3.2 Augmented Natural Semantics 174

8.4 Abstract Liveness . 179
8.4.1 Operations, Ordering . 180
8.4.2 Abstract Instantiation of the Augmented Semantics 180
8.4.3 Safe approximation . 181

8.5 Increased Precision by Differential Semantics 184
8.6 Related Work . 187
8.7 Conclusion . 187

9 Reuse Analysis 189
9.1 Structure Reuse, Terminology . 189
9.2 Prototype Description . 193

9.2.1 Forward Use, Backward Use 195
9.2.2 Abstract Liveness Descriptions 195
9.2.3 Liveness Analysis . 196
9.2.4 Reuse Analysis . 196

9.3 Benchmark: labelopt . 196
9.3.1 Code Structure and Potential Reuses 197
9.3.2 Identified reuses . 199
9.3.3 Undetected Possibilities of Direct Reuse 200

9.4 Prototype Evaluation . 202
9.5 Conclusion . 204

10 Module-enabled Structure Reuse Analysis 205
10.1 Introduction . 205
10.2 Modular Liveness Analysis . 208
10.3 Modular Reuse Analysis . 211

10.3.1 Detection of Reuse Opportunities 211
10.3.2 Generating Reuse Versions 212
10.3.3 Safe Calls to Reuse Versions 212
10.3.4 Reuse Information: Direct Reuse 214
10.3.5 Reuse Information: Indirect Reuse 225

10.4 Putting it all together . 229
10.5 Prototype Implementation . 232

10.5.1 Liveness Definition . 232
10.5.2 Default Liveness Analysis . 233
10.5.3 Implementation Details . 234
10.5.4 Benchmarks and Results . 235

10.6 Conclusion . 240

11 Practical Aspects 241
11.1 Reuse decisions . 241

11.1.1 Simplified Approach . 243
11.1.2 Constructing Graphs . 245
11.1.3 Related Work . 249

11.2 Enhancing the Structure Sharing Precision 250
11.3 Widening Structure Sharing . 251

11.3.1 T-selectors . 253

11.3.2 Equivalence classes for t-selectors 255
11.3.3 Data Structures, Sharing Sets and their Operations 256
11.3.4 Widening . 258
11.3.5 Implementation Issues . 259

11.4 Non-local Reuse: Cell Cache . 259
11.5 Conclusion . 260

12 Benchmarks 261
12.1 Implementation Details . 261
12.2 Benchmarks Setting . 264
12.3 Toy benchmarks . 265
12.4 Ray Tracer, Take I . 266

12.4.1 Description . 266
12.4.2 Results . 266
12.4.3 Observations . 267
12.4.4 Conclusion . 268

12.5 Ray Tracer, Take II . 269
12.5.1 Description . 269
12.5.2 Results . 269
12.5.3 Basic Observations . 271
12.5.4 Cell Caching . 271
12.5.5 Time Profiling . 272
12.5.6 Type Widening . 274
12.5.7 Structure Reuse in the Mercury Standard Library 274
12.5.8 Conclusion . 275

12.6 Finite Domain Solver . 275
12.6.1 Description . 276
12.6.2 Results . 277
12.6.3 Overall Reuse . 278
12.6.4 Clean CLP-formulation . 278
12.6.5 Limiting the Reuse Opportunities 281
12.6.6 Deterministic Versus Non-deterministic code 281
12.6.7 Conclusion . 281

12.7 Discussion and Further Improvements 282
12.8 Conclusion . 285

13 Optimisation Derivation System 287
13.1 Introduction . 287
13.2 Concrete and Abstract Domains . 290
13.3 Intuitive Example . 292
13.4 Optimisation Derivation System . 297

13.4.1 Basic Components . 297
13.4.2 Basic Framework . 300

13.4.3 Variation . 303
13.4.4 Notions of Correctness . 303

13.5 Increased Precision . 306
13.6 CTGC reformulated . 306
13.7 Discussion . 310
13.8 Related Work . 312
13.9 Conclusion . 314

14 Conclusion 315

A Source code: labelopt 321

B Details of the ICFP2000 benchmark 327

Bibliography 335

Biography 345

Nederlandse Samenvatting i
1 Inleiding . ii
2 Intuïtief Voorbeeld . iv
3 Mercury . vii
4 Mercury Semantiek . viii
5 Geheugenstructuren . xii
6 Basis Analyses . xiv
7 Module-gebaseerd Geheugen Herbruik xvii
8 Implementatie en Experimenten . xx
9 Optimalisatie Raamwerk . xxi
10 Aanverwant Onderzoek . xxii
11 Besluit . xxiii

Nomenclature

Domains
AL Domain of abstract liveness descriptions where AL is equi-

valent to 〈℘(SDVI), ℘(DVI)〉, page 180
〈AL,val〉 Ordering in AL, page 180
〈X,vX ,tX ,uX ,⊥X ,>X〉 Complete lattice X, page 14
〈X,⊆X ,∪X ,∩X ,⊥X ,>X〉 Complete lattice X, page 14
CL Concrete domain of collecting liveness descriptions, i.e., CL =

℘(〈Eqn+, ℘(SDVI), ℘(DVI)〉), page 173
〈CL,vcl〉 Ordering in CL, page 174
DVI Set of abstract data structures of the variables in VI, page 129
DVI Set of context-free data structures of the variables in VI, page 115
DX Set of abstract data structures of X, page 129
DX Set of context-free data structures of X, page 115
〈Eqn+,DVI〉 Concrete domain of data structures, page 115
〈Eqn+, ℘(SDVI), ℘(DVI)〉 Concrete domain of liveness descriptions, page 173
〈Eqn+, ℘(SDVI)〉 Set of sharing sets over the variables VI, page 116
〈Eqn+, ℘(DVI)〉 Concrete domain of data structure sets, page 163
Eqn+ Set of solvable existentially quantified ex-equations, page 16
Eqn Set of existentially quantified ex-equations, page 16
〈Eqn+, |=〉 Ordering of existentially quantified ex-equations, page 16
Σ Finite set of function symbols, page 14
℘(DVI) Domain of abstract data structure sets, page 166
〈℘(DVI),vad〉 Ordering in ℘(DVI), page 167
〈℘(DVI),⊆cd〉 Ordering of (concrete) context-free data structure sets, page 164
℘(〈Eqn+, ℘(DVI)〉) Concrete domain of collecting data structure sets, page 163
〈℘(〈Eqn+, ℘(DVI)〉),vcd〉 Ordering of (concrete) collecting data structure sets,

page 164
〈℘(〈Eqn+, ℘(SDVI)〉),vc〉 Ordering in ℘(〈Eqn+, ℘(SDVI)〉), page 120
℘(〈Eqn+, ℘(SDVI)〉) Set of collecting sharing sets over VI, page 117
Pos The domain of positive boolean equations, page 73

xi

Pos⊥ Domain Pos extended with false, page 73
Π Finite set of predicate symbols, page 14
℘(SDVI) Set of sets of abstract sharing pairs over VI, page 129
〈℘(SDVI),va〉 Ordering in ℘(SDVI), page 130
〈℘(SDVI),⊆c〉 Ordering in ℘(SDVI), page 119
〈RI ,�r 〈 Ordering inRI , page 230
RI Reuse information domain where RI is the shorthand nota-

tion for ℘(
〈〈
℘(DVI), ℘(DVI), ℘(SDVI)

〉〉
), page 229

SDVI Set of abstract structure sharing pairs over variables in VI,
page 129

SDVI Set of context-free sharing data structures of the variables
VI, page 115

Selector Domain of term/type selectors, i.e., sequences in Σ×N, page 108
TSelector Domain of t-selectors, page 253
ΣT Finite set of type constructors, page 23
T (V , Σ) Set of terms, page 15
T (ΣT ,VT) Set of types, page 23
VT Finite set of type variables, page 23
V Finite set of variables of a logic program, page 14
VI Variables of interest, page 115

Functions, Operations
altclos Alternating closure operation, page 134
altclosi Alternating closure limited to alternating paths of length i,

page 217
altclos>i Alternating closure limited to alternating paths of length > i,

page 217
altclos→, altclos← Directional alternating closure operations, page 217
initc, combc, addc Auxiliary functions in SemM(℘(〈Eqn+, ℘(SDVI)〉)), page 120
det(S) Determinism of a syntactic entity S, page 45
γD Concretisation function mapping abstract data structures onto

sets of concrete data structures, page 168
γL Concretisation function between AL and CL, page 181
γS Concretisation function between the structure sharing do-

mains, page 130
in(S) Input variables to an expression S, page 45
inita, comba, adda Auxiliary functions in SemM(℘(SDVI)), page 135
livea(i, A, L0) Function for the abstract liveness at a program point (i) with

abstract structure sharing A and abstract global liveness L0,
page 180

livea(i, Ag, Al , L0) Improved livea-function, page 185

live(i, 〈e, C〉, L0) Function for the concrete liveness at a program point (i) with
structure sharing description 〈e, C〉 and global liveness L0,
page 171

live(i, 〈e0, C0〉, 〈el,i , Cl,i〉, L0) Improved live-function, page 185
out(S) Output variables to an expression S, page 45
paths(p) Ordered sequence of execution paths of a procedure p, page 42
−→pi The i’th execution path of a procedure p, page 42
pp Program points, e.g. pp(l) – program point of a literal l, pp(g)

– program points within a goal g, pp(p) – program points
within a procedure p, page 42

pre(g), post(g) Preceding/Following program points of goal (g), page 43
pre(i), post(i) Preceding/Following program points of point (i), page 43
(e)|V Restriction of an entity e to the variables in V, page 18
combA→ Relative pseudo-complement generalised w.r.t. the exact com-

bination operation combA, e.g. δa
combA→ δb, page 299

ρ Renaming substitution, page 15
ρX→Y (E) Renaming of E w.r.t. two sets of variables, page 18
ρV1→V2

(E) Renaming of E w.r.t. two sequences of variables, page 18
AL]Ri The liveness information described by AL meets the reuse

information described by Ri, c.f. Equation (10.3), page 215
• Concatenation of selectors, e.g. s1 • s2, page 108
Ct T-selector covering, e.g. s Ct s], page 254
!t Mapping of a t-selector, page 254
Tτ Term tree of a term τ , page 109
type(X, p), type(X) Type of a variable X (in procedure p), page 44
T Gt Type graph of a type t, page 113
T T t Type tree of a type t, page 108
T[k, e] Update a table T with the tuple 〈k, e〉, page 59
Var(a) The variable appearing in a – only applicable to a if a is

known to relate to exactly one variable, page 15
Vars(a) The set of variables appearing in the object a, page 15

Semantics
SemMδ Differential semantics for Mercury, Fig. 5.6, page 81
SemMδ(℘(Eqn+)) Concrete differential semantics for Mercury, page 88
SemMδ+ Augmented Differential Semantics, page 185
SemMδ+(AL) Differential Abstract Liveness Derivation, page 186
SemMδ+(CL) Differential Concrete Liveness Derivation, page 186
SemM• Goal-dependent part based on the goal-independent based

semantics SemM?, Fig. 5.10-5.11, page 93

SemM? Goal-independent semantics of a Mercury rulebase, Fig. 5.8-
5.9, page 92

SemM•+ Augmented goal-independent based semantics (for liveness
analysis), page 209

SemM?p Goal-independent semantics with pre-annotations, Fig. 5.12-
5.13, page 99

SemM•p Goal-dependent part based on the goal-independent based
semantics SemM?p with pre-annotations, Fig. 5.14-5.15, page 99

SemM Natural semantics for Mercury, Fig. 5.4, page 78
SemM(℘(Eqn+)) Concrete goal-dependent semantics for Mercury, page 78
SemM+ Augmented Natural Semantics Section 8.3.2, page 174
SemM+(AL) Abstract Liveness Derivation, page 181
SemM+(CL) Concrete Liveness Derivation, page 175
SemS Natural semantics for Simple Mercury(Fig. 5.1-5.3) , page 65
SemS(℘(Eqn+)) Concrete natural semantics for Simple Mercury, page 67
SemΩ Increased precision optimisation derivation framework, page 306
Semω Optimisation derivation framework for Mercury, page 301
Semω+ Variation on Semω, page 303

Symbols
τ , τ1, . . . Terms, page 15
EC, EC1, EC2, . . . Elements in 〈Eqn+, ℘(SDVI)〉, page 117
ECS, ECS1, ECS2, . . . Elements in ℘(〈Eqn+, ℘(SDVI)〉), page 117
f , g, h Function symbols, page 14
p, q, r Predicates/Procedures, page 14
X, Y, First, . . . Variables, page 14
〈A, L〉 Decomposed abstract liveness description, page 180
AL, AL1, AL2, . . . Abstract liveness descriptions, page 180
∝ Safe approximation, e.g. y ∝ x, meaning that y safely ap-

proximates x, page 53
XsX Abstract data structure, page 128
(X−Y) Abstract sharing pair, page 129
〈e, XsX 〉 Concrete data structure, page 115
ED, ED1, 〈e, D〉, . . . Concrete data structure set, page 163
EDS, EDS1, EDS2, . . . Concrete collecting data structure sets, page 163
〈e, C, L〉 Liveness description with environment e, structure sharing

set C, and current liveness component L, page 173
CL, CL1, CL2, . . . Collecting liveness descriptions, page 173
δm

i Call requirement at a program point i, page 299
〈〈Di , Ui , Ai〉〉 Reuse information tuple, page 215
µ Minimal requirement, page 298

℘(S) Powerset of a set S, page 13
R, R1 Compacted reuse information tuples, page 229
R, R1, R2, . . . Reuse information tuples, page 229
RI, RI1, RI2, . . . Collecting reuse information tuples, i.e., RI ∈ RI , RI1 ∈

RI , . . ., page 229
./ Compatible selectors, e.g. s1 ./ s2, page 110
s], s1

], . . . T-selectors, page 253
a or a1, . . . , an Sequence of elements, page 13
〈e, (XsX −YsY)〉 Concrete sharing pair, page 115
θ,σ Variable substitutions, page 15

Chapter 1

Introduction

1.1 Memory Management

One of the key advantages of modern programming languages is that they free
the programmer from the burden of explicit memory management. Usually, this
means that memory management is delegated to the run-time system by the use
of a so called run-time garbage collector (RTGC). Basically, a run-time garbage col-
lector can be seen as a dedicated process that is run in parallel with the user pro-
gram. Whenever the user program needs to store some information, the RTGC
is asked to provide the desired memory space. At regular intervals, or if the
memory space tends to become full, the RTGC analyses all the data that is stored
in memory: data that is still reachable by the user program is called live, while data
that can definitely not be accessed anymore by the user program is classified as
dead. While live data must carefully be kept, all dead data may safely be deal-
located, and the corresponding memory can be made available for subsequent
allocations.

While this scheme of automatic memory management has reached the big
public mainly by the popular programming language Java and its run-time envir-
onment (Gosling and McGilton 1995), the history of run-time garbage collectors
dates back to LISP, and the development of the so called declarative programming
languages in general. Indeed, in the latter family of programming languages, even
simple destructive updates, which are common operations in the imperative pro-
gramming paradigm, are prohibited. In this context, updating a particular field
within a structure saved in memory means to create a copy of that structure and
update that specific field. This is one of the cornerstones of their declarativeness.
However, updating data this way is time consuming, and more importantly, leads
to large memory consumption, making the need for good memory management
even more important.

1

2 CHAPTER 1. INTRODUCTION

While the run-time system can take care of automatic memory management,
it also has its disadvantages:

• Obviously, a RTGC has an associated cost with respect to execution time
as well as memory space. In extreme cases, such as programs developed
for embedded systems, this form of memory management may have to be
slimmed down or even completely removed.

• The run-time system may not have all the information about the program
at its disposition, and to guarantee the safeness of the deallocations, may
have to overestimate the live data, leading to a larger memory footprint
than (what could have been) expected. Garbage collectors having to act in
such uncooperative environments are called conservative garbage collectors.

• The time between the moment that a particular structure becomes dead,
and the moment where it is deallocated by the garbage collector can be sub-
stantial. This may unnecessarily clutter the memory usage of the program.

• The lack of destructive update in declarative languages makes that — in or-
der to change a value in a data structure — the structure needs to be decon-
structed, and immediately thereafter be reconstructed with only a few val-
ues changed. Rather than deallocating the memory occupied by the former
structure and allocating new memory for the latter structure, the same block
of memory could be (re)used.

As a consequence, even in the presence of garbage collectors, declarative pro-
grammers were taught a bag of tricks allowing to circumvent the lack of destruct-
ive updates. An example is the use of open ended data structures such as differ-
ence lists which are often used in Prolog for the purpose of a better memory be-
haviour. Moreover, declarative languages often include primitive operations or
language constructs allowing some form of direct memory management. A typ-
ical example is the use of assert and retract predicates in Prolog. These predicates
do indeed allow the destructive update of memory blocks, yet these destructive
updates are implemented as side-effects, hence, do not preserve the clean declar-
ative semantics of the program: performing the same query or function twice
may not lead to exactly the same answer. In more recent declarative languages,
in which purity is kept as an essential characteristic of the language, other, more
sophisticated techniques have been developed, the most popular being the use of
so called unique objects (Somogyi, Henderson, and Conway 1996; Bekkers and
Tarau 1995; Wadler 1992), the uniqueness of which are automatically verified by
the compiler.

Whether pure or not pure, sophisticated or not sophisticated, all these ad hoc
techniques and approaches may have the advantage of saving some memory us-
age, yet their use is by definition cumbersome as it does not fit the declarative

1.2. AN INTUITIVE EXAMPLE 3

paradigm where the programmer should not have to worry about memory man-
agement in the first place. This principle has continued to be the driving force of
a large community of researchers to further investigate the potential of run-time
garbage collection, yet it has also led to the interesting and challenging research
area of compile-time garbage collection.

The principle of compile-time garbage collection (CTGC) is to determine at
compile-time when memory blocks become dead during the execution of the pro-
gram. The process is meant to be completely automatic, and relies on program
analysis for determining the dead structures. The goal of a CTGC system is to
downsize the memory usage of a program, reduce the responsibility of the run-
time collector, hence also hopefully its overhead, and perhaps as an end-effect,
reduce the overall execution time of the program.

The dream of compile-time garbage collection has existed since years, yet it is
only recently, with the maturity of program analysis in general, that this dream
could be realised into a complete working system. In this work we realise this
dream in the particular context of the modern logic programming language Mer-
cury.

1.2 An intuitive example

We give a brief sketch of how compile-time garbage collection provides for auto-
matic memory management by the use of a small example. This allows us to
highlight the issues and challenges involved with this technique.

We assume some familiarity with logic programming, although similar situ-
ations can be sketched in other programming languages too.

Consider a predicate that updates the salary of an employee in a database.
If we assume that an employee is simply represented as a term with a list of
arguments consisting of their name, birthday, and salary, then the predicate may
be written as:

updateSalary (EmployeeRecord , NewSalary , NewRecord) :−
EmployeeRecord = employee (Name, Bi r thday , OldSalary) ,
NewRecord = employee (Name, Bi r thday , NewSalary) .

Note that indeed, as we mentioned earlier, a simple update in a pure logic pro-
gramming language consists of creating a new term that serves as a copy of the
original term, with the only difference that one of its fields will have a different
value.

Now assume that the above predicate is part of a larger administrative soft-
ware package, and that at some moment during the execution of that package, a
variable JackRecord is bound to the structured term:

employee (" Jack Newman" , 19490319 , 40000)

4 CHAPTER 1. INTRODUCTION

e/3

e/3

42000

19490319

40000

s

"Jack Newman"

JackRecord

NewSalary

stack heap

EmployeeRecord

(a)

e/3

e/3

42000

19490319

40000

s

"Jack Newman"

e/3
19490319

42000

JackRecord

NewSalary

stack heap

EmployeeRecord

NewRecord

s

(b)

Figure 1.1: Sketch of the call updateSalary(JackRecord, 42000, NewJackRecord), with
JackRecord bound to employee("Jack Newman", 19490319, 40000). Parts (a) and (b)
picture the memory layout before, resp. after the body of the predicate is con-
sidered.

representing the record of an employee named Jack Newman, born on the 19th
of March in 1949, and currently receiving 40000$ a year. Updating his wages can
be achieved by calling the above defined predicate, e.g.,

updateSalary (JackRecord , 42000 , NewJackRecord)

Figure 1.1 sketches the memory layout of that call, before executing the body of
the predicate (a), and right after having executed them (b).

Now suppose that variable JackRecord was the only reference to the old situ-
ation of Jack’s record within the program, then the memory fields representing
that record can be considered as dead which a run-time garbage collector can
deallocate in one of its future cycles. This is depicted in Figure 1.2 (a), where the
dead data is marked using grey boxes with dashed lines. This is how a run-time
garbage collection would behave.

Now what if we were able to detect at compile-time that for some calls of
updateSalary the term associated to the first argument may become dead? Then
we could compile the program to include the low-level instructions which deal-
locate these dead memory cells, or we could push program analysis even further
and try to find possibilities of reusing these dead cells for constructing the new
employee record, hence, producing the low-level instructions to perform the de-
structive update of the initial record. For the run-time process this means that
the deallocation followed by the allocation is replaced by instructions for alter-
ing one simple field, namely the field of the salary of the employee, and copying

1.2. AN INTUITIVE EXAMPLE 5

e/3

42000

"Jack Newman"

e/3
19490319

42000

19490319

40000

JackRecord

NewSalary

stack heap

EmployeeRecord

NewRecord

s

se/3

(a)

e/3

42000

"Jack Newman"

e/3

19490319

42000
40000

JackRecord

NewSalary

stack heap

EmployeeRecord

NewRecord

(b)

se/3

Figure 1.2: (a) After the call, the memory cells of EmployeeRecord become garbage
(shown as grey boxes). (b) Instead of generating garbage, the dead cells can be
reused for creating the new structure bound to NewRecord.

the pointer to the original term to the new variable NewRecord. This situation is
depicted in part (b) of Figure 1.2.

Through this example we can identify the following tasks of a compile-time
garbage collection system:

• Clearly, such a system needs to determine at compile-time when particular
data structures are accessed for the last time, after which they become dead
and thus garbage. This detection can be done using the technique of pro-
gram analysis, and more specifically, abstract interpretation, a technique that
allows to derive run-time properties of programs without actually execut-
ing them. Here, the run-time property of interest is the knowledge about
which data structures are dead, or the dual, which data structures remain
live.

• Using the liveness information, one can thus detect when particular memory
blocks become definitely garbage. It is then the task of the compile-time
garbage collection system to determine what needs to be done with that
garbage: either deallocate it or immediately reuse it?

• Once the compiler knows when data dies in a particular program, and how
it can be reused, then the compiled code of that program should reflect these
decisions and implement the actual memory reuse. In the case of our ex-
ample, this means that for that particular call where the first argument is
not used anymore further in the program, and where we want to reuse the

6 CHAPTER 1. INTRODUCTION

dead data locally, the compiler should generate code that performs a de-
structive update of the input argument.

• The compiler may be able to spot the possibility of a local reuse within
the predicate of the example, yet whether or not the reuse is allowed de-
pends on the caller of that predicate. Hence, the following questions must
be answered:

– Is it interesting to provide a variant of the original predicate that im-
plements the detected memory reuse? Will there be any use for it?

– When can calls to this predicate be replaced by calls to the optimised
version, without compromising the safety of the program? How can
we express the conditions with which we can guarantee this safety?

• Finding an answer to the previous questions becomes even more important
in the presence of modules. Modules are often compiled separately, some
modules may be even part of libraries, and thus pre-compiled w.r.t. the cur-
rent project of the programmer. This means that during the compilation of
one specific module, the compiler may not know how the entities defined
in that module are used by the rest of the program. In our concrete example
of the predicate updateSalary, this means that the compiler needs to detect
that there is some potential of memory reuse of the first argument while
being in some way blind about the way this predicate will be called by the
remainder of the program. Moreover, even if the compiler does detect the
memory reuse potential, how can that information be used?

• A CTGC system is clearly a complex system. Yet, to be usable in a real
compiler, the slow-down of the overall compilation of a program must be
in proportion to the obtained improved memory behaviour.

We give a brief overview of the work that already exists in some of these areas,
then formulate the contribution of this work and finally, present the structure of
this thesis.

1.3 Liveness Analysis

Mulkers (1991) defines live data structure analysis in the context of the logic pro-
gramming language Prolog. It is based on the abstract interpretation framework
of (Bruynooghe 1991) and essentially consists of two parts: a structure sharing
analysis and the actual liveness analysis. The first part is a dedicated analysis that
determines the possible memory sharing that may exist between the terms that
are created during the execution of the program. This notion is not to be confused
with sharing analysis (Bagnara, Zaffanella, and Hill 2005), an analysis whose aim

1.4. REUSE DECISIONS 7

is to detect the sharing of the free variables within the constructed terms. Com-
bining structure sharing information with the information about which variables
are accessed during the forward execution of the program yields the description
of all the memory blocks that this forward execution may possibly access. In
this work backwards execution by means of backtracking is not specifically dealt
with at analysis time. The author relies on the run-time system which must be
enhanced such that memory reuse in the presence of backtracking remains safe.
This means that the trailing mechanism must be adapted. Relying on the run-time
system for this kind of safeness means an extra burden for the run-time system,
reducing the overall win of using a compile-time garbage collector in the first
place. In (Bruynooghe, Janssens, and Kågedal 1997) this problem is alleviated,
and a formulation of the live structure analysis is presented that does explicitly
take non-deterministic execution into account. The essential difference allowing
this move is that in this work the underlying language is considered to be a logic
programming language enriched with type, mode and determinism declarations.
These declarations, absent in pure Prolog, are provided by the programmer as ex-
tra documentation of her/his code, yet at the same time, they allow the compiler
to generate more efficient code. In this case, these declarations can be used as a
form of added precision to the initial work of Mulkers (1991).

In the area of functional programming languages the terminology of escape
analysis or inheritance analysis is often used. The aim of this analysis is the same:
obtain information on positions in a program where certain heap cells become obsol-
ete during execution (Mohnen 1995). Escape analysis allows for detecting which
parts of the input to a function escape to the produced output. The parts that do
not escape can safely be considered as garbage. The theory in (Mohnen 1997) is
presented for a specific artificial and simplified functional language, and the es-
cape information is formulated as a denotational characteristic of the language.
An important aspect of escape information also consists of the sharing informa-
tion between the manipulated data. Oddly enough, the author illustrates the use
of the escape analysis for compile-time garbage collection, yet assumes that in
such a setting, memory reuse is limited to structures which definitely will or can
not share with other structures. Escape analysis has also been used in the context
of object-oriented languages (Hill and Spoto 2002; Blanchet 1998; Blanchet 1999),
yet there the prime intention of the analysis is to allocate objects of which the life-
time is known not to extend the lifetime of a given function on the stack instead
of dynamically allocating them on the heap.

1.4 Reuse Decisions

The knowledge about terms becoming garbage at specific points in a program
can be used in a number of different ways, regardless of the exact programming
paradigm used:

8 CHAPTER 1. INTRODUCTION

• Explicit Deallocation (Hamilton 1995; Hamilton 1993). Here the data is im-
mediately returned to the run-time system as soon as it has been detected
as garbage. This approach is also used in (Hughes 1992), amongst others.

• Destructive Allocation (Hamilton 1995; Hamilton 1993). In this case, garbage
is immediately reused for creating new structures. This approach is for ex-
ample used in (Debray 1993; Gudjonsson and Winsborough 1993).

In (Gudjonsson and Winsborough 1993) the authors go even beyond simple real-
location of the dead data as their goal is to save every possible pointer or field
update.

1.5 Modules

It is only recently that modules have been recognised as an element to be taken
into account for the analysis of logic programs. Indeed, in the presence of mod-
ules, a program analysis system may either ignore the module structure of the
program and analyse the source code stored in these modules as one single mono-
lithic block, or conform to the usual compilation scheme of modules and thus
analyse each module one at a time (Puebla and Hermenegildo 1999b). Obviously,
the disadvantage of the first technique is that the analysis may have to be com-
pletely repeated whenever one of the modules changes. Moreover, the analysis
of large programs may lead to resource problems on its own. These disadvant-
ages are not present in the second compilation scheme. However, the analyses
in such a setting need to be adapted such that they can still perform well in the
absence of the complete source code of the program. Typically the complete lack
of information of the other modules is alleviated by using dedicated interface files
where intermediate analysis results of modules are stored for being used dur-
ing the analysis of modules that depend on them. Depending on the complexity
of the module structure of a program, more sophisticated analysis techniques
may be needed (Bueno, García de la Banda, Hermenegildo, Marriott, Puebla, and
Stuckey 2001; Nethercote 2001).

1.6 Versions

Ideally, a predicate could be optimised for each specific call that can occur at run-
time. If a predicate can be called in n different ways, then this means that poten-
tially n optimised versions of the initial predicate code could be produced. While
this ensures that every call to every predicate is indeed optimised, the effect of
these optimisations may become negligible compared to the size of the obtained
compiled code. This means that in practice a trade-off needs to be found between

1.7. MERCURY 9

the desired degree of program optimisation, and the code size that it may res-
ult in. A classic way of handling such situations is to generate a version for
each particular call of a predicate, and to trim down this set of variants in a later
step (Puebla and Hermenegildo 1999a; Vanhoof and Bruynooghe 1999; Leuschel,
Martens, and De Schreye 1998). Another classic approach is to use some heuristic
with which the analysis system can decide which versions are worthwhile, and
which are not. This problem becomes even more important in the presence of
modules, as in such a setting, the analysis system may not even know how some
of the the entities defined in it are called. In such cases, a pure heuristics-based
approach may be the only solution.

1.7 Mercury

Mercury is a modern logic programming language developed at the university of
Melbourne, Australia (Somogyi, Henderson, and Conway 1996). This language
was introduced with the intention to offer a pure declarative programming lan-
guage — an ideal setting for automatic program transformations, optimisations,
proof constructions, etc, while providing enough modern software engineering
facilities to support the development of large real-world software applications.
Moreover, an implementation of a Mercury compiler should guarantee the gener-
ation of reasonably fast and efficient programs. To meet these design objectives,
Mercury uses a strong mode- and type-system, based on mode-, type- and de-
terminism declarations that the programmer needs to provide for her/his code.
These declarations are not only an essential form of documentation of the code,
they also enable the compiler to perform a number of analyses that verify the
correctness of these declarations, thus spotting a considerable number of bugs
at compile-time. Moreover, these declarations enable the compiler to optimise
and specialise the predicates for each of its declared uses, hence producing more
efficient code. The support for programming in the large manifests itself by a
modern module system using the notions of interfaces and implementations to
distinguish public and private parts of a module.

The ongoing research around and within Mercury is still very active. This
is shown by its involvement (Dowd, Henderson, and Ross 2001) with the .NET
project (Microsoft ; Platt 2003). It also forms an interesting back-end for the con-
straint logic programming system HAL (Demoen, García de la Banda, Harvey,
Marriott, and Stuckey 1999).

1.8 Goal

The goal of this thesis is to develop a complete compile-time garbage collection
system based on the work of (Mulkers 1991), yet covering every aspect needed

10 CHAPTER 1. INTRODUCTION

for such a system as detailed above. The choice of Mercury as a target language
is natural:

• Mercury relies on a good run-time garbage collector, yet given the purity of
the language its memory demands remain high. The language provides the
notion of unique objects (Henderson, Conway, Somogyi, and Jeffery 1996),
but the use of these objects is limited due to a poor support for verifying
their correctness.

• Given the extra declarations, the results of liveness analysis can be expected
to be more precise than in its original setting, namely Prolog. This means
that we can expect more opportunities for memory reuse in the setting of a
compile-time garbage collection system implementing such a liveness ana-
lysis.

• The Mercury compiler available at this moment is mainly written in Mer-
cury itself. This allows for a high-level declarative implementation of the
CTGC system.

The choice of Mercury also brings its own challenges:

• Mercury is not Prolog. This means that the theoretical adaptation of the
initial liveness analysis, and underlying structure sharing analysis, is not
necessarily straightforward.

• Mercury programs are organised in modules, which is a challenge for pro-
gram analysis in general, and for liveness analysis and the reuses one de-
rives from it in particular.

• The CTGC system can be integrated into the Mercury compiler, yet should
not slow down the compilation of the modules to a too great extent. Hence,
the resulting CTGC system, to be usable in practice, must be fast and ef-
ficient, while remaining sufficiently precise to obtain the desired memory
behaviour improvement.

1.9 Overview of the Thesis

In this thesis we define a number of semantics for the logic programming lan-
guage Mercury, for which we use a denotational approach (Marriott, Sønder-
gaard, and Jones 1994). We formally establish the equivalence between these
semantics which enables us to correctly relate analysis results to concrete run-
time properties that they are meant to approximate. We use these semantics to
formalise each of the different analysis steps that are needed in a basic CTGC
system. These analysis steps consist of a structure sharing analysis and liveness

1.9. OVERVIEW OF THE THESIS 11

analysis, inspired by (Mulkers 1991) and adapted to Mercury, followed by a so
called reuse analysis, a new analysis designed to detect the actual memory reuses
within a program.

Mercury programs are organised into modules, hence we extend this basic
CTGC system such that it is able to correctly deal with a modular structure of the
user program. This mainly poses a problem for the reuse analysis step as reuse
can best be decided knowing the full calling context of the analysed predicates,
which is not the case when analysing modules separately. Nevertheless, we suc-
cessfully modularise the reuse analysis process.

At each stage of the formal development of the CTGC system we assess the
feasibility of this system by implementing stand-alone prototypes. The positive
results obtained with these systems motivate the development of a real CTGC
system embedded into an existing compiler. We implement such a system in
the Melbourne Mercury compiler. To the best of our knowledge, this is the first
and only complete CTGC system that has ever been built for a programming
language.

We now describe in some more detail the structure of the thesis.
After starting with some preliminary background in Chapter 2, we introduce

Mercury in Chapter 3 and give it a formal syntax in Chapter 4. Given the differ-
ences between Prolog and Mercury, we define a new basic semantics of Mercury
programs with which to express all the analyses required for our compile-time
garbage collection system. Starting from a natural semantics, we derive a goal-
independent based semantics using pre-annotations. The definition as well as the
proofs of equivalence, are the subject of Chapter 5.

Using these semantics, we define structure sharing analysis for Mercury in
Chapter 6. Chapter 7 describes the (near) syntactic properties of forward use and
backward use. These notions are a key aspect in the definition of live structures.
The reformulation of the liveness analysis is presented in Chapter 8. Chapter 9 in-
troduces the notions of structure reuse, direct reuse, indirect reuse, notions which
are indispensable in the characterisation of the memory reuse possibilities of a
program. In that same chapter we also present some preliminary results of a pro-
totype that estimates the potential of a CTGC system based on liveness analysis.

In Chapter 10 we introduce the notion of modules. While adapting the live-
ness analysis appears to be relatively easy, adapting the characterisations of the
reuse possibilities is much less straightforward, ultimately leading to the notion
of reuse information also called reuse condition which consists of a form of condi-
tion imposed on the calls of predicates to guarantee safe memory behaviour. We
adapt the first prototype. The results are also presented in Chapter 10. Given the
positive results obtained with this new prototype we move onwards, and imple-
ment a complete working CTGC system within the Melbourne Mercury compiler.
The practical aspects leading to this implementation are detailed in Chapter 11.
A number of benchmarks, ranging from small to medium-sized, are studied in

12 CHAPTER 1. INTRODUCTION

Chapter 12.
Finally we describe a first tentative approach to address the problem of char-

acterising optimisations in such a way that more intelligent schemes can be found
for deciding which versions of a specific predicate are worthwhile to generate,
and which not. This is the subject of Chapter 13.

We conclude our work in Chapter 14, where we outline other yet not men-
tioned related research areas as well as interesting possibilities for future work
in this interesting field of compile-time garbage collection for logic programming
languages.

Chapter 2

Technical Background

In this chapter we give a brief overview of some technical background related to
logic programming and its semantics.

2.1 Sets, Partially Ordered Sets, Complete Lattices

Let S be a set, then ℘(S) is used in this thesis to denote the powerset of S. A
sequence over S is an ordered list of elements of S. Sequences are written as:
a1, . . . , an. We use a as a shorthand notation for a particular yet unspecified se-
quence of elements a. The set of finite sequences over S is written S∗.

We use N to denote the set of natural numbers.

A partial order defined for a set S is a binary relation, usually denoted using
a comparison symbol such as ≤, ⊆ or v, that is reflexive, anti-symmetric and
transitive. Thus, using ≤, ∀x, y, z ∈ S: x ≤ x (reflexive), x ≤ y∧ y ≤ x then x = y
(anti-symmetric) and x ≤ y ∧ y ≤ z then x ≤ z. A set S equipped with a partial
order relation, say ≤, is called a partially ordered set (sometimes abbreviated to
poset) and is usually denoted as 〈S,≤〉. A poset 〈S,≤〉 is called a chain if ∀x, y ∈ S,
either x ≤ y or y ≤ x. We say that 〈S,≤〉 has a bottom element if there exists an
element, usually denoted by ⊥, such that ⊥ ∈ S, and ∀x ∈ S : ⊥ ≤ x. Dually, S
has a top elements, denoted by >, if > ∈ S and ∀x ∈ S : x ≤ >. Note that finite
chains always have bottom and top elements.

Two posets 〈X,≤X〉 and 〈Y,≤Y〉 may be related to each other by a function
mapping elements in X to elements in Y. A map φ : X → Y is said to be monotonic
if x1 ≤X x2 implies φ(x1) ≤Y φ(x2). If ⊥X ,>X and ⊥Y ,>Y are the bottom and
top elements of X, resp. Y, then φ is called strict if φ(⊥X) = ⊥Y; it is called
co-strict if φ(>X) = >Y.

Introducing the least upper bound, also called the join operation, and greatest

13

14 CHAPTER 2. TECHNICAL BACKGROUND

lower bound, also called the meet operation, we obtain the notions of lattices and
complete lattices. Using ∨ to denote the least upper bound operation in 〈S,≤〉,
then x∨ y, with x, y ∈ S, is defined as the least element of the set {s | x ≤ s, y ≤ s}.
Dually, the meet of two elements in S, denoted as x ∧ y is defined as the greatest
element of the set {s | s ≤ x, s ≤ y}. Both notions are extended to sets of elements.
Let S′ be a subset of S, then

∨
S′ denotes the least upper bound of the elements in

S′, and
∧

S′ denotes the greatest lower bound of these elements. A poset 〈S,≤〉
is called a lattice if ∀x, y ∈ S both x ∨ y and x ∧ y exist. The poset is called a
complete lattice if all subsets in S have a least upper bound as well as a greatest
lower bound. Complete lattices based on a poset 〈S,≤〉 with least upper bound
∨, greatest lower bound ∧, bottom element ⊥ and top element > are usually
denoted using the tuple 〈S,≤,∨,∧,⊥,>〉. When ⊆ is the underlying ordering,
we usually write 〈S,⊆,∪,∩,⊥,>〉, and with v we use 〈S,v,t,u,⊥,>〉.

Let φ be a map from elements in a complete lattice 〈X,⊆,∪,∩,⊥,>〉 to ele-
ments in a complete lattice 〈Y,v,t,u,⊥,>〉, then φ is said to be continuous if
for all subsets D in X, we have: φ(

⋃
D) =

⋃{φ(x) | x ∈ D}. Usually, the latter
expression is abbreviated to

⋂
φ(D). Complete lattices in which every ascending

chain is finite are called Noetherian. Such domains will be used in the definition
of our formal semantics of the Mercury language.

These notions will be essential when proving the well-definedness of the se-
mantics given for the Mercury language.

For more details we refer the reader to (Davey and Priestley 2002; Nielson,
Nielson, and Hankin 1999).

2.2 Logic Programming

We give a brief overview of the basic elements of logic programming. For more
details we refer the reader to (Lloyd 1987).

The basic alphabet of a logic program consists of a finite set of variables V , a
finite set of function symbols Σ and a finite set of predicate symbols Π. Function
and predicate symbols are associated with an arity, a natural number identifying
the number of arguments the function or predicate symbol has. Function symbols
with arity zero are called constants. We use the following notation:

• uppercase letters, e.g. X or Y, or capitalised words, e.g. First or Tail, are
used for elements from V ,i.e., variables;

• f , g, h denote function symbols;

• p, q usually denote predicate symbols.

If the arity of the function or predicate symbol is of importance, we explicitly
write f /n or p/m to denote the function symbol f or predicate symbol p with
arities n, m ∈ N.

2.3. VARIABLE SUBSTITUTIONS 15

A term is a variable or a compound term f (τ1, . . . , τn) where f /n ∈ Σ and
each argument τi is a term. The set of terms is denoted by T (V , Σ). A term is
usually denoted using the character τ , possibly sub- or superscripted. An atom
is a predicate symbol p/n ∈ Π applied to a sequence of n terms. The predicate
symbol =/2 (usually written in infix notation) is treated in a special way and is
called an explicit unification. We use the notion of expression to refer to either a
term, an atom, or any composition of these elements.

A ground term is a term that does not contain any variables. A ground atom is an
atom not containing any variables. Let a be any syntactic object of the language,
then we use Vars(a) to denote the set of variables occurring in that object. If a is
known to contain at most one variable, then Var(a) is used to denote that variable.

2.3 Variable Substitutions

A substitution θ is a finite mapping from distinct variables to terms: V → T (V , Σ).
As usual (Lloyd 1987), we represent substitutions as:

θ = {X1/τ1, . . . , Xn/τn}

where each Xi 6= τi. Each element Xi/τi is called a binding. θ is called a ground
substitution if each of the terms τi , 1 ≤ i ≤ n is ground.

If E is an expression and θ a substitution, then Eθ is the expression obtained
from E by simultaneously replacing each occurrence of a variable Xi in E by the
term τi, where Xi/τi ∈ θ. Eθ is called an instance of E. We say that θ is applied
to the expression E. If Eθ is ground, then it is called a ground instance of E. We
then say that θ grounds the expression E. These notions are generalised to sets of
expressions.

If θ is the empty set, then it is called the identity substitution.
If E and F are expressions, then E and F are called variants if there exist sub-

stitutions θ and σ such that E = Fθ and F = Eσ . A renaming substitution for
an expression E is a variable pure substitution {X1/Y1, . . . , Xn/Yn} such that
({Y1, . . . , Yn} \ {X1, . . . , Xn}) ∩Vars(E) = { }. Two expressions E and F are equi-
valent up to renaming, written E ∼ F, if Eρ = F for some renaming ρ. The equival-
ence class of E under ∼ is denoted by [E]∼. All the elements in [E]∼ are variants
of each other.

2.4 Existentially Quantified Term Equations

Usually, substitutions are used to represent the computed answers of a logic pro-
gram. In this thesis we choose the domain of constraints to express this informa-

16 CHAPTER 2. TECHNICAL BACKGROUND

tion for the same reasons as Marriott, Søndergaard, and Jones (1994), namely for
the simplicity of expressing and ordering constraints.

Here, variable bindings generated by a logic program are seen as constraints
or so called existentially quantified term equations (Jaffar and Maher 1994; Marriott,
Søndergaard, and Jones 1994; García de la Banda, Marriott, Stuckey, and Sønder-
gaard 1998).

Definition 2.1 (Ex-equation) (Marriott, Søndergaard, and Jones 1994) An ex-equa-
tion is a possibly existentially quantified conjunction of basic equations T1 = T2, where
T1, T2 ∈ T (V , Σ). The conjunction may be empty, in which case we denote it by true.
The set of ex-equations is called Eqn.

Definition 2.2 (Satisfiable, solvable ex-equation) An ex-equation is said to be sat-
isfiable or solvable in the algebraic sense of the word, i.e., if each variable appearing in
the equation can be given a value such that every constraint of the ex-equation is satisfied.

Definition 2.3 (Solved form) An ex-equation e is in solved form if it is satisfiable
and if each of the basic equations is of the form X = t where X ∈ V and t ∈ T (V , Σ).

How to obtain the solved form of an ex-equation is irrelevant for this thesis.
We refer the reader to (Martelli and Montanari 1982) amongst others.

Let Eqn+ ⊆ Eqn be the set of all satisfiable ex-equations in Eqn.

Example 2.1 The following are elements in Eqn:

X = Y X = f (Y) ∧ Z = g(T)
∃Y . X = f (Y) true
X = 1 ∧ X = 2 false

Only the first two rows contain satisfiable ex-equations. The last two constraints are not
in Eqn+.

Definition 2.4 (Ordering in Eqn, Eqn+) The elements of Eqn are ordered by the lo-
gical consequence operator |=.

Two ex-equations e1, e2 ∈ Eqn (or similarly in Eqn+) are called equivalent,
which is written as e1 ≡ e2, iff e1 |= e2 and e2 |= e1. The equivalence class of
an ex-equation e under ≡ is denoted by [e]≡. Partitioning Eqn under this equival-
ence definition, we obtain a complete lattice with [true]≡ as the greatest element
and [false]≡, the equivalence-class of unsatisfiable elements, as the smallest. Par-
titioning Eqn+ in the same way, we obtain that Eqn+ is a partially ordered set
with only a greatest element, namely [true]≡, and no bottom element.

In this text we mainly deal with the equivalence classes of ex-equations, and
therefore we abbreviate our notation, and simply assume that when handling an

2.4. EXISTENTIALLY QUANTIFIED TERM EQUATIONS 17

ex-equation we are in fact handling the equivalence class that the ex-equation is
an element from. Hence, true will be used instead of [true]≡, and in general e is
used instead of [e]≡, ∀e ∈ Eqn or ∀e ∈ Eqn+.

Example 2.2 Let e1 = (X = Y) and e2 = (X = f (Z) ∧ Y = f (Z)) then e2 |= e1.
But also, false |= e |= true, ∀e ∈ Eqn.

The relation between variable substitutions and ex-equations is given by the
notion of unifier:

Definition 2.5 (Unifier) A unifier of a constraint e ∈ Eqn is a substitution θ such that
true |= eθ. The set of unifiers of a constraint e is denoted by unif(e).

Note that the identity substitution can also be a unifier for an ex-equation.

Example 2.3 Let e = (A = B), and

θ1 = {A/X, B/X}
θ2 = {A/ f (T), B/ f (T)}
θ3 = {A/3, B/3}
θ4 = {A/ f (1), B/ f (Y)}

Here θ1, θ2 and θ3 are unifiers for e, while θ4 is not. Indeed eθ4 = (f (1) = f (Y)) is not
true in all models of true.

Definition 2.6 An ex-equation e is said to ground a variable X iff all unifiers of e are
ground substitutions for X.

Example 2.4 Consider the constraint e = (X = f (Y) ∧ Y = 3), then unif(e) =
{{Y/3, X/ f (3)}} which means that e grounds both X and Y.

Definition 2.7 (Ordering in ℘(Eqn) and ℘(Eqn+)) The domain of sets of (equival-
ence classes of) equations, ℘(Eqn) resp. ℘(Eqn+), is ordered by the usual set ordering
⊆. It has a least upper bound ∪, greatest lower bound ∩, least element { } and greatest
element Eqn, resp. Eqn+.

In the remainder of this thesis we shall only use ℘(Eqn+) as our domain of ex-
pressing variable bindings in the user program. This is not a restriction. Indeed,
while all unsatisfiable constraints obtained in ℘(Eqn) are kept in the equivalence
class represented by false, in ℘(Eqn+) such elements are simply discarded. This
simplifies most of the operations that we will define on ℘(Eqn+) and also re-
moves the possibly confusing equivalence of { } and {false} in ℘(Eqn).

Note that both ℘(Eqn) and ℘(Eqn+) are complete lattices. Their ordering is
only related to the ordering in Eqn, resp. Eqn+ by the equivalence relation that
the latter ordering implies.

18 CHAPTER 2. TECHNICAL BACKGROUND

We introduce two operations: projection and renaming. The purpose of pro-
jecting an equation e onto a set of variables V is to obtain a new equation e′ such
that Vars(e′) ⊆ V and e |= e′. Throughout this thesis we use the notation (a)|V to
project the information represented by the object a onto the set of variables V. Of
course, the exact definition will be different for each type of object a. The goal of
renaming an equation e is to replace each occurrence of a variable in that equation
by another variable. Renamings are usually denoted by ρs1→s2 (a) where a is any
object of interest, and s1, s2 ∈ V∗.

The specific definitions of projection and renaming for ex-equations and sets
of ex-equations are given below.

Definition 2.8 (Projection) Let e be an ex-equation in general (thus in Eqn) then pro-
jecting e on a set of variables V is defined as:

(e)|V = ∃V .e

where ∃ is the existential quantification w.r.t. the complement of the variables V, i.e.,
V \V. For E ∈ ℘(Eqn), the projection is defined as:

(E)|V = {∃V .e | e ∈ E}

Let S be some syntactic construct within our language, e.g. an atom or term,
then (E)|S is used as a shorthand notation for (E)|Vars(S).

Example 2.5 Let E = {X = f (Y)∧Y = Z}. The projection onto the variables {X, Z}
is (E)|{X,Z} = {∃Y.X = f (Y) ∧Y = Z} which is equivalent to {X = f (Z)}.

Definition 2.9 (Ex-equation Renaming) Let e = (T1 = T′1 ∧ . . .∧ Tn = T′n) ∈ Eqn,
then renaming e with respect to a mapping between a sequence of variables X1, . . . , Xn
and a sequence of variables Y1, . . . , Yn, with ({Y1, . . . , Yn} \ {X1, . . . , Xn})∩Vars(E) =
{ }, is defined as:

ρX→Y (e) = (T1θ = T′1θ ∧ . . . ∧ Tnθ = T′nθ)

where θ is the renaming substitution {X1/Y1, X2/Y2, . . . , Xn/Yn}, 1 ≤ i ≤ n.
The definition is extended to elements of ℘(Eqn) in a natural way. Let ES ∈ ℘(Eqn+):

ρV1→V2
(E) = {ρV1→V2

(e) | e ∈ ES}

By abuse of notation, we sometimes use renamings in the context of sets of
variables instead of explicit sequences. In that case we assume that the ordering
of the elements of these sets and the mapping is naturally implied by the context.
For example, if τ1 and τ2 represent two terms with variable arguments, then the
variables of the terms in the renaming ρVars(τ1)→Vars(τ2) (E) are simply ordered by
their position in the terms. We even abbreviate such a renaming to ρτ1→τ2 (E).

2.4. EXISTENTIALLY QUANTIFIED TERM EQUATIONS 19

Example 2.6 Let E = {X = f (Y) ∧ Y = Z, X = g(3) ∧ Y = Z}, let S1 be the
sequence X, Y, Z and S2 the sequence: U, V, W, then ρS1→S2 (E) = {U = f (V) ∧
V = W, U = g(3) ∧ V = W}. Let τ1 = h(X, Y, Z), and τ2 = h(U, V, W), then
ρτ1→τ2 (E) = ρS1→S2 (E).

20 CHAPTER 2. TECHNICAL BACKGROUND

Chapter 3

Mercury

Mercury is a pure functional logic programming language conceived and de-
veloped at the University of Melbourne, Australia. It was introduced in 1993 with
the intention to offer a pure logic (functional) programming language, carefully
avoiding the typical pitfalls of the common logic languages (e.g. Prolog (Sterling
and Shapiro 1986)) which are their bad run-time performance, and poor support
for programming in the large. Mercury was therefore developed with the following
clear characteristics in mind:

• Mercury should be a pure declarative language. Typically Prolog uses non-
pure language constructs such as assert, retract, or others. These constructs
allow a local performance gain, but inflict an extra burden on the program-
mer as she/he is now expected to take into account low-level performance
criteria instead of purely focusing on the high-level program design aspects
of his project.

• Mercury should provide explicit support for developing programs in the
context of a team of programmers. The now widely accepted technique is
the use of modules. These modules provide clear interfaces and hide all
implementation details. Modules are usually compiled separately.

• Unlike most Prolog systems which merely check the syntax of the programs
and which only give sparse and obscure error messages, a Mercury com-
piler should (try to) deliver strong error messages, hence the programs should
contain sufficient redundant information that can be verified and checked
by a compiler.

• And finally, Mercury programs should be compiled to fast and efficient pro-
grams. Their performance should at least be as efficient as comparable pro-
grams in comparable languages, but should in preference be better.

21

22 CHAPTER 3. MERCURY

The result is a highly competitive pure functional logic programming lan-
guage with support for a number of modern software engineering concepts such
as modules, type classes, higher order logic, and which, thanks to program de-
clarations, enables remarkable performance. We give a brief summary of the main
elements of the Mercury programming language. We refer the reader to (Hende-
rson, Conway, Somogyi, and Jeffery 1996) for a full presentation of the language.

The formal notations introduced in this section are inspired by the presenta-
tion of Mercury given in (Vanhoof 2001).

3.1 Predicate Clauses

Predicate clauses in Mercury are similar to Prolog clauses. Each clause consists
of a head atom and a body. A body is simply a goal. A goal can either be a
conjunction of goals, a disjunction of goals, an if-then-else construct, a negated
goal, or simply a literal. A literal is either an explicit unification or an atom. If
the goal is an empty conjunction (which is a goal that always succeeds), then the
clause is called a fact.

Mercury has a functional flavour in the sense that programmers are allowed
to declare and use functions instead of predicates.

Example 3.1 The clauses for a predicate defining the concatenation of two lists are:

append ([] , Y , Y) .
append ([Xe | Xs] , Y , [Xe | Zs]) : − append (Xs , Y , Zs) .

In Prolog, the clauses would be the same.

Example 3.2 Adding two boolean values can be defined by a function add/2 described by
the following two clauses:

add (t rue , t r ue) = t rue .
add (fa l se , _) = f a l s e .
add (_ , f a l s e) = f a l s e .

In the remainder of this thesis we do not distinguish functions from predicates
as the former can always be transformed into the latter by augmenting the arity
of the function by one, and using the new argument to represent the result of the
original function.

Example 3.3 The add/2 function defined in the previous example can be rewritten as a
predicate defined by the following facts:

add (t rue , t rue , t r ue) .
add (fa l se , _ , f a l s e) .
add (_ , fa l se , f a l s e) .

3.2. TYPE DECLARATIONS 23

A full Mercury program is required to declare and implement a predicate
main/2. This is the entry point to the program. After compilation, the execution of
the program always starts at this entry point. This is similar to the main-function
that needs to be implemented in C-programs (Kernighan and Ritchie 1978).

3.2 Type Declarations

Mercury is a strongly typed language. Its type system is based on a polymorphic
many-sorted logic, inspired by the Hindley-Milner (Hindley 1969; Milner 1978)
type system of ML (Milner, Tofte, and Macqueen 1997).

The type system consists of type declarations defining the types introduced by
the programmer, and type declarations of the predicates and functions defining
the types of the arguments used in the predicates and functions.

Basically each type is declared as a discriminated union, i.e., a set of function
symbols and the types of their arguments. A type can also be declared as equival-
ent to another type, yet we see this as syntactic sugar that allows the programmer
not to repeat a type definition.

Example 3.4 The following declarations are valid type declarations in Mercury:
:− type boolean −−−> t r ue ; f a l s e .
:− type l i s t (T) −−−> [] ; [T | l i s t (T)] .
:− type i n t l i s t == l i s t (i n t) .

The types boolean and list(T) are defined as discriminated union types. Type intlist
represents lists of integers, and is defined as being equivalent to the list-type, where the
type-variable is initialised with the (built-in) type int (representing integers).

Formally, let ΣT denote the set of type constructors. Each type constructor is
associated with a natural number called the arity of the type constructor. Let
VT denote the set of type variables. The set of types is then represented by
T (ΣT ,VT). In a formal setting, type constructors are written in a sans serif font,
e.g., t, and with its explicit arity t/n. In examples of real source code, no special
font is used. A type containing variables is said to be polymorphic, otherwise it is
called monomorphic. A type substitution is a substitution mapping type variables
to types. Applying a type substitution to a polymorphic type results in a new
type, called an instance of the original type. We say that a type t1/n ∈ ΣT matches
with a type t2/n ∈ ΣT if t1/n is an instance of t2/n. Overloading the substitution
notation we may write this as: t1 = t2θT , where θT is a type substitution.

Example 3.5 In the type declarations in Example 3.4, we have

{boolean/0, list/1, intlist/0, int/0} ⊂ ΣT

and T ∈ VT . All the types are monomorphic, except list(T). The type list(int) is an
instance of list(T), with type substitution {T/int}.

24 CHAPTER 3. MERCURY

Definition 3.1 (Type Declaration) A type declaration associated with a type con-
structor h/n ∈ ΣT is a definition of the form

h(T1, . . . , Tn)→ c1(t1); . . . ; cm(tm).

where {T1, . . . , Tn} ⊆ VT , ci/k ∈ Σ for 1 ≤ i ≤ m, with ti a sequence of types from
T (ΣT ,VT). Also

⋃{Vars(ci(ti)) | 1 ≤ i ≤ m} ⊆ {T1, . . . , Tn}. The function symbols
c1, . . . , cm are said to be associated with the type constructor h/n.

In actual programs, we use the symbol −−−> instead of → in type declara-
tions. The latter is only used in formal settings.

In theory, every type can be defined by a type declaration. In practice, Mer-
cury provides a number of built-in types. These types are int, float, char and
string, representing resp. the set of integers, floating point numbers, characters
and strings. Given the importance of the memory-representation of terms in this
thesis, but also given the fact that this representation is strongly implementation
dependent we present these low-level issues in a separate section (Section 3.8).

Beside the type declaration defining individual types, Mercury requires each
exported1 predicate or function to be accompanied with a definition of the types
of the arguments it uses. The compiler should be able to some extent to infer
this information automatically for the other predicates. Yet, the programmer is
strongly encouraged to provide all the extra redundant information. This enables
a compiler to verify this extra information and compare it with the inferred in-
formation (hence verifying the intended correctness). Moreover, from a software
engineering point of view this consists of valuable documentation.

Example 3.6 The following are valid predicate/function type declarations in Mercury:

:− pred append (l i s t (T) , l i s t (T) , l i s t (T)) .
:− func and (boolean , boolean) = boolean .

The first line declares that the program provides a predicate named append with arity
3, and of which all arguments are of the polymorphic type list(T). The second line declares
the types of the function and/2: it takes two boolean arguments, and yields a boolean
result.

Using the type declarations, and predicate/function type declarations, the
Mercury compiler is capable of inferring the exact type for each variable oc-
curring in the program. In the same time Mercury compilers are supposed to
verify whether the program is well typed or Hindley/Milner type correct (Mycroft
and O’Keefe 1984; Pfenning 1992). Programs that are not type correct must be
rejected.

1exported w.r.t. a module, see Section 3.5.

3.3. MODE DECLARATIONS 25

Example 3.7 Type correct programs that contain calls to append as declared in Ex-
ample 3.6 guarantee that each of these calls is done with types matching the declared
type. Therefore calling append with all three arguments being list(int) is perfectly legal.
Note that calling append with mixed arguments, say list(int) and list(boolean) is not
legal.

Mercury also supports type classes based on the type classes used in the lazy
functional programming language Haskell (Hudak et al. 1992). A type class
provides a set of names and signatures of class operations. A type can be made
an instance of a type class by explicitly instantiating each of the declared opera-
tions of that type class with a specific implementation that can be used for that
type. The use of type classes in a program enables the programmer to define pre-
dicates that are not only parametrised w.r.t. the types of the terms that they act
on (which can be achieved through the usual polymorphism of the language) but
also w.r.t. operations defined on these types. As such, type classes introduce a
form of higher-order programming. Given the fact that our analyses are mainly
oriented towards first-order logic, we do not sketch any further details about type
classes and their use in Mercury.

3.3 Mode Declarations

The mode information of a predicate (or function) describes the mapping from
the initial instantiation of the arguments of the predicate (or function) to their fi-
nal instantiation. Instantiation states are described using type information. View-
ing each type as a regular tree with or-nodes representing types and and-nodes
representing type constructors, an instantiation state of a procedure argument
describes the instantiation of each of the or-nodes of its type. Mercury uses two
base cases of instantiation states, namely free — the argument is a free variable,
and bound to a specific constructor — the argument is bound to a term with that
specific constructor. These two cases can be combined to express more refined
instantiation states, like for example:

:− i ns t l i s t s k e l == bound ([] ; [f r ee | l i s t s k e l]) .

An argument with this instantiation is either bound to the constant [] , or to a
term with outermost functor [|] , its first argument free, and its second argument
also corresponding to the listskel instantiation state. As a shorthand notation
Mercury provides the instantiation state ground which describes argument being
bound to fully ground terms. Of course, the exact instantiation state depends on
the type of the argument to which it applies.

Instantiation states are used to describe modes. A mode is a mapping from
an initial instantiation state to a final instantiation state. Mercury provides two
standard modes, in and out, which are defined by the rules:

26 CHAPTER 3. MERCURY

:− mode in == ground > > ground .
:− mode out == f r ee > > ground .

If a procedure argument has mode in, then this means that when the procedure
is called, that particular argument will be bound to a ground term and remains
bound to a ground term upon exit from the procedure call. If an argument has
mode out then the argument will be a free variable when entering the procedure,
yet it will become fully instantiated when leaving the procedure call. Of course,
the user is free to define more complicated modes.

Using these modes, the programmer can document her/his predicates and
functions with mode declarations. These declarations define a valid combination of
modes for the arguments of the predicate. In logic programs it is common to use
the same predicate in different ways, which in Mercury becomes explicit through
the definition of multiple mode declarations for that same predicate. Note that
like for predicate declarations, mode declarations are mandatory for exported
predicates and functions, and only recommended otherwise.

Mercury is a strictly moded language. This means that it does not allow the
use of partially instantiated structures unless of course it corresponds to the instan-
tiation state with which it was declared.

Example 3.8 illustrates the syntax of these mode declarations.

Example 3.8 As a complement to the predicate and function type declarations of Ex-
ample 3.6 the programmer may provide the following mode declarations:

:− mode append (in , in , out) .
:− mode append (out , out , in) .
:− mode add (in , in) = out .

This declares two modes for append/3. The first mode states that append changes the
instantiation state of the third argument to ground (mode out) if it is called with its two
first arguments ground (mode in). The second mode states that append can also be used if
only the third argument is ground at call time. Upon success, the two first arguments will
be bound to a ground term. The mode declaration for add/2 can be interpreted similarly.

In the previous example, two mode declarations were given for the same pre-
dicate. Although it defines two uses of the append predicate, the programmer
need only write the implementation of append once. It is up to the compiler to
generate the two versions for the two uses of this predicate (if of course these
versions differ).

In general, each mode of a predicate may require a different compiled version
of that predicate. For this purpose, the notion of a procedure is used.

Definition 3.2 (Procedure) The set of clauses defining a predicate and a specific mode
declaration for that predicate is called a procedure.

3.3. MODE DECLARATIONS 27

As argued above and as will be illustrated further on, each procedure may
be compiled to a separate version of the initial predicate definition it stems from.
The specific version implementing the actual procedure is called the procedure
definition.

In the further text we implicitly assume that every procedure has its own
definition, and therefore we use the terms procedure and procedure definition in-
terchangeably. Literals within a procedure definition that are not calls to built-in
operations are called procedure calls.

3.3.1 Specialised Unifications

As the instantiation state of a variable in a procedure can perfectly be determined
using the present mode information, each unification can be specialised in either
a construction — X <= f (Y1,. . .,Yn), a term f (Y1,. . .,Yn) is built and assigned to the
variable X, a deconstruction — X => f (Y1,. . .,Yn), the term to which variable X is
bound is decomposed, a test — X ==Y, the terms pointed at by the variables X
and Y are compared w.r.t. syntactic equality, and finally an assignment — X := Y,
variable X is bound to the term pointed at by variable Y.

The details of these four different unifications are given in Section 4.2.3.

3.3.2 Selection Strategy

Mercury is a strictly moded language where each literal may only be called with
arguments having the instantiation states as given by the mode declarations. This
automatically imposes a selection strategy for the language as a literal can only
be called if its arguments are sufficiently instantiated. If the run-time system has
the choice of evaluating one literal or another, then it has to select the literal that
appears first in the sequence of literals defining that procedure. This strategy is
usually called the left-to-right selection strategy and is one of the most common
strategies used in logic programming in general.

Given the fact that mode information is available during the compilation of a
procedure (either because it was provided by the user, or inferred by a separate
mode inference engine), the compiler can perfectly determine the order of execu-
tion of the literals in each of the procedures of the user program and can therefore
rearrange the literals of a procedure definition accordingly.

Example 3.9 shows how the general definition of append/3 can be specialised
for the two modes given in Example 3.8.

Example 3.9 Consider the predicate and mode declaration for append, as well as its
general definition:

:− pred append (l i s t (T) , l i s t (T) , l i s t (T)) .
:− mode append (in , in , out) .

28 CHAPTER 3. MERCURY

:− mode append (out , out , in) .
append ([] , Y ,Y) .
append ([Xe | Xs] ,Y , [Xe | Zs]) : − append (Xs ,Y, Zs) .

For each mode declaration, a Mercury compiler will produce a separate procedure
with its own definition. Assuming the left-to-right selection strategy, theses procedure
definitions may look as follows:

• Version for the mode (in, in, out) :

append (X,Y, Z):−
(

X => [] , Z := Y
;

X => [Xe | Xs] , append (Xs , Y, Zs) , Z <= [Xe | Zs]
) .

• Version for the mode (out, out, in) :

append (X,Y, Z):−
(

X <= [] , Y := Z ,
;

Z => [Xe | Zs] , append (Xs , Y, Zs) , X <= [Xe | Xs]
) .

The first version differs from the second version mainly by the ordering of the literals
appearing in the second branch of the disjunction.

Note that here we have introduced explicit disjunctions instead of producing two sep-
arate clauses per predicate and that all general unifications are replaced by their special-
ised forms.

In the remainder of the thesis we assume that each of the procedures is well
moded w.r.t. the left-to-right selection strategy. Well modedness is defined as fol-
lows:

Definition 3.3 (Well modedness) A procedure call is said to be well moded if, at the
time the procedure is called, the arguments have the correct instantiation w.r.t. the modes
declared or inferred for that procedure.

A compiler may thus have to rearrange the individual literals within a proced-
ure definition in order to achieve well modedness. If the compiler can not find an
adequate rearrangement that does not violate the modes of the called procedures,
then the compiler must reject that procedure, hence also the program. A program
is considered well moded if all the procedure calls within it are well moded.

3.3. MODE DECLARATIONS 29

3.3.3 Unique modes.

In Mercury it is also possible to add uniqueness information to the usual changes
of instantiation captured by the basic in and out modes. It provides the addi-
tional built-in instantiation states unique and dead. An argument of a literal is
said to be unique if the term to which it is bound is ground and if that argument
is the only reference to that specific term. The instantiation dead means that there
are no references to the value an argument pointed to in which case the compiler
is free to generate code reusing that value. The main modes defined on these
uniqueness instantiation states are di — destructive input — and uo — unique out-
put:

:− mode di == unique > > dead .
:− mode uo == f r ee > > unique .

The arguments declared as di of a procedure call must guarantee that they
have a unique reference to the term they are bound to and that these arguments
will not be used after that procedure call, hence, that unique reference becomes
a dead pointer. Arguments declared as uo are free arguments when entering a
procedure call, and are guaranteed to be bound to a ground term to which they
have a unique reference.

The use of these modes is not popular given the fact that it adds a clear low-
level aspect to the programming task whereas the programmer is encouraged to
mainly focus on high-level abstractions made possible within the declarative pro-
gramming paradigm. Also, the task of verifying the correctness of these modes is
cumbersome, which means that, at the current state of the compiler, the analysis
for verifying the use and propagation of unique modes remains rather conser-
vative: it can only prove correctness of the use of these modes in the simplest
cases.

Given the mentioned difficulties, unique modes are mainly used for giving
a declarative meaning to input/output operations (which operate on a unique
state of the world) or for performance critical data structures such as arrays.
Such operations and data structures are mainly defined in the standard library
of the language and are usually implemented in a foreign language such as C.
In such cases, these unique mode declarations become valuable information for
the compile-time garbage collection system developed in this thesis as this sys-
tem is unable to verify code written in a foreign language. Note that even the
unique modes analyser within the compiler itself does not analyse foreign code
and therefore assumes that the annotations are correct. See also Section 11.2.
Moreover, the direct use of these modes in user-programs (hence direct memory
management by the programmer) becomes to some extent obsolete in the pres-
ence of the compile-time garbage collection system that is developed in this thesis.

The definition of the Mercury language allows the possibility of defining more
elaborate uniqueness states and modes as given by this overview such as poly-

30 CHAPTER 3. MERCURY

Can fail Number of solutions Determinism
yes 0 failure
no 0 erroneous
yes 1 semidet
no 1 det
yes ≥ 1 nondet
no ≥ 1 multi

Table 3.1: Mercury determinism information. The first column describes whether
it can fail or not. The second column determines the number of solutions the
procedure may have.

morphic modes or mostly unique modes, yet these modes are not of great im-
portance in this thesis.

3.4 Determinism Declarations

Besides type and mode information, each procedure can also be given determ-
inism information. This information describes whether the procedure can fail or
succeed. If it can succeed, then it also describes the number of solutions that can
be found. This information can be provided by the programmer (mandatory for
exported predicates) or inferred by the compiler. The determinacy of a procedure
is declared together with its mode information.

Table 3.1 lists the determinacy options provided in Mercury. The most im-
portant determinism characterisations are semidet , det , nondet and multi .
The descriptions failure and erroneous are used rarely and should be seen
as exceptional.

The determinacy of a procedure is declared together with its mode informa-
tion as illustrated in Example 3.10.

Example 3.10 Completing the mode declarations from Example 3.8 with determinism
information, we have:

:− mode append (in , in , out) i s det .
:− mode append (out , out , in) i s mul t i .
:− mode add (in , in) = out is det .

The first line not only describes a mode for append, but also declares that when append
is called with its two first arguments ground lists, and last argument a free variable, then
the procedure is deterministic: exactly one solution is produced, it can not fail. The second
mode of append is declared as multi : it can produce multiple solutions, yet it can not

3.5. MODULES 31

fail either. Determinism information can also be given for functions, although, if omitted,
the Mercury language assumes them to be deterministic.

Mercury also allows committed choice non-determinism where the compiler is
informed about the fact that a procedure may in general have multiple solutions,
yet where the caller of that procedure may be interested in exactly one of its solu-
tions without minding which one exactly. These forms of determinism are vari-
ations on the usual ones, hence, without loss in generality, we do not consider
these annotations in this thesis.

3.5 Modules

Mercury programs are divided into modules. Each module consists of an interface
section and an implementation section. Types, modes, predicates, functions that
are declared in the interface of a module are made visible to those modules that
import this module. The entities declared in the interface section of a module are
said to be exported: exported predicates, exported types, etc. Everything that is de-
clared in the implementation section of a module is visible only within that mod-
ule. These entities are hidden. Predicate and function clauses are only allowed in
the implementation section.

It is possible to declare the name of a type in the interface section while the
full declaration is only given in the implementation. Such types are called abstract
types.

When a module wants to use the exported entities of another module, the
former needs to import the latter. This is done by the import_module directive.

Example 3.11 The use of modules is illustrated by the program code shown in Figure 3.1
defining the module app that imports the (built-in) module list —a module that defines
all list-related types and predicates.

3.6 Higher-Order Language Features

Mercury supports higher order programming. A higher order term can for ex-
ample be constructed as follows:

Prepend = pred (I : : in , O : : out) i s det : − append (LL , I ,O)

This unification constructs a deterministic closure with arguments I and O
having mode in resp. out , and binds it to the variable Prepend . The variable
LL is a variable that needs to appear in the same scope as the higher order term.

Closures are invoked with the call /N predicate where N is a variable number
of arguments corresponding to the arity of the closure. Using the above example

32 CHAPTER 3. MERCURY

:− module app .

% I n t e r f a c e−s e c t i o n .
:− i n t e r f a c e .

% I m p o r t e d modules .
% Module " l i s t " d e f i n e s t h e
% t y p e " l i s t (T) " and t h e
% p r e d i c a t e " append / 3 " .
:− import_module l i s t .

% D e c l a r a t i o n o f t h e a b s t r a c t
% t y p e ’ t h i n g ’ .
:− type thing .

% P r o c e d u r e d e c l a r a t i o n s .
:− pred thingy (in t , thing) .
:− mode thingy (in , out) i s det .
:− mode thingy (out , in) i s det .
:− pred concat (l i s t (thing) , l i s t (thing) ,

l i s t (thing)) .
:− mode concat (in , in , out) i s det .

% I m p l e m e n t a t i o n s e c t i o n .
:− implementation .

:− type thing −−−> number (i n t) .

thingy (N, number (N)) .
concat (L1 , L2 , L3) : − append (L1 , L2 , L3) .

Figure 3.1: A module app .

we could write call (Prepend,[4,2],Output). With LL bound to list [3,4] , upon com-
pleting this call, Output will be bound to the list [3,4,4,2] .

A special form of higher-order programming is the possibility of defining and
using so called type classes. Type classes were first introduced in the context of
Haskell (Wadler and Blott 1989; Hall, Hammond, Jones, and Wadler 1996). Given
their elegance and the expressive power they allow, the Mercury community
quickly adapted this language construct to the context of Mercury (Jeffery 2002;
Jeffery, Henderson, and Somogyi 1998).

Neither higher-order programming, nor the specialised form of type classes
are explicitly dealt with in this work.

3.7. SPECIAL FEATURES 33

3.7 Special Features

The Mercury language provides some additional features such as the use of ex-
istentially quantified types, predicates and functions, interfaces with foreign lan-
guages (C, Java, .NET), and many syntactic sugar bits. As these aspects are not
specifically dealt with in this thesis, we omit any further description here and
refer the reader to the Reference Manual for further details (Henderson, Conway,
Somogyi, and Jeffery 1996).

3.8 The Melbourne Mercury Compiler

As of now, there exists only one compiler and run-time system for the Mercury
programming language, namely the Melbourne Mercury Compiler (MMC). Re-
cently, this compiler has gained extra interest as it is also involved in the .NET
project (Microsoft ; Platt 2003) where a common playground is created for allow-
ing the easy interaction of programs or, on a finer level, modules and procedures,
written in different programming languages.

3.8.1 Compilation Scheme

The structure of the MMC is detailed in (Conway, Henderson, and Somogyi 1995).
Here we give a brief overview of some of the aspects of the compilation process
that are relevant for our analyses.

The Melbourne Mercury compiler processes Mercury programs one module
at a time. During the compilation of a single module, the compiler builds two
intermediate internal representations of the code defined in it:

1. A high level representation of the source code, called the High Level Data
Structure, or in short: HLDS. In this representation the source code is an-
notated with all relevant extra information. It also contains the information
declared in the interface sections of the imported modules;

2. The second representation is called the Low Level Data Structure, in short
LLDS, and represents the source code in terms of low level instructions that
can almost directly be mapped onto statements in the back-end language of
choice (in most cases these are statements in C).

A normal compilation process of a MMC-Mercury module roughly follows
the following scheme:

1. First the source code is parsed, and stored in the HLDS.

2. Semantic analyses, error checking and high-level transformations use that
HLDS as input, and update this structure.

34 CHAPTER 3. MERCURY

3. Next, the code generation pass transforms the high level source code in-
formation recorded in the HLDS into the low level representation of the
LLDS.

4. The LLDS can undergo a number of low-level optimisation passes and fi-
nally, the target code is produced.

The Melbourne Mercury compiler can produce target code of different types,
called different back-ends. The most popular back-ends are low-level C code (close
to assembler) (Somogyi, Henderson, and Conway 1996), high-level C code (Hende-
rson and Somogyi 2002), or nowadays also .NET (Dowd, Henderson, and Ross
2001).

The analyses that we describe in this thesis are all analyses that fit into the
second step of the described compilation process. This allows us to still manipu-
late (almost) source code, yet the code is already checked and transformed to suit
our needs:

• For each mode declared for a predicate, a separate procedure is generated;

• The procedures are already verified w.r.t. mode, type and determinism in-
formation. As a consequence of the mode verification, the compiler may
have reordered the goals within a procedure in such a way that all variables
always get instantiated before they are used;

• All unifications are specialised into either constructions, deconstructions,
tests or assignments;

• Every goal and literal is explicitly annotated with mode and determinism
information, and also the type of every involved variable can easily be quer-
ied.

The purpose of our analysis-system is to annotate the code with low-level in-
structions that reuse data that has become available for reuse. This means that the
order between the literals producing the available data, and the literals reusing
that data need to be guaranteed. Hence, we must ensure that our analysis system
is not followed by any compiler pass that can possibly reorder the literals within
a procedure definition.

3.8.2 Interface Files

As already sketched above, the Melbourne Mercury compiler compiles each mod-
ule of a program one at a time. Yet, during the compilation of one module, the
compiler also needs some part of the information present in the modules impor-
ted by that module such as the procedure declarations of the exported proced-
ures to verify the mode-, type- and determinism-correctness of the module being

3.8. THE MELBOURNE MERCURY COMPILER 35

compiled. To avoid the need of fully loading the code of the imported modules,
the Melbourne Mercury compiler makes use of interface files. The interface file
of a module records all the information about that module that is necessary for
the correct compilation of the modules importing that module. Such an interface
file mainly contains the type, mode and procedure declarations of the exported
entities.

Additional interface files are used for extra analysis information. For example,
the Mercury compiler is able to do some termination checking (Speirs, Somogyi,
and Søndergaard 1997). For this purpose, the results of analysing a module are
recorded in an optimisation interface file. When analysing other modules, the ter-
mination results of already analysed modules can therefore simply be accessed
by looking at these files.

For our analyses we also make use of optimisation interface files for recording
the analysis results of the modules.

3.8.3 Term Representation

The purpose of the CTGC system is to identify which objects on the heap, so
called data structures, become unused at a certain moment during the execution
of a program. In order to understand what these objects are, we clarify the way
typed terms are usually represented in the Melbourne Mercury Compiler. Note
that the Melbourne Mercury Compiler compiles to different back-ends, the most
common being ANSI-C. Higher-level back-ends, such as Java or .NET, use differ-
ent low level representations, yet the basic concepts remain the same.

Consider the following types:

:− type d i r −−−> nor th ; south ; east ; west .
:− type example −−−> a (i n t , d i r) ; b (example) .

Terms of primitive types such as integers, chars, floats (or pointers to floats,
depending on the word-size of the underlying machine) and pointers to strings
are represented as single machine words. Terms of types such as dir, in which
every alternative is a constant, are represented in the same way as enumerated
types in other languages. Mercury represents them as consecutive integers start-
ing from zero, and stores them in a single machine word. Terms of types such as
example are stored on the heap. Unlike in usual logic program implementations,
the function symbols of the stored terms are not explicitly recorded together with
these stored terms, and tags can be used instead. Indeed, as Mercury is a strictly
typed language, all types are known to the compiler. This allows the use of simple
tags to identify the functors of terms of a given type (Somogyi, Henderson, and
Conway 1996; Dowd, Somogyi, Henderson, Conway, and Jeffery 1999). These
tags are stored in the two lowest-order bits of the memory word in which the
pointer to the term is stored. The result is a space aware and more importantly
time efficient implementation.

36 CHAPTER 3. MERCURY

bA a

3

2

sa ha1

ha2

ha3

Figure 3.2: A = b(a(3,east)).

For those types which have more functors than a simple tag, also called primary
tag can distinguish, a secondary tag is used. In some cases, no extra memory
word is required to store the secondary tag (using one of the non-lowest-order
bits of the memory word), yet in general, secondary tags are recorded as extra
words in the memory block representing the stored term.

As the exact use of primary or secondary tag is irrelevant for the theory of the
present exposition, we assume that all terms can be represented using primary
tags only.

Figure 3.2 shows the representation of a variable A bound to a term b(a(3,east))
of type example defined above. In the following figures, ha1 , hy1 ,. . . denote heap
cells, whereas sa , sx ,. . . are registers or stack locations.

3.8.4 Run-Time Garbage Collector

Consider the definition of a procedure convert(A,B) that converts terms of type
example to new terms of that type as given by the code in Figure 3.3

% : − pred conver t (example , example) .
% : − mode conver t (in , out) i s semidet .
conver t (X,Y) :− X => b (X1) ,

X1 => a (A1 , _) ,
Y1 <= a (A1 , nor th) ,
Y <= b (Y1) .

Figure 3.3: Conversion-procedure.

Figure 3.4 shows the memory layout when calling convert(A,B) where A is
bound to the term b(a(3,east)) as depicted in Figure 3.2.

After deconstructing the input, the run-time system allocates a new block of
heap cells (hy1 -hy3) to create the output term bound to Y where the content of
X is partially copied to those cells. If the original term stored in the heap cells
ha1 -ha3 is not accessed anymore during the remainder of the execution of the

3.9. CONCLUSION 37

b

a

a

b

a

a

3

2

3

0

X

X1

Y

Y1

sx

sx1

sy1

sy

ha1

hy3

ha2

ha3

hy1

hy2

Figure 3.4: Memory layout when executing convert(A,B) with A bound to
b(a(3,east)) without structure reuse.

program, then these cells are considered garbage. Currently, it is up to the run-
time system and its run-time garbage collector, to detect and collect such garbage
cells.

The MMC mainly relies on Hans Boehm’s conservative garbage collector for
C (Boehm and Weiser 1988). Essentially, this collector halts the execution of the
program, traces the live objects on the heap, marks them, and examines and col-
lects the potentially dead objects. This means that the time between the moment
that the heap cells ha1 -ha3 become dead, and the moment that they are detected
as dead, can be fairly large. In the presence of a compile-time garbage collec-
tion system, which is the aim of our work, we could rely on program analysis
to determine that a particular call to convert leaves dead heap cells. In this ex-
ample, if we can show at compile-time that after the particular procedure call of
convert(A,B), the term pointed at by X will not be referenced during the rest of
the program (thus becoming available for reuse), then the deconstruction state-
ments perform the last access ever to the concerned heap cells (ha1 , ha2 , ha3)
after which they become garbage. The compiler can then decide to reuse these
heap cells for creating Y, in which case the time between heap cells becoming
garbage and that garbage being reused for new objects can be greatly reduced.
This desired situation is depicted in Figure 3.5.

3.9 Conclusion

In this chapter we presented the essential elements of the Mercury programming
language, the language for which the analyses developed in this thesis are de-
veloped. As these analyses are also implemented into the Melbourne Mercury
compilers, some details about the structure and run-time system of that specific
compiler are presented.

38 CHAPTER 3. MERCURY

b

a

a

bY

aY1

X

X1 3

0

sx

sx1

ha1

sy

sy1

ha2

ha3

Figure 3.5: Memory layout when executing convert(A,B) with A bound to
b(a(3,east)) with structure reuse.

Chapter 4

Core Mercury Syntax

We introduce a first-order subset of Mercury. This is the target language for the
next chapters. Therefore, unless explicitly stated otherwise, Core Mercury pro-
grams are simply referred to as Mercury programs. When needed, actual Mer-
cury programs — i.e., conforming to the language definition of (Somogyi, Hende-
rson, and Conway 1996) — are called plain Mercury programs.

4.1 Language Definition

We restrict our language to first-order non-modular programs.
The formal syntax that we define for Mercury programs differs in a number of

ways from the actual syntax of these programs in the sense that we assume that a
number of semantics-preserving transformations have been done on the original
code, hence obtaining programs conforming to our stricter syntax-rules.

These are the assumed transformations:

• All functions and function calls are replaced by predicates and predicate
calls respectively. This is a natural transformation as already mentioned in
Section 3.1.

• Each predicate definition is replaced by a set of procedure definitions, one
procedure for each mode declared for that predicate.

• Each procedure is defined by exactly one procedure clause. As Mercury
allows the use of explicit disjunctions, this effect can simply be achieved
by replacing the arguments of the head of each of the procedure clauses
by a same set of variables, possibly adding explicit unifications between
these fresh variables and the original arguments, and finally, putting each

39

40 CHAPTER 4. CORE MERCURY SYNTAX

clause as a different branch of an explicit disjunction. This disjunction then
becomes the procedure code.

• All programs are correct with respect to the declared types, modes, and de-
terminisms. This implies that the literals in procedures may be rearranged
w.r.t. the initial predicate definition.

• Every unification is specialised in one of its four forms (c.f. Section 4.2.3).

• And finally, all programs should be normalised in the sense that all argu-
ments of the terms and atoms1 appearing in our Mercury programs should
be distinct variables.

These assumptions lead us to the formal syntax of the Mercury language as
depicted in Figure 4.1. Note that procedures are formally written as h ← g, but
in concrete examples we continue to use :- to separate the head from the goal.
In analogy, in formal equations we write unifications using :=, ==,⇐ and ⇒,
while in concrete pieces of program code we use := , ==, <= and => respectively.

We give a brief description of each of the elements in the language.
A Mercury program consists of a set of procedures, and a query.
In a plain Mercury program, the query is always a call to a procedure named

main/2 that needs to be implemented by the programmer. We generalise this, and
assume that the query can be any kind of goal.

Each procedure is defined by a rule p(X1, . . . , Xn) ← g. The head atom of this
definition is the atom p(X1, . . . , Xn), and the body consist of a goal g. Mercury
goals can either be a conjunction of goals, a disjunction of goals, a negation of a
goal, an if-then-else construct, or a simple literal. Finally, a literal l can either be
an explicit unification specialised to one of its four forms (See also Section 4.2.3)
or a procedure call.

We introduce some extra notation:

Definition 4.1 (Subgoal) Let g and g′ be procedure goals. We say that g′ is a subgoal
of goal g iff g′ occurs in goal g. This relationship is a partial order and is denoted by
g′ ≤ g.

Example 4.1 Let g = (g1; g2), (g3; (g4, g5)), then ∀gi , 1 ≤ i ≤ 5 : gi ≤ g but also
(g1; g2) ≤ g, (g4, g5) ≤ g, etc.

In a Mercury program the programmer needs to explicitly adorn her/his pro-
gram with type-, mode- and determinism declarations. We consider that this
information is implicitly present in our transformed Mercury programs. This is
presented in the following sections.

Example 4.2 The code in Example 3.9 meets the definition of the syntax of Mercury
programs given here.

1Note that explicit unifications are not considered as atoms in our formalism, see Section 3.1.

4.2. IMPLICIT INFORMATION 41

Program ::= r ; q
RuleBase ::= {p1 . . . pnp} np ≥ 1
Procedure ::= p(X)← g
Goal ::= g1, g2

| g1; g2
| if g1 then g2 else g3
| not g
| l

Literal ::= X ⇒ f (Y) (deconstruction)
| X ⇐ f (Y) (construction)
| X == Y (test)
| X := Y (assignment)
| p(Y)

where

r ∈ RuleBase
{p1, . . . , pnp} ⊆ Procedure
{q, g, g1, g2, g3} ⊆ Goal
l ∈ Literal
{X, Y, X1, . . . , Xn, Y1, . . . , Ym} ⊆ V
f /n ∈ Σ

Figure 4.1: Description of core Mercury. Note that np denotes the number of pro-
cedures in the program and X1, . . . , Xn, Y1, . . . , Ym and X each denote a sequence
of distinct variables.

4.2 Implicit Information

The following sections present the extra information that we consider to be im-
plicitly present in our transformed Mercury programs.

4.2.1 Program Point and Execution Path

We identify each individual literal by a unique program point.
The set of program points is denoted by pp; to designate the literal at some

specific program point i, we use the notation li; the program point of a literal l is
denoted as pp(l); the set of program points occurring in the definition of a goal
g is given by pp(g), and finally, the set of program points in the definition of a
procedure p is written as pp(p). If we explicitly write a program point within a
fragment of code we do this by writing it in front of the literal to which it refers.

42 CHAPTER 4. CORE MERCURY SYNTAX

The reason for doing so will become clear when we present the notion of program
point annotations and their meaning (Section 5.3.1).

The set of program points of a given procedure is ordered w.r.t. the syntactical
occurrence of the literals they correspond to. As program points are usually iden-
tified by integer numbers, we use the symbol≤ to denote the ordering of program
points.

Example 4.3 Program points are marked before the literals to which they belong to.

% : − pred f i r s t (l i s t (T) , T) .
% : − mode f i r s t (in , out) i s det .
f i r s t (L , F) : − (1) L => [X | _R] , (2) F := X.

Here we have pp(L = [X|_R]) = (1), and pp(F:=X) = (2); pp(first /2) = {(1), (2)}.
If we consider that our program consists of only this procedure then pp = pp(first /2) =
{(1), (2)}. In this simple example, obviously, (1) ≤ (2).

For some of the analyses it is important to know which literals precede the
execution of a given literal, and which literals can only be performed after that
literal, both in the context of the same procedure. For this purpose we introduce
the notion of an execution path, also called a control flow path in (Vanhoof 2001).
Execution paths are statically determined by the selection rule, here left-to-right.

Definition 4.2 (Execution Path) Given a procedure p(X) ← g, an execution path
in this procedure is a sequence of program points 〈pp1, pp2, . . . , ppn〉, where ppi <
ppi+1, 1 ≤ i < (n− 1), such that at run-time the literals associated with these program
points are performed in sequence. A program point is said to be covered by an execution
path, if this execution path comprises that particular program point. Two program points
share an execution path if there exists an execution path covering both program points.
Two execution paths are sharing if the intersection between the two corresponding se-
quences is not empty.

Given a procedure p, then each execution path in its definition, is denoted by
−→pi where i is an index allowing to differentiate each of these paths. We can order
these execution paths based on the ordering of the program points they cover, let
−→pi , −→p j be two execution paths in p, then −→pi is before −→p j , denoted by −→pi

−→≤−→p j , iff
∀x ∈ −→pi , ∃y ∈ −→p j : x ≤ y. The set of execution paths of a procedure p is simply
denoted by paths(p).

Example 4.4 Consider the definition of the deterministic procedure of append/3 (Ex-
ample 3.9), here explicitly annotated with its program points:

% : − pred append (l i s t (T) , l i s t (T) , l i s t (T)) .
% : − mode append (in , in , out) .
append (X , Y , Z) :−

4.2. IMPLICIT INFORMATION 43

(
(1) X => [] ,
(2) Z := Y

;
(3) X => [Xe | Xs] ,
(4) append (Xs , Y , Zs) ,
(5) Z <= [Xe | Zs]

) .

This procedure has two execution paths, namely−−−−−→append1 = 〈(1), (2)〉, and−−−−−→append2 =
〈(3), (4), (5)〉. Each program point is only covered by one single execution path, there is
no sharing between execution paths. Note that

−−−−−→
append1

−→≤−−−−−→append2

In the following sections and chapters we will often refer to this version of the
deterministic append procedure.

Example 4.5 Consider the following sketch of a procedure definition:

r : − (1) s ,
((2) t ; (3) u) ,
((4) v ; (5) w) .

Then

paths(r) = {〈(1), (2), (4)〉, 〈(1), (3), (4)〉, 〈(1), (2), (5)〉, 〈(1), (3), (5)〉}

Here, 〈(1), (2), (4)〉 is before any of the other paths, 〈(1), (3), (5)〉 is after any of the
other paths, while 〈(1), (2), (5)〉 and 〈(1), (3), (4)〉 are incomparable.

It is possible to prove that the set of execution paths of any procedure p always
has a lowest element, i.e., a path −→p⊥ ∈ paths(p) such that ∀−→pi ∈ paths(p) :
−→p⊥
−→≤−→pi .

Definition 4.3 (Preceding, Following Program Points) Consider a procedure p(X)←
g, and a program point i ∈ pp(g). The program points preceding (resp. following) i
is the union of the program points preceding (resp. following) i in the execution paths
covering i. The set of preceding program points is denoted by pre(i), while the set of
following program points is given by post(i). Formally:

pre(i) = { j | −→p ∈ paths(p), {i, j} ⊆ −→p, j ≤ i}
post(i) = { j | −→p ∈ paths(p), {i, j} ⊆ −→p, i ≤ j}

Example 4.6 In Example 4.5, pre(1) = { }, post(1) = {(2), (3), (4), (5)}, while for
program point (3) we have pre(3) = {(1)} and post(3) = {(4), (5)}.

44 CHAPTER 4. CORE MERCURY SYNTAX

We generalise the definition of preceding and following program points for
goals instead of individual program points.

Definition 4.4 Given a procedure p(X) ← g, and a subgoal g′ ≤ g. The program
points preceding (resp. following) g′ is the intersection of the program points preceding
(resp. following) the program points pp(g′). We overload the meaning of pre and post:
pre(g′) denotes the set of program points preceding g′, and post(g′) is the set of program
points following g′.

4.2.2 Type Information

In the context of one procedure definition, each variable has a unique type. We
introduce the function type(X, p) which returns the type of variable X used in
the definition of procedure p.

In general, if the procedure context is known, type(X, p) is abbreviated to
type(X).

4.2.3 Mode Information

During mode analysis, the goal of a predicate is transformed in such a way that
after reordering of the subgoals, the resulting code ensures that, when executed,
all variables are given a value before they are used. General predicate calls are
replaced by adequate procedure calls. Propagating and inferring mode inform-
ation also has the consequence that for each general unification it is possible to
know the flow of information. Each unification is therefore specialised to one of
the following four unifications (Somogyi, Henderson, and Conway 1996):

• (deconstruction) A deconstruction unification X ⇒ f (Y1, . . . , Yn) is a unific-
ation in which X has mode in, and all Yi ∈ {Y1, . . . , Yn} have mode out.
This unification may fail if X is not bound to the outermost functor f /n. In
other words, if X is bound to a ground term f (Z1, . . . , Zn), then the result
of the unification will be that each Yi will be bound to the subterm Zi points
to, 1 ≤ i ≤ n.

• (construction) A construction unification X ⇐ f (Y1, . . . , Yn) is a unification
in which all Yi ∈ {Y1, . . . , Yn} are input, while the left hand side, X, is out-
put. This means that a new term is constructed with outermost functor f /n
and where the subterms all point to the corresponding Yi , 1 ≤ i ≤ n. The
resulting term is assigned to the fresh variable X. This type of unification
can not fail.

• (test) A test unification X == Y tests whether the ground terms pointed at
by X and Y are equal. This means that both X and Y are input variables.
The unification fails if the terms are not equal.

4.2. IMPLICIT INFORMATION 45

• (assignment) An assignment X := Y simply assigns the value of the input
variable Y to the fresh variable X. This type of unification can not fail.

We introduce the following query functions related to mode information and
which can be applied to any syntactic object, say S, of our language:

• in(S): returns the set of variables which have mode in with respect to S.
These are variables which are guaranteed to be ground by the time the syn-
tactic object S is executed.

• out(S): returns the set of out-variables in S. These are variables that were
free before calling S and are instantiated upon successful execution of S.

• although rarely used, we provide also query functions for the unique modes:
di(S) and uo(S). These functions return the di, resp. uo variables.

Note that ∀S : in(S), out(S), di(S), uo(S) ⊆ Vars(S).

Example 4.7 Consider the following procedure definition:

% : − pred second (l i s t (T) , T) .
% : − mode second (in , out) i s semidet .
second (X, X2) :− X => [X1 | Xs1] , Xs1 => [X2 | Xs2] .

We have in(p) = {X}, out(p) = {X1, X2, Xs1, Xs2}, where p designates the
complete procedure. Restricted to the head atom of the procedure, we have

in(second(X,X2)) = {X}
out(second(X,X2)) = {X2}

Other interesting mode-sets could be in(X⇒[X1Xs]|) = {X}, and out(X⇒[X1Xs]|) =
{X1, Xs}.

4.2.4 Determinism Information

Using the determinism declarations provided by the programmer, any Mercury
compiler must verify their correctness. Doing so, it has to derive determinism
information for each part of the code. We assume that this determinism inform-
ation can be queried using the function det(S), where S is any syntactic object
of our language. It returns one of the six determinism values known in Mercury:
failure , erroneous , det , semidet , multi , nondet (Section 3.4).

In general, disjunctions have a non-deterministic flavour as each of the bran-
ches may succeed. There is a particular case though in which at most one of
the branches succeeds. These are the so called switches. Just like for imperative
languages, a switch compares an input value to a series of values (i.e., possible
outermost functors). Only one of these values can match, therefore only one of

46 CHAPTER 4. CORE MERCURY SYNTAX

the branches of the disjunction may lead to success. If the disjunction covers all
possible outermost-functors that can be attributed to variables of that type, then
the determinism of the switch depends on the determinism of the branches. If
not all functors are covered, then there exists a situation where possibly none of
the branches matches. In that case, the disjunction is at least semi-deterministic
(it may still be non-deterministic if one of the branches is).

In our analyses we need to be able to differentiate deterministic selection, i.e.,
switches, from general non-deterministic disjunctions. We therefore introduce an
additional implicit function switch. Applied to a disjunctive goal, it returns the
boolean value true if the goal is a deterministic switch, and false otherwise.

Example 4.8 Consider the following program written in plain Mercury:

:− type t −−−> a ; b .
:− pred p (i n t) .
:− mode p (out) i s mul t i .
:− mode p (in) i s semidet .
:− pred q (t , t) .
:− mode q (in , out) i s det .
p (1) .
p (2) .
q (a , b) .
q (b , b) .

where int is the built-in-type representing the set of integers (c.f. page 24).
In Mercury this yields the procedure definitions p1, the procedure corresponding to

the non-deterministic (multi) mode of the predicate, and p2, the procedure representing
the semidet mode.

p1 (X) : − (X <= 1 ; X <= 2) .
p2 (X) : − (X => 1 ; X => 2) .
q (X,Y) : − (X => a , Y <= b ; X => b , Y <= b) .

In p1, the disjunction is a non-deterministic disjunction: switch(g1) = false, where
g1 is the disjunction goal of p1. In p2 the disjunction is a switch, thus switch(g2) =
true, where g2 is the body of procedure p2. This switch enumerates some of the possible
values X may unify with. The enumeration is not exhaustive, therefore the switch may
fail (and is semi-deterministic).

As for q(X,Y), it defines one clause for each possible input-value, therefore this disjunc-
tion can safely be marked as deterministic (it introduces no choice point, and all cases for
the input-value are covered), hence a deterministic switch.

Proposition 4.1 The determinism of a procedure (h ← g) is equal to the determinism
of its goal g: det((h← g)) = det(g).

Proposition 4.2 tables the determinism values of the unifications. We could
also give an overview of the relationship between the determinism of a goal, and

4.3. SIMPLE MERCURY 47

the determinisms of its subgoals, but as this requires the introduction of the de-
terminism values as a lattice, we omit it here. We simply assume that each goal
has a pre-annotated determinism information field that at any time can be quer-
ied using the det-function.

Proposition 4.2 The determinism information of the different specialised unifications
are shown in Table 4.1.

unif det(unif)
X ⇒ f (Y1, . . . , Yn) semidet
X ⇐ f (Y1, . . . , Yn) det

X == Y semidet
X := Y det

Table 4.1: Determinism of unifications.

4.3 Simple Mercury

In the following chapter we give a meaning to Mercury programs. As negations
and if-then-else constructs bring extra complications, we handle these constructs
only in a later stage. Therefore we introduce the language Simple Mercury. This
language has the same syntax and implicit information as the Mercury language
we defined above, except that the goals can only be either a conjunction, a dis-
junction or a simple literal. No negations or if-then-else’s are allowed.

48 CHAPTER 4. CORE MERCURY SYNTAX

Chapter 5

Mercury Semantics

In this chapter we define a number of different denotational semantics for the
Mercury language defined in the previous chapter. These semantics are paramet-
rised with respect to a so called description domain. By instantiating a particular
semantics with a concrete domain, we obtain a definition of a concrete semantics
for Mercury programs. One can also instantiate the semantics with an abstract
domain. In such case one obtains an abstract semantics. If the abstract domain
is designed such that its elements approximate values from a given concrete do-
main, then the abstract semantics obtained from instantiating the semantics with
that abstract domain approximates the concrete semantics using that given con-
crete domain. This abstract semantics forms the basis for implementing the cor-
responding program analysis system. The correctness of that analysis system
can then be guaranteed by the correct approximation of the abstract semantics
w.r.t. the concrete semantics. As we want to be able to implement program ana-
lyses according to a different semantics than the concrete semantics that repres-
ents the actual execution of the program, we carefully design equivalence rela-
tions that enable us to relate these semantics.

The two most important semantics formalised in this chapter are:

• the goal-dependent semantics giving a concrete meaning to Mercury programs
corresponding to the way such programs are executed, and

• the goal-independent based semantics with pre-annotations. This semantics is
used to provide the correct basis for the consecutive analyses present in the
compile-time garbage collection system developed in this thesis.

Other formalisations of the meaning of Mercury programs are used as interme-
diate steps in the proof of the safeness of the goal-independent based semantics
with respect to the concrete goal-dependent semantics.

49

50 CHAPTER 5. MERCURY SEMANTICS

5.1 Introduction

5.1.1 Abstract Interpretation

The theory of abstract interpretation, first introduced in the context of imperat-
ive languages (Cousot and Cousot 1977) and now widely adapted to declarative
languages (Cousot and Cousot 1992a; Bruynooghe 1991), allows to verify run-
time properties of programs, without actually executing these programs. Such
properties are useful for debugging, code optimisation, program transformation
and program correctness proofs. Techniques of abstract interpretation find their
application in type analysis (Kluźniak 1987; Van Hentenryck, Cortesi, and Le
Charlier 1995), groundness analysis (Kågedal 1995; Cortesi, Filé, and Winsbor-
ough 1991; Marriott and Søndergaard 1993), sharing analysis (Jacobs and Lan-
gen 1992; Muthukumar and Hermenegildo 1989), combinations of these ana-
lyses (King 1994; Cortesi and Filé 1991; Muthukumar and Hermenegildo 1991;
Bagnara, Zaffanella, and Hill 2000), and many other domains.

Usually, abstract interpretation is formulated in terms of the operational se-
mantics of the language to interpret (Cousot and Cousot 1992a). Starting from a
formalisation of the standard operational semantics, one formalises the concrete
program properties of interest as elements of a certain concrete domain, thus ob-
taining the so called collecting semantics which is expressed as a fixpoint over that
domain. The idea is then to translate the set of concrete values into some set of
descriptions of these values, resulting in the abstract domain. The operations in
the operational semantics that deal with concrete values need to be translated
into abstract operations dealing with the approximate values instead. Hence, the
concrete execution of a program is replaced by a pseudo-execution that is focused
on the abstract properties of interest. The results of the pseudo-execution are cor-
rect if and only if they correctly approximate the concrete values that would have
been obtained by actually executing the program. A good tutorial on this subject
is (Bruynooghe and De Schreye 1988).

A typical example that perfectly illustrates these ideas is the rule of signs for
the multiplication of real numbers.

Example 5.1 Every child is taught the rule of signs: multiplying a negative number
with a positive number must yield a negative number; if two negation signs occur in
a multiplication, then the result is positive, etc. These rules are in fact abstract inter-
pretations describing the concrete multiplication of numbers. Put differently, instead of
playing with the concrete real values of the real numbers, we abstract each number by one
of the elements in the set {+,−, 0}. This set suffices to describe the multiplication of real

5.2. DENOTATIONAL ABSTRACT INTERPRETATION 51

numbers as given by the following table.

× 0 + −
0 0 0 0
+ 0 + −
− 0 − +

If we want to describe the rule of signs for the addition of two numbers, we need to add a
so called top-element, denoted as >. This element describes the lack of knowledge about
the exact sign of the number. For example, only > can correctly describe the addition of a
negative number to a positive number. We obtain the following table:

+ 0 + − >
0 0 + − >
+ + + > >
− − > − >
> > > > >

This led to the development of abstract interpretation frameworks (Bruynooghe
1991; Cousot and Cousot 1992b; Jones and Søndergaard 1987; Barbuti, Giaco-
bazzi, and Levi 1993) and generic abstract machines that implement these frame-
works (Janssens, Hermenegildo, Bueno, García de la Banda, and Mulkers 1992).
For logic programming the framework of Bruynooghe (1991) is of particular in-
terest. This framework was designed to mimic the left-to-right, depth-first search
of Prolog, thus inherently top/down. The abstract engine therefore mimics the
run-time computation rule. However, for our work, this framework is too strict
to be usable for all the analyses that we intend to develop. We could try to
design new frameworks, but for each of these frameworks a new correctness
proof would be needed. The problem of choosing any fixed framework is that
such a framework is always defined in terms of some specific operational se-
mantics given to the language. In most cases this automatically determines the
operational semantics of the analysis.

This motivates our choice for using a denotational approach instead. Se-
mantics expressed in a denotational setting do not immediately reflect the im-
plementation of the run-time execution or program analyses, hence, gives us a
more flexible way of defining the concrete and abstract semantics of Mercury. In
the following section we sketch the central ideas to this approach.

5.2 Denotational Abstract Interpretation

An abstract interpretation framework consists of a generic data flow algorithm
with a few basic operations as parameters. A specific analysis is obtained by in-
stantiating these parametric functions. The correctness of the obtained analysis is

52 CHAPTER 5. MERCURY SEMANTICS

guaranteed as long as the parametric functions correctly approximate the stand-
ard interpretation (i.e., in the concrete domain) of these functions. The advant-
age of this approach is that a generic analysis engine can be reused for multiple
analyses, as long as these analyses all follow the same structure, i.e., have the
same operational behaviour. The latter condition can be seen as a disadvant-
age of such frameworks. Indeed, if the operational semantics of the language
changes (say, bottom/up instead of top/down), the framework must be adap-
ted. Also, if the operational semantics of the language is say top/down, for some
analyses it may be more interesting to have a bottom/up execution scheme. In
both cases, a new framework must be designed and proved correct. In such a
setting, the comparison of different frameworks is not trivial either. It is for these
reasons that Marriott, Søndergaard, and Jones (1994) have introduced the notion
of denotational abstract interpretation where program analysis is based on a denota-
tional semantics of the language (Gordon 1979; Allison 1986; Nielson and Nielson
1992; Nielson and Nielson 1996), instead of the operational semantics. The idea
is to express the underlying semantic equations of each framework in a common
meta-language. By careful design of that meta-language, it is possible to prove
the correctness of the operations at the level of the meta-language once and for
all, which automatically proves the correctness of each framework described in
that language (given, of course, that the chosen description domain and the op-
erations depending on it are a safe approximation of the corresponding concrete
domain and concrete operations).

Using this meta-language boils down to giving a denotational semantics to
the programming language of interest. In the denotational approach, a program
is seen as a composition of syntactical elements. The meaning of a program is
defined as the composition of the meaning of the individual syntactical elements
used in the program1. The semantics of each individual syntactical object is mod-
elled by mathematical objects that represent the effect of executing this syntactical
construct. This effect, which is expressed in terms of a particular description
domain, is what we are interested in for modelling the behaviour of the logic
programming language we use. Typical domains include the domain of vari-
able substitutions (Lloyd 1987) or the domain of existentially quantified term
equations (Marriott, Søndergaard, and Jones 1994; García de la Banda, Marri-
ott, Stuckey, and Søndergaard 1998) (See also Chapter 2), the domain of positive
boolean expressions (Marriott and Søndergaard 1993; Codish and Demoen 1993)
(mainly used for tracing groundness information), the domain of Set-Sharing (Jac-
obs and Langen 1992; Hill, Bagnara, and Zaffanella 1998), etc.. In the context of
compile-time garbage collection, we need to trace the effect the execution of a
program has on the memory-bindings of the variables it uses. This requires an
adequate concrete domain that captures the memory usage of the variables of

1Therefore, it is also common to call this approach compositional, as for example in (Falaschi, Gab-
brielli, and Marriott 1993).

5.2. DENOTATIONAL ABSTRACT INTERPRETATION 53

interest, and two abstract domains that respectively capture the information of
possible structure sharing (Chapter 6), and live heap cells (Chapter 8).

We briefly sketch the key elements of (Marriott, Søndergaard, and Jones 1994).

The meta-language used in (Marriott, Søndergaard, and Jones 1994), which is
based on (Nielson 1982; Nielson 1988), is a language made out of typed lambda
expressions. The basic expressions of the language are: auxiliary functions, vari-
ables, function abstraction, function application, conditional, least fixed point,
and the union and join operations. An important prerequisite of the theory is that
all functions (including the auxiliary functions) must be elements of the space of
monotonic functions. The union operation is explicitly added for the context of
logic programming as it is needed to describe the notion of non-determinism.
These expressions mainly act upon elements of a so called description domain.
This domain must be a complete lattice. It can either be a domain represent-
ing concrete properties of the program, a so called concrete domain, or a domain
that abstracts these properties, a so called abstract domain.

Definition 5.1 (Insertion) (Marriott, Søndergaard, and Jones 1994) An insertion
is a triple (X, γ, Y) where X and Y are complete lattices 〈X,⊆X ,∪X ,∩X ,⊥X ,>X〉
resp. 〈Y,⊆Y ,∪Y ,∩Y ,⊥Y ,>Y〉, and γ : Y → X is a monotonic co-strict function (i.e.,
γ(>Y) = >X). The function γ is called the concretisation function.

The idea is that elements of the domain Y should approximate elements from
X. In this theory the existence of an adjoined function, the so called abstraction
function (Cousot and Cousot 1977), is not explicitly required.

Definition 5.2 (Safe approximation) (García de la Banda, Marriott, Stuckey, and
Søndergaard 1998) Let (X, γ, Y) be an insertion between 〈X,⊆X ,∪X ,∩X ,⊥X ,>X〉 and
〈Y,⊆Y ,∪Y ,∩Y ,⊥Y ,>Y〉. If x ∈ X, and y ∈ Y then y is said to safely approximate x,
which is written as y ∝ x, iff x ⊆X γ(y).

The approximation operation is extended to function spaces as follows. Consider
f : X1 → . . . → Xn → X and g : Y1 → . . . → Yn → Y with all (Xi , γi , Yi), i =
1 . . . n insertions. We say that g safely approximates f , written as g ∝ f iff ∀x1 ∈
X1, . . . , xn ∈ Xn and ∀y1 ∈ Y1, . . . , yn ∈ Yn: if yi ∝ xi for i = 1 . . . n, then
g(y1, . . . , yn) ∝ f (x1, . . . , xn).

We abbreviate the notion of safe approximation simply to approximation.
We use Sem to denote a set of semantic functions used in the parametric de-

notational definition of a language and Sem(X) its instantiation with a specific
description domain X. If Aux = {a, b, c, . . .} denotes the set of auxiliary functions
used in Sem, then we use the notation {aX , bX , cX , . . .} to refer to the instanti-
ated auxiliary function used in Sem(X). We rephrase Theorem 4.4 in (Marriott,
Søndergaard, and Jones 1994), the central theorem to proving the correctness of
the denotational approach.

54 CHAPTER 5. MERCURY SEMANTICS

Theorem 5.1 (Safe approximating semantics) (Theorem 4.4 in (Marriott, Sønder-
gaard, and Jones 1994)) Let (X, γ, Y) be an insertion. Let Sem(X) and Sem(Y) be two
instantiations of a set of semantic functions Sem defined in terms of the meta-language
described above, and more specifically in terms of a set of auxiliary functions Aux. If
∀a ∈ Aux : aY ∝ aX then Sem(Y) is a safe approximation of Sem(X). This is denoted
by Sem(Y) ∝ Sem(X).

The use of the above notions and theorem will be made clear when applied to
the context of Simple Mercury.

Finally, we write the names of the semantic functions in bold, e.g. S. Applying
a semantic function to a syntactic element, say s, is written using the usual “syn-
tactic” brackets ‘[[’ and ‘]]’: S[[s]]. We use the classical functional notation when
the semantic function is applied to some extra arguments: e.g. S[[s]]abc.

5.2.1 Goal-(in)dependent Semantics

We develop a number of different semantics for Mercury programs. The reason
for this diversity is that a program can be interpreted in different ways, depend-
ing on the properties of interest. The two most typical views are the so called
goal-dependent semantics and the goal-independent based semantics. Both semantics
formulate the meaning of a Mercury program in the context of a particular pro-
gram query. In the goal-dependent view, procedures are given a meaning in terms
of the way that they are used given the initial query of the program . In the goal-
independent based setting, the semantics of the program is based on the context-
free meaning of the different procedures occurring in the program (and therefore
regardless of the way these procedures are called if the program is actually ex-
ecuted)

Typically, for most logic programming language implementations, the goal-
dependent semantics is used as a basis for the run-time behaviour of a program:
the program is run top/down, left-to-right, following the typical SLD-resolution
scheme (Lloyd 1987). This is why we refer to this semantics as the natural se-
mantics. On the other hand, for program analysis a goal-independent based se-
mantics can sometimes be more useful (Jacobs and Langen 1992; Codish, García
de la Banda, Bruynooghe, and Hermenegildo 1997; García de la Banda, Mar-
riott, Stuckey, and Søndergaard 1998). One of the main advantages of goal-
independent based abstract semantics versus goal-dependent abstract semantics
is the fact that the goal-independent meaning of the procedures can be computed
once and for all. This information can then be used for each new query that
needs to be analysed. If the analysis is computationally heavy, this approach
saves a lot of computation time. Moreover, in the presence of modules, a goal-
independent approach is often the only way of constructing the meaning of a
given query without needing the full knowledge of the program. Indeed, the

5.2. DENOTATIONAL ABSTRACT INTERPRETATION 55

goal-independent meaning of each of the procedures defined within a module
can be computed and exported. This exported meaning constitutes the interface
of that module to the analysis of other modules.

5.2.2 Mercury Semantics

Given the fact that the analyses that are needed in the context of a compile-time
garbage collection system are relatively heavy, and given also the fact that Mer-
cury programs are often split over a number of modules, we have decided to
develop these analyses in a goal-independent based semantics context. Yet, in or-
der to be useful, we must guarantee that the results that are obtained with these
analyses are correct w.r.t. the actual run-time behaviour of the program. We could
prove this correctness for each analysis separately, or define enough equivalence
relations between the concrete goal-dependent semantics of a Mercury program,
and its abstract goal-independent based semantics, such that only some specific
properties of the abstract domain need to be satisfied in order for the full analysis
to be correct. We decided to use the second approach.

Consider SemM be the goal-dependent semantics for Mercury programs in-
stantiated with the concrete domain ℘(Eqn+), then our goal is to develop a goal-
independent based semantics SemM• such that if SemM• is used for a particular
abstract domainA, denoted by SemM•(A), and ifA satisfies a number of proper-
ties, then the results of abstractly interpreting a Mercury program in SemM•(A)
are correct w.r.t. the actual run-time behaviour of that program represented by
SemM(℘(Eqn+)).

There are two possible ways to link SemM(℘(Eqn+)) with SemM•(A). Either
we instantiate SemM with the abstract domain A, obtaining SemM(A), and then
prove that SemM•(A) is equivalent to or at least correctly approximates SemM(A),
or we give a concrete goal-independent based meaning to the original program
from the beginning, and instantiate that semantics with the abstract domain A.
Both paths are shown in the following sketch:

SemM(℘(Eqn+)) ?⇐⇒ SemM•(℘(Eqn+))
↓ ↓

SemM(A) ?⇐⇒ SemM•(A)

Either paths need to provide some proof of equivalence of the goal-indepen-
dent based semantics with the goal-dependent semantics of the language. We
have chosen to prove this in a generic way, independent of the particular con-
crete or abstract domain. For this purpose, we have introduced an intermediate
semantics, the so called differential semantics. As we will see, in order to be equi-
valent, the domain (concrete or abstract) must satisfy a number of properties. We
show that these properties hold for the concrete domain of existential equations,
as well as for the other concrete domains constructed in this thesis.

56 CHAPTER 5. MERCURY SEMANTICS

5.3 Simple Semantics

We use Simple Mercury, the down sized language of Mercury, to introduce the
notion of goal-dependent semantics. This semantics forms a transcription and ad-
aptation of the semantics presented in (García de la Banda, Marriott, Stuckey, and
Søndergaard 1998; Jacobs and Langen 1992). The main differences are a slight ad-
aptation of the target language (using Simple Mercury instead of pure first-order
Prolog), the notation used, and the explicit incorporation of program annotations
within the semantics.

5.3.1 Semantics: Terminology and Notation

We are interested in the variable bindings that may occur as an effect of executing
the program. Usually, only the bindings of the variables occurring in the query
are returned as a result of the computation. These are the so called computed
answers (Lloyd 1987; Jacobs and Langen 1992; Marriott, Søndergaard, and Jones
1994), and are expressed in terms of a specific description domain. These com-
puted answers can be expressed in the domain of concrete variable substitutions
or ex-equations, but they can also be abstracted as elements from some abstract
domain describing these computed answers. In order to deal with recursive pro-
cedure definitions, the semantics uses a least fixed point. Such semantics are often
called collecting semantics.

Example 5.2 Consider the program defined by the rulebase containing the definition of
the non-deterministic procedure of append as given in Example 3.9, and a query that con-
sists of the conjunction of literals C <= [1], append(A, B, C). Assuming that initially all
of the variables are free, then the computed answers for this sequence of literals expressed
in the concrete domain of variable substitutions is the set

{{A/[1], B/[], C/[1]}, {A/[], B/[1], C/[1]}}

or, in the domain of ex-equations, here shown in their solved form:

{A = [1] ∧ B = [] ∧ C = [1], A = [] ∧ B = [1] ∧ C = [1]}

Given the fact that in the further sections we use ℘(Eqn+) as our concrete domain
of reference, our subsequent illustrations are mainly in terms of ℘(Eqn+).

Our analyses enable us to determine optimisations at the level of individual
literals, which means that we need to record the information about variable bind-
ings for each of these literals. Therefore, our analyses not only return the computed
answers for the given query of the program, but also the local descriptions of the
variable bindings as they can occur during the execution of the program at the
level of each single literal.

5.3. SIMPLE SEMANTICS 57

Example 5.3 The collecting semantics for the program used in Example 5.2 results in
the following annotation of the individual literals (also annotated with their program
points) in the non-deterministic procedure of append:

Literal pp Annotation
X⇐ [] 1 {Z = [1], Z = []}
Y := Z 2 {Z = [1] ∧ X = [], Z = [] ∧ X = []}
Z⇒ [Xe|Zs] 3 {Z = [1], Z = []}
append(Xs, Y, Zs) 4 {Z = [1] ∧ Z = [Xe|Zs]}
X⇐ [Xe|Xs] 5 {Z = [1] ∧ Z = [Xe|Zs]

∧Xs = [] ∧Y = Zs}

In the previous example, we have collected the concrete variable substitutions
as they may occur at run-time before the actual literal is taken into consideration.
The other possibility would have been to collect the concrete variable bindings
after the literal is executed. Given the fact that in this thesis we are interested in
optimisations that can only be performed if literals are called in the right way it is
only natural that we are only interested in the substitutions as they occur before
the actual calls. This also explains why we have chosen to mark the program
point values before the literal to which they belong.

Nevertheless, the collecting semantics presented under this form is not precise
enough for our purposes. In the table in the previous example, the equations
corresponding to a call of append(X,Y,Z) with Z bound to [1], are mixed with the
equations corresponding to calls to append in which Z is bound to the empty list.
By separating these two calls we have a better view on what happens locally,
making the analyses describing this information inherently more precise. There-
fore, instead of annotating individual literals with the description of the variable
bindings as they may occur for each call to the procedure to which the literals
belong, we separate the annotations with respect to the description of the calls of
the procedure. We obtain goal-dependent annotations of the individual literals.

Example 5.4 The goal-dependent annotations for the program used in the previous
example are given by the following table. Note that we have chosen to identify the literals
by their program points.

58 CHAPTER 5. MERCURY SEMANTICS

Call pp Annotation
{Z = [1]} 1 {Z = [1]}

2 {Z = [1] ∧ X = []}
3 {Z = [1]}
4 {Z = [1] ∧ Z = [Xe|Zs]}
5 {Z = [1] ∧ Z = [Xe|Zs] ∧ Xs = [] ∧Y = Zs}

{Z = []} 1 {Z = []}
2 {Z = [] ∧ X = []}
3 {Z = []}
4 { }
5 { }

The variable substitutions are collected w.r.t. to the way append(X,Y,Z) is called. Note
that the collected information is more precise in this case: it states that the second clause
of the non-deterministic append fails if called with Z bound to the empty list: the literal
is annotated with the bottom element { }, which reflects failure in this concrete domain.

In the following section we give a goal-dependent semantics of Simple Mer-
cury programs in the sense that the meaning of a program composed of a rule-
base and a query q consists of the computed answer to that query and a goal-
dependent annotation table that collects the relevant information for each literal.
Computed answers as well as the information recorded for each literal are ex-
pressed in a description domain Ans. This domain is either a domain that reflects
the concrete execution of the program, or an abstract domain that describes this
execution.

Let Ans be a particular description domain, then elements of Ans are called
descriptions, or sometimes substitutions or patterns. In the context of abstract in-
terpretation or program analysis in general it is natural to use complete lattices
for the description domains used which is what we also assume in our thesis.
Let 〈Ans,vAns,tAns,uAns,⊥Ans,>Ans〉 be our description domain2. If a pattern
describes how a specific procedure is called, then we call it a call description, call
substitution, or call pattern. Descriptions that describe the variable bindings of a
procedure after execution of that procedure are said to be exit descriptions, or an-
swer descriptions. The element of the description domain that corresponds to the
situation where all variables of interest are unbound is referred to as the empty
description. In ℘(Eqn+), this corresponds to the value {true}, in ℘(ESubst), this
is the element {{ }}. The empty description may in some domains correspond
to the bottom element ⊥, but it is not a requirement. Using this terminology, the
computed answer to a query corresponds to the answer description for that query
if initially called with an empty call description.

2In the following sections we drop the subscripts Ans unless they are required for clarity.

5.3. SIMPLE SEMANTICS 59

Example 5.5 The bottom element { } in ℘(Eqn+) reflects failure, and is therefore dif-
ferent from {true} which represents the fact that all variables (within the context one
considers) are free.

Definition 5.3 (Goal-Dependent Annotation Table) A goal-dependent annotation
table is a table containing tuples from the following set:

pp→ Ans→ Ans

The intended interpretation of an element (i, Sc, S) of such a table is: if a
procedure p to which the program point i belongs is called with a call description
Sc, then the particular literal at program point i is called with the description S .

In the following sections we use the notion of updating a goal-dependent an-
notation table for which we introduce the following notation:

Definition 5.4 Let T be a mapping from K-values to E-values: T : K → E, where E is
a complete lattice 〈E,vE,tE,uE,⊥E,>E〉. Let k ∈ K, and e ∈ E then

T[k, e] =
{

T \ {(k, e′)} ∪ {(k, e tE e′)} if ∃e′ . (k, e′) ∈ T
T ∪ {(k, e)} otherwise

5.3.2 Goal-Dependent Semantics SemS

This section is the first occurrence of the denotational notation we use in this text.
Therefore we construct the semantics for Simple Mercury programs in a step by
step way.

The goal of denotational semantics is to define mathematical functions that
give a meaning to the syntactical objects used in the language. This meaning is
compositional: the meaning of each syntactical object is expressed as a composition
of the meaning of the immediate constituents of that syntactical object. In the case
of Simple programs, this means that the meaning of a program r; q is defined in
terms of the meaning of the rulebase constituent r and in terms of the meaning
of the query constituent q. If PS, RS, GS are the mathematical functions giving a
meaning to programs, respectively rulebases and goals, then PS must be defined
in terms of RS and GS. Likewise for the meaning of the other syntactical objects
in Simple Mercury.

Program Semantics We start by defining the mathematical function PS. In the
previous section we announced that the meaning of a program r; q is intended to
be composed out of two parts: the exit description describing the variable bind-
ings in q after completing q in the context of the rulebase r, and a goal-dependent
annotation table that describes what happens at each program point in r dur-
ing the execution of q. By introducing the type Ann as a shorthand notation

60 CHAPTER 5. MERCURY SEMANTICS

of the functions with signature pp → Ans → Ans, i.e., the signature of goal-
dependent annotation tables, we formalise the signature of PS as being a func-
tion Program→ (Ans×Ann) mapping individual programs to tuples containing
an element from the description domain (the exit description of the query) and a
goal-dependent annotation table. We define PS by the clause

PS[[r; q]] = GS[[q]](RS[[r]]) initq initq

This formalises the fact that the meaning of a program r; q is defined as the mean-
ing of the goal q in the context of the meaning of the rulebase r, which is given
by RS[[r]]. The use of the extra arguments initq will become clear in the following
paragraphs. Note the use of the brackets [[]] to clearly differentiate the syntactical
objects from the mathematical objects in the semantic function definitions.

If the meaning of the rulebase is also considered part of the meaning of a
particular query, then it suffices to adapt the definition of PS as follows:

PS[[r; q]] = let e = RS[[r]] in
let (S , A) = GS[[q]] e initq initq in

(S , A, e)

The only difference of this formulation with the previous one is that now the
rulebase meaning, here named e, is explicitly kept and given as a result of the
meaning of the particular query q in the rulebase r. In the following chapters
we shall only use the first formulation, even if we sometimes do talk about the
rulebase meaning as the result of the analysis of a program.

Signature of the Rulebase Semantics In a goal-dependent context the mean-
ing of a rulebase consists of the description of the call and exit patterns of each
of the clauses, as well as the annotations of each of the program points within
these clauses. The meaning of an individual procedure can then be seen as a
function with the signature: Atom × Ans → Ans. Let ((p(X1, . . . , Xn), S0), S)
be an element from this mapping, then it is intended to have the following in-
terpretation: a call of p(X1, . . . , Xn) with call description S0 results in the exit
description S . Let ProcMeaning be the shorthand notation of the functions with
signature Atom × Ans → Ans, and AProcMeaning the shorthand notation for
procedure meanings combined with an annotation table, i.e., AProcMeaning :
ProcMeaning×Ann, we declare the signature of RS to be:

RS : RuleBase→ AProcMeaning

Given a rulebase, RS computes the meaning of each of the procedures defined in
that rulebase, computing a goal-dependent annotation table as well.

5.3. SIMPLE SEMANTICS 61

Goal Semantics The goal-dependent meaning of a procedure goal is simple to
construct. Given a call description of a goal g, the semantic function returns the
corresponding exit description. This is only one part of the responsibility of the
semantic function for goals. As we are explicitly interested in the intermediate
values of the descriptions, we also want to update the annotation table to include
the descriptions for the literals in that goal. To do so, it is not sufficient to know
the call description of the goal g as this goal may be a subgoal of some larger goal.
In this case we need the original call description with which the procedure was
called. Therefore, the signature of GS is:

GS : Goal→ AProcMeaning→ Ans→ Ans→ (Ans×Ann)

An expression such as GS[[g]](e, A)S0S defines the meaning of a goal g in the
context of an already precomputed rulebase meaning e and annotation table A,
where the procedure to which g belongs is called with the description S0 (needed
for correctly updating the annotation table), yet the goal itself is called with de-
scription S . The result is an answer description describing the variable bindings
after the completion of g, and a new updated annotation table.

We can now explain the double occurrence of initq in the definition of PS. The
semantic function PS is defined in terms of the meaning of the query q. This query
is simply a goal, and in order to compute its meaning, two descriptions need to be
given: the call description of the procedure to which the query belongs, and the
call description of the goal itself. As the query q does not belong to any procedure
in particular, and the goal is called simply as is, it is natural to provide an initial
empty value for both descriptions. Without fully instantiating the description do-
main, we introduce an auxiliary function init that returns a correct description of
the empty set of variable substitutions, the concrete situation in which the query
is executed. The signature of this function is

init : Ans

hence a constant. In some cases the value of init may correspond to the bottom
element of the description domain, but in ℘(Eqn+) the lack of variable bindings
is simply described by an empty set of constraints, thus {true} which is not the
bottom element of that domain. In some exceptional cases, this initial description
might be refined with respect to the variables occurring in the context of the ori-
ginal query. We therefore roughly subscribe the init function with the context in
which it is used. In this case, we have two occurrences of initq.
The definition of GS is given by the following clauses, where e is the precom-
puted rulebase meaning, A is a goal-dependent annotation table, S0 is the call
description of the procedure to which the goal belongs, and S is the actual pat-

62 CHAPTER 5. MERCURY SEMANTICS

tern describing the call of the body:

GS[[g1, g2]](e, A)S0S = let (S1, A1) = GS[[g1]](e, A)S0S in
GS[[g2]](e, A1)S0S1

GS[[g1; g2]](e, A)S0S = let (S1, A1) = GS[[g1]](e, A)S0S in
let (S2, A2) = GS[[g2]](e, A)S0S in

(S1 t S2, merge(A1, A2))
GS[[l]](e, A)S0S = (LS[[l]] e S , A[(pp(l), S0), S])

The semantics of a conjunction of goals g1, g2 is defined as the meaning of the
second goal g2 computed in terms of the meaning of the first goal g1. The mean-
ing of a disjunction of goals g1; g2 is defined in terms of the independent meaning
of each of the constituent goals, each resulting in a separate exit description and
a new updated annotation table. These results are then combined into a single
exit description – the least upper bound of the exit descriptions of each of the
branches of the disjunction, and one single annotation table. The latter is ob-
tained by merging the two annotation tables. For this purpose we introduce the
merge-function, which is defined as follows.

Definition 5.5 Let A1 and A2 both be annotation tables in Ann, then merging these
tables is defined as:

merge : Ann→ Ann→ Ann
merge(A1, A2) = {(i, S0, S)} where S = S1 t S2 if (i, S0, S1) ∈ A1 ∧ (i, S0, S2) ∈ A2

S = S1 if (i, S0, S1) ∈ A1∧ 6∃S2.(i, S0, S2) ∈ A2
S = S2 if (i, S0, S2) ∈ A2∧ 6∃S2.(i, S0, S1) ∈ A1

Note that we could have given a more sequential semantics to the disjunctive
goals by interpreting the second branch of the disjunction using the annotation
table resulting from the meaning of the first branch. Given the associative nature
of the least upper bound operation, the results are guaranteed to be the same as
long as the annotation table is not consulted, i.e., as long as none of the semantic
functions accesses and uses any of the values stored in the annotation table. As
the annotation table is used in our definition strictly to store values without actu-
ally using these values for the analysis itself, this aspect is not an issue here.

Finally, the semantics of a goal consisting of a simple literal is defined as the
semantics of that literal.

Literal Semantics The signature of the semantic function LS is simply:

Literal→ ProcMeaning→ Ans→ Ans

The purpose of an expression such as LS[[l]] e S is to return the exit description of
a call of the literal l described by S . This behaviour is defined by the following

5.3. SIMPLE SEMANTICS 63

clauses:
LS[[unif]] e S = add(unif, S)
LS[[p(X)]] e S = e(p(X), S)

where “unif” is one of the four Mercury unifications.
In this definition, we make the distinction between each of the possible forms

a literal may have. If the literal is a unification, then we update the call sub-
stitution in an appropriate way. Given the fact that we do not yet determine the
exact description domain, we introduce a monotonic auxiliary function add. The
purpose of this auxiliary function is to update a specific description to correctly
render unification3. Therefore, the signature of add is:

Prim→ Ans→ Ans

where Prim represents the set of all built-in operations, i.e., in this context the four
different types of unification known in Mercury. The exact definition of the add
function depends on the description domain that is used.
If the literal is a procedure call p(X), then we consult the precomputed meaning
of the rulebase. Given the fact that each procedure call is defined by exactly one
procedure, we simply need to look up the meaning of this procedure in the pre-
computed rulebase meaning given the call description S . We assume that e has
been fully precomputed4, and contains all the needed call/exit descriptions.

Rulebase Semantics We now tackle the definition of the meaning of a rulebase.
By the presence of possible recursive procedures, we formalise the meaning of a
rulebase r as the least fixpoint of an intermediate function FS with signature:

FS : RuleBase→ AProcMeaning→ AProcMeaning

which is equivalent to

FS : RuleBase→ (ProcMeaning×Ann)→ (ProcMeaning×Ann)

With ProcMeaning = Atom×Ans→ Ans and knowing that in these signatures ×
is equivalent to→ (normal currying), this allows us to write:

FS : RuleBase→ (ProcMeaning×Ann)→ (Atom×Ans)→ (Ans×Ann)

The latter explicit form of the signature makes clear that FS gives a meaning to
a rulebase with respect to a precomputed rulebase meaning and goal-dependent
annotation table, for a specific procedure identified by an atom, and a specific

3Unification is the only real built-in in Mercury, but add can be generalised to any built-in operation
that might be added to Mercury.

4In fact, e is computed in a fixpoint computation. More about this will be said in Section 5.3.6.

64 CHAPTER 5. MERCURY SEMANTICS

call description. The result is an exit description and a new annotation table. The
definition of this function is formalised by the following clause:

FS[[p1 . . . pi . . . pnp]](e, A)(pi(Y), S0) = PrS[[pi]](e, A)(pi(Y), S0)

The definition of RS is expressed using the least fixpoint operator included in
our meta-language (Marriott, Søndergaard, and Jones 1994)

fix : (T → T)→ T

where T can be any function. The definition of RS is:

RS[[r]] = fix(FS[[r]])

How this fixpoint is computed is discussed in Section 5.3.6.

Procedure Semantics Finally, we specify the meaning of an individual proced-
ure in the presence of a specific call. The signature of PrS can be derived from the
signature of FS, here shown in its explicit form:

PrS : Procedure→ (ProcMeaning×Ann)→ (Atom×Ans)→ (Ans×Ann)

We define PrS using the new monotone auxiliary function

comb : Ans→ Ans→ Ans

The purpose of comb(Sa, Sb) is to return a correct description of the result of
adding a new substitution Sb to an already existing substitution Sa. The imple-
mentation of this function is of course dependent on the description domain used.
The definition of PrS is given by the clause

PrS[[h← g]](e, A)(a, S) = let S0 = ρa→h ((S)|a) in
let (S1, A1) = GS[[g]](e, A)S0S0 in

(comb(S , ρh→a ((S1)|h)), A1)

where (S)|t (with t a term) is a shorthand notation for (S)|Vars(t), the usual pro-
jection operation (c.f. Chapter2), and ρt1→t2 (S) renames S by replacing the vari-
ables from term t1 by the variables of its variant, term t2 (c.f. Chapter 2).

In the context of a given rulebase meaning and annotation table, the meaning
of a procedure for a specific call is defined as the meaning of the procedure goal
w.r.t. a renamed and projected call description S0. The exit description of the goal
is then renamed and combined with the original initial call description so as to
bring the result back to the context of the original call.

5.3. SIMPLE SEMANTICS 65

Ans = description domain of interest
Ann = pp×Ans→ Ans
ProcMeaning = Atom×Ans→ Ans
AProcMeaning = ProcMeaning×Ann

Figure 5.1: Definitions of the types used in SemS.

PS : Program→ (Ans×Ann)
RS : RuleBase→ AProcMeaning
FS : RuleBase→ AProcMeaning→ AProcMeaning
PrS : Procedure→ AProcMeaning→ AProcMeaning
GS : Goal→ AProcMeaning→ Ans→ Ans→

(Ans×Ann)
LS : Literal→ ProcMeaning→ Ans→ Ans

Figure 5.2: Type signatures of the semantic functions used in SemS.

Putting it all together An overview of the semantic function definitions is pre-
sented in Figure 5.3. The types and signatures used for these definitions are re-
capitulated in Figure 5.1 and Figure 5.2 respectively. The semantic functions are
parameterised with respect to a description domain Ans.

We denote the resulting semantics by SemS. It is parametric with respect to
the exact description domain used. For each instantiation of the semantics, the
auxiliary functions init, comb and add need to be defined. When instantiating
the above semantics with a particular domain, say X, we denote the instantiated
auxiliary functions by subscribing them with the name of the domain used: initX ,
combX , and addX .

The semantics is goal-dependent in the sense that procedures are given a mean-
ing in the context of a particular call description. The annotations are in the same
sense goal-dependent.

In the following subsection we illustrate the use of the semantic functions
by instantiating it with a specific concrete domain, namely the domain of ex-
equations. We discuss the precision of the semantic functions with respect to the
real concrete execution of Mercury programs. We also present the background
theory for showing that the presented semantic functions are well defined when
the auxiliary functions are monotone in their description domain arguments.
And finally, we discuss how these semantic functions can be implemented.

66 CHAPTER 5. MERCURY SEMANTICS

PS[[r; q]] = GS[[q]](RS[[r]])initqinitq
RS[[r]] = fix(FS[[r]])
FS[[p1 . . . pi . . . pnp]](e, A)(pi(Y), S0)

= PrS[[pi]](e, A)(pi(Y), S0)
PrS[[h← g]](e, A)(a, S) = let S0 = ρa→h ((S)|a) in

let (S1, A1) = GS[[g]](e, A)S0S0 in
(comb(S , ρh→a ((S1)|h)), A1)

GS[[g1, g2]](e, A)S0S = let (S1, A1) = GS[[g1]](e, A)S0S in
GS[[g2]](e, A1)S0S1

GS[[g1; g2]](e, A)S0S = let (S1, A1) = GS[[g1]](e, A)S0S in
let (S2, A2) = GS[[g2]](e, A)S0S in

(S1 t S2, merge(A1, A2))
GS[[l]](e, A)S0S = (LS[[l]] e S , A[(pp(l), S0), S])
LS[[unif]] e S = add(unif, S)
LS[[p(X)]] e S = e(p(X), S)

Figure 5.3: Goal-dependent semantics SemS for Simple Mercury.

5.3.3 Concrete Goal-Dependent Semantics

An interesting instantiation of the goal-dependent semantics is the concrete do-
main of existential equations or constraints ℘(Eqn+), a domain that we already
defined in Chapter 2.

We define the concrete goal-dependent semantics for Simple Mercury programs
as follows:

Definition 5.6 (Concrete Goal-Dependent Semantics) Using the domain of exist-
entially quantified ex-equations 〈℘(Eqn+),⊆,∪,∩, { }, Eqn+〉 as our description do-
main Ans in the semantics SemS, we define

init℘(Eqn+) = {true}
comb℘(Eqn+)(E, E′) = {e′′ | e ∈ E, e′ ∈ E′, e′′ = e ∧ e′, e′′ is solvable}
add℘(Eqn+)(unif, E) = comb℘(Eqn+)(Eunif, E)

where Eunif is defined as

EX⇒ f (Y) = {X = f (Y)} EX:=Y = {X = Y}
EX⇐ f (Y) = {X = f (Y)} EX==Y = { }

The description for X == Y could also be X = Y, yet this equation does not represent
any added value to the set of equations representing the variable bindings at the moment
the test unification is considered. The resulting goal-dependent semantics is the concrete
goal-dependent semantics of our Simple Mercury language.

5.3. SIMPLE SEMANTICS 67

pp S0 Spp
1 {Z = [1]} {Z = [1]}
2 {Z = [1]} {Z = [1] ∧ X = []}
3 {Z = [1]} {Z = [1]}
4 {Z = [1]} {Z = [1] ∧ Z = [Xe|Zs]}
5 {Z = [1]} {Z = [1] ∧ Z = [Xe|Zs] ∧ Xs = [] ∧Y = Zs}
1 {Z = []} {Z = []}
2 {Z = []} {Z = [] ∧ X = []}
3 {Z = []} {Z = []}
4 {Z = []} { }
5 {Z = []} { }

Table 5.1: Goal-dependent annotation table for the non-deterministic procedure
of append for the initial call description {Z = [1]} (c.f. Example 5.6).

Note how the restriction of being solvable in the definition of comb℘(Eqn+)

ensures that the result is always a set of solvable ex-equations.

Example 5.6 Consider the code of the non-deterministic procedure of append as in ex-
ample 3.9 (here shown with its program points):

append (X, Y, Z):−
(

(1) X <= [] , (2) Y := Z ,
;

(3) Z => [Xe | Zs] ,
(4) append (Xs ,Y, Zs) ,
(5) X <= [Xe | Xs]

) .

The concrete meaning of the query C = [1], append(A,B,C) is the exit description: {A =
[]∧B = [1]∧C = [1], A = [1]∧B = []∧C = [1]} and the goal-dependent annotation
table as shown in Table 5.1. In that table S0 represents the call description of the called
procedure:

For clarity, the exit descriptions of each of the disjuncts are shown in Table 5.2, where
S0 again designates the call description for append.

Obviously, append is called with two distinct call patterns: {Z = [1]}— the initial
call pattern — and {Z = []} — the call pattern stemming from the recursive call.
With the second call description, the unification of Z ⇒ [Xe|Zs] fails, hence returns an
unsatisfiable ex-equation, which is reflected by the { }-value for the resulting description,
i.e., it has no computed answer substitution. Note that the descriptions that are recorded
in the annotation table are the ones that occur before the literal corresponding to the
program point is taken into consideration. The description after the literal corresponding

68 CHAPTER 5. MERCURY SEMANTICS

goal S0 S
X⇐ [],
Y := Z

{Z = [1]} {Z = [1] ∧ X = [] ∧Y = Z}

Z⇒ [Xe|Zs],
append(. . .),
X⇐ [Xe|Xs]

{Z = [1] {Z = [1] ∧ Z = [Xe|Zs]
∧Xs = [] ∧Y = Zs ∧ X = [Xe|Xs]}

X⇐ [],
Y := Z

{Z = []} {Z = [] ∧ X = [] ∧Y = Z}

Z⇒ [Xe|Zs],
append(. . .),
X⇐ [Xe|Xs]

{Z = [] { }

Table 5.2: Explicit exit descriptions for each of the disjunctions in the non-
deterministic procedure of append (c.f. Example 5.6).

to a program point is not explicitly recorded, unless as the annotation of the following
program point, if it exists.

These results correspond to the results detailed in Example 5.4.

5.3.4 Precision of the Concrete Semantics

The definition of the semantics for Simple Mercury was inspired by (Marriott,
Søndergaard, and Jones 1994) where a similar semantics was developed for non-
strongly moded definite logic programs. The authors in (Marriott, Søndergaard,
and Jones 1994) mention that their definition of the concrete semantics of a clause
(corresponding to our definition of a program procedure) is inherently imprecise.
This is illustrated by the following fragment of Prolog code (where (1) and (2)
denote the program points):

q (X, Y , Z) : − (1) p (X,Y) , (2) r (X , Y , Z) .
p (U , V) : − U = a .
p (U , V) : − V = a .
r (U,V,W) : − V = W.

Entering the query← q(X, Y, Z) into a Prolog system (with a left-to-right SLD-
resolution scheme) yields two solutions:

{X = a ∧Y = Z, Y = a ∧ Z = a}

Indeed, the call p(X, Y) either binds X or Y to a (not both), and the call r(X, Y, Z)
unifies the second with the third argument.

But if we interpret this code using the semantic functions defined for Simple
Mercury, then the exit description of the call p(X,Y) with call description {true}

5.3. SIMPLE SEMANTICS 69

will be the set of equations

{X = a ∧Y = Z, Y = a ∧ Z = a, X = a ∧Y = a ∧ Z = a}

where the underlined ex-equation describes a situation that can never occur as
a solution to the query. Indeed, after the evaluation of p(X, Y), a description
{X = a, Y = a} is obtained. This becomes the call description for r(X, Y, Z). Us-
ing the definition of PrS, we obtain S = {X = a, Y = a}, which after projecting
and renaming results in S0 = {U = a, V = a}. The semantics of the procedure
r(U, V, W) ← V = W is to simply combine the constraint V = W to any of the
constraints with which the procedure is called, therefore yielding in our partic-
ular case: S1 = {U = a ∧ V = W, V = a ∧ V = W}. Finally, the resulting exit
description for the procedure definition of q(X, Y, Z) is obtained by applying the
comb operation to the description {X = a, Y = a} and the renamed5 substitution
S1:

comb℘(Eqn+)({X = a, Y = a}, {X = a ∧Y = Z, Y = a ∧Y = Z})
= {X = a ∧Y = Z, Y = a ∧ Z = a, X = a ∧Y = a ∧ Z = a}

Hence the announced imprecision. The reason why we have this imprecision
comes from the fact that the original call description, a set of individual calls, is
treated as a whole and therefore threaded throughout the definition of the pro-
cedure as one set. After that, the original set of individual calls are combined
again with the obtained description. This way of defining the semantics does
not take into account that each specific call situation results in its specific set of
exit situations, but blindly combines the call description with the obtained exit
description.

Therefore, if the semantic functions used for Simple Mercury are used for de-
fining the semantics of non-strongly moded logic languages, then these functions
will be inherently imprecise w.r.t. the real exit descriptions the language can pro-
duce. The reason for this loss of precision is, as shown in the previous example,
the fact that, in the concrete domain, all the ex-equations describing a specific
call situation, are taken together as a set, threaded as a set through the definition
of the procedure goal, after which the result, again a set of equations, is unified
with the original set of equations. Given the fact that in general, this unification
operation is not idempotent, loss of precision can be expected.

5Also projected of course, but in this case this is a null operation.

70 CHAPTER 5. MERCURY SEMANTICS

A more precise description of the concrete semantics of a procedure would be
given by the following clause:

Prex
S [[h← g]](e, A)(a, S)
= let ∀σ ∈ S :

let Sσ
0 = ρa→h (({σ})|a) in

let (Sσ
g , Aσ) = GS[[g]](e, A)Sσ

0 Sσ
0 in

let Sσ = comb
(
{σ}, ρh→a

((
Sσ

g

)∣∣∣
h

))
in (

⋃
σ∈S Sσ , mergeσ∈SAσ)

where mergeσ∈SAσ is defined as the consecutive application of the merge opera-
tion on each of the intermediate annotation tables Aσ .

In this definition, each call description is considered to be a set of individual
call descriptions (which is indeed the case for the concrete domain we use). An
exit description Sσ

g of the procedure goal is computed for each individual call
description σ ∈ S . Each of these exit descriptions is then combined with the
call description it stems from, resulting in a description Sσ . Finally, all the exit
descriptions are joined into one single exit description for the procedure. The
individual annotation tables are merged together.

It is easy to verify that the exit description in the context of the above example
would indeed correspond to the two solutions that are given by a Prolog system,
namely {X = a ∧Y = Z, Y = a ∧ Z = a}.

However, while the program code used in the above example is legal Prolog
code, there is no way this code can be legal in the context of Mercury. Mercury
is a strongly moded language, where each procedure is characterised by a set
of input arguments, and a set of output arguments. Each clause of the initial
predicate definition (or disjunction branch in a procedure) must satisfy the same
mode constraints. In the definition of p(X, Y), the first clause specifies X as an
output argument and leaves Y unbound, while the second clause works the other
way around. This behaviour can not be expressed in the Mercury mode system,
hence it is not a legal Mercury program.

In fact, due to the strongly moded character of Mercury programs, the “ap-
proximating” semantics for PrS as given in Figure 5.3, is equivalent to the se-
mantic function Prex

S . This property is related to the head variable idempotence of
the comb℘(Eqn+) operation (See Item 4 of the proof of Theorem 5.5, page 88). In-
tuitively, if one of the variable descriptions grounds a variable, then all other
descriptions must do so too to be in accordance with the modes of the procedure.
Now, if an exit description stems from a particular call description, then this exit
description must be modelled by that call description. Even stronger, given the
fact that every single call description is different in at least one of the bindings
of the concerned variable, every exit description can be modelled by exactly one
of the call descriptions, namely the one it stems from. This means that only the

5.3. SIMPLE SEMANTICS 71

combination of the exit descriptions with their own call descriptions from which
they stem result in solvable ex-equations. “Mixing” call descriptions with exit
descriptions therefore can not happen in Mercury due to the very strict moding
rules.

5.3.5 Well Definedness

We show that the goal-dependent semantics presented above exists in the sense
that the fixpoint used in the definition of SemS exists. The only requirement is
that the auxiliary operations used in SemS need to be monotonic. In a second step
we show that if these auxiliary functions are also continuous, then the fixpoint
process can be computed as a Kleene-sequence.

Theorem 5.2 The natural semantics SemS exists.

Proof The auxiliary functions are monotonic over the description domain which
was required to be a complete lattice. Hence the semantic function FS is
monotonic too. Therefore, by application of the weak form (Lloyd 1987) of
Tarski’s fixpoint theorem (Tarski 1955) we know that a fixpoint exists.

2

Theorem 5.3 Consider the description domain to be a complete lattice. If that domain is
finite, or if every ascending chain in the description domain used in SemS is finite or if the
auxiliary functions are continuous, then the semantics of the rulebase can be computed
by the consecutive application of FS: RS = Fn

S(⊥,⊥A), called the Kleene sequence,
where ⊥ is the bottom element of the lattice used for the description domain, and where
⊥A = {(i,⊥,⊥) | i ∈ pp} represents the empty annotation table.

Proof Ascending chains are always finite in finite domains. Complete lattices
in which every ascending chain is finite are called Noetherian. Noeth-
erian lattices have the characteristic that all monotonic functions defined
over these lattices are also continuous, page 401 in (Nielson, Nielson, and
Hankin 1999). Hence, the auxiliary functions are continuous, which means
that also FS is continuous. The theorem holds by application of Proposi-
tion 5.4 in (Lloyd 1987).

2

Note that the auxiliary functions used in the concrete goal-dependent semantics
SemS(℘(Eqn+)) are continuous, hence monotone (℘(Eqn+) is a Noetherian lat-
tice). The concrete goal-dependent semantics is therefore well defined, and the
fixpoint can be computed by Kleene’s sequence.

72 CHAPTER 5. MERCURY SEMANTICS

5.3.6 Possible Implementation

In the definition of LS we assumed that (e, A) is fully known and that therefore a
lookup operation e(p(X), S) always yields the exact exit description for the call
description S of p(X). This view implies a bottom-up implementation of the se-
mantics. When evaluating the query, the rulebase meaning and annotation table
corresponding to this rulebase meaning, is considered to be known. Also, when
evaluating a literal, the entry for the procedure corresponding to the definition
of the procedure call is considered to be present in the rulebase meaning used.
Given the fact that the semantics presented here is goal-dependent, this would
mean that the meaning of the rulebase would need to be computed for all pos-
sible call descriptions of the procedures defined in the rulebase, although most
of these call descriptions would not be needed for the evaluation of the query of
interest. This approach could be seen as a strict bottom-up approach6. As argued,
using this approach in the implementation of the goal-dependent semantics for
Simple Mercury is not feasible.

A better approach for the implementation of the goal-dependent semantics for
Simple Mercury is to consider a lazy and therefore top-down oriented view. If,
during the evaluation of a literal, a lookup operation is performed for a call that
was not yet recorded in the rulebase meaning, then this lookup-operation triggers
the evaluation of the procedure defining that procedure for the call description
with which the literal was called. The rulebase meaning is therefore constructed
on demand, hence the process becomes top-down. Note that only the calls that are
needed for the evaluation of the query are evaluated in this setting.

Therefore, the most natural implementation for the goal-dependent semantics
of Simple Mercury programs is a lazy top-down on demand oriented implement-
ation of the fixpoint operator. This is typically the approach that can be found
in some of the generic abstract interpretation frameworks developed for Prolog,
such as PLAI (Muthukumar and Hermenegildo 1992), GAIA (Le Charlier and Van
Hentenryck 1994) or AMAI (Janssens, Bruynooghe, and Dumortier 1995).

5.3.7 Safe Abstract Goal-Dependent Semantics

In the previous sections we have presented a parametric goal-dependent semantics
for programs written in the Simple Mercury programming language. We have
also defined a concrete instantiation of that semantics, namely by taking the
description domain to be the domain of existentially quantified term equations
℘(Eqn+). In the following chapters we are interested in relating an abstract instan-

6Here the word strictness should be seen in the sense of strict functional languages such as Common
Lisp (Steele 1984) or Standard ML (Milner, Tofte, and Macqueen 1997), as opposed to lazy functional
languages such as Haskell (Hudak et al. 1992). In that context, a strict function is fully evaluated as
soon as it is encountered, while a lazy function will only be evaluated when some of its results are
needed. Lazy functions may not need to be fully evaluated if not all of the results are used.

5.3. SIMPLE SEMANTICS 73

tiation of the semantics, to a concrete instantiation. In general, we want to relate
different instantiations. The specific relation that is of interest is to know whether
the semantics with some instantiationA is a safe approximation of the semantics in-
stantiated with a description domain C. This relation of safeness is given by The-
orem 5.1 (page 54). We specialise this theorem to our context of the Simple Mer-
cury semantic functions SemS and its auxiliary functions Aux = {init, comb, add}.

Corollary 5.1 Let A be a complete lattice, such that (C , γ,A) forms an insertion, and
where ℘(Eqn+) is the concrete domain used in Definition 5.6. Let initA, combA and
addA be an instantiation of the auxiliary functions used in SemS. If initA ∝ init℘(Eqn+),
combA ∝ comb℘(Eqn+) and addA ∝ add℘(Eqn+) then the abstract semantics SemS(A)
is a safe approximation for the concrete semantics SemS(℘(Eqn+)), i.e., SemS(A) ∝
SemS(℘(Eqn+)).

Example 5.7 For this example we plan to deduce groundness information7 and represent
it using the domain of positive boolean equations known as Pos (or Prop). For more
details on this domain, we refer the reader to Marriott and Søndergaard 1993; Codish
and Demoen 1993; Le Charlier and Van Hentenryck 1993. It is common to extend this
domain with the (non-positive) boolean element false. This element is used to represent
the empty set of constraints (in the concrete domain). The extended domain is named
Pos⊥. In this domain truth-values related to variables are never capitalised. We follow
that same convention here: if X is a variable, then x is used to characterise its groundness
state.

Pos⊥ is a complete lattice ordered by logical consequence |=. The conjunction ∧ and
disjunction ∨ operations serve as greatest lower bound, resp. least upper bound. The
bottom element is false, while the top element is the boolean element true.

Let θ be a variable substitution (c.f. Chapter 2), then groundsθ is a mapping of vari-
ables to truth assignments: if θ grounds a variable then it is mapped to true, and to false
otherwise. Thus: groundsθV ⇔ Vars(Vθ) = { }, where V ∈ V . Using this notion, we
define the concretisation function. We have γPos : Pos→ ℘(Eqn+) where

γPos(φ) = {e | ∀θ ∈ unif(e) . (groundsθ) |= φ}

This concretisation function is monotonic and co-strict.
Let initPos⊥ , combPos⊥ and addPos⊥ be defined as follows:

initPos⊥ = true

combPos(S1, S2) = S1 ∧ S2
addPos⊥(unif, S) = Sunif ∧ S

7Note that this information is in fact already present through the mode information available in
our Mercury programs. Also, as Mercury does not allow partially instantiated data structures, all
variables that get instantiated in a procedure always become ground. For this example we make
abstraction of these facts.

74 CHAPTER 5. MERCURY SEMANTICS

where Sunif is defined by the following clauses:

SX⇐ f (Y1 ,...,Yn) = x↔ (y1 ∧ y2 ∧ . . . ∧ yn)
SX⇒ f (Y1 ,...,Yn) = x↔ (y1 ∧ y2 ∧ . . . ∧ yn)
SX:=Y = x↔ y
SX==Y = true

The description for X == Y could also be x ∧ y as both variables are definitely ground
after the test, yet they must already been ground before the test, hence, the extra equation
does not add any new information.

We need to prove that initPos⊥ ∝ init℘(Eqn+), combPos⊥ ∝ comb℘(Eqn+) and
addPos⊥ ∝ add℘(Eqn+).

• γ(initPos⊥) = γ(true) = ℘(Eqn+). And init℘(Eqn+) = {true} ⊆ ℘(Eqn+) =
initPos⊥ .

• Let E1, E2 ∈ ℘(Eqn+), and φ1,φ2 ∈ Pos⊥, such that E1 ⊆ γ(φ1), and E2 ⊆
γ(φ2), then we need to prove that comb℘(Eqn+)(E1, E2) ⊆ γ(combPos⊥(φ1,φ2)).
As combPos⊥ is defined as the logical conjunction, and each pair of constraints is
also conjoined by comb℘(Eqn+), the logical consequence operation is satisfied.

• With Eunif as defined in Definition 5.6, clearly Eunif ⊆ γ(Sunif) for every type

of unification. Therefore, as combPos⊥ ∝ comb℘(Eqn+), we also have addPos⊥ ∝
add℘(Eqn+).

Therefore SemS(Pos⊥) ∝ SemS(℘(Eqn+)) which means that the results of ab-
stractly interpreting a program w.r.t. Pos⊥ safely approximate the concrete run-time sub-
stitutions.

Interpreting the non-deterministic call append(A,B,C) where C is bound to a list [1] ,
which can be approximated by the boolean formula c, results in the abstract exit descrip-
tion a ∧ b ∧ c, and the annotation table:

pp S0 Spp
1 z z
2 z x ∧ z
3 z z
4 z z ∧ xe ∧ zs
5 z z ∧ xe ∧ zs ∧ (zs ↔ xs ∧ y)

= z ∧ zs ∧ xe ∧ xs ∧ y

5.4 Goal-Dependent Semantics SemM

The only difference between Mercury and Simple Mercury lies in the two addi-
tional goals: negations and if-then-else constructs. Let SemM be the goal-depen-

5.4. GOAL-DEPENDENT SEMANTICS SEMM 75

dent semantics for Mercury, then all the semantic functions PM, RM, PrM, GM,
LM used in SemM correspond to the semantic functions PS, RS, PrS, GS and LS
used in SemS. Given the two additional goals, we only need to define two extra
clauses for GM.

We first construct this semantics from the point of view of the concrete goal-
dependent semantics (Definition 5.6). We highlight some of the problems of this
semantics when used for abstract domains. These problems bring us to a new, ap-
proximate, definition of the generic semantics of these two language constructs.

Example 5.8 Consider the following procedure:

% : − pred i t e (l i s t (i n t) , i n t) .
% : − mode i t e (out , out) i s nondet .
i t e (X,Y) :−

((1) X <= [] ; (2) X <= [1]) ,
i f (3) X => []
then (4) Y <= 1
else (5) Y <= 2 .

It is obvious that there are only two possible exit descriptions for the empty call de-
scription:

{X = [] ∧Y = 1, X = [1] ∧Y = 2}

Defining this behaviour for the concrete domain ℘(Eqn+) results in the fol-
lowing additional clause for GM:

GM[[if g1 then g2 else g3]](e, A)S0S =
let (Sσ , Aσ) = G′M[[if g1 then g2 else g3]](e, A)S0σ , ∀σ ∈ S
in

(
⋃

σ∈S Sσ , mergeσ∈SAσ)

(5.1)

with the additional semantic function G′M defined as

G′M[[if g1 then g2 else g3]](e, A)S0σ =
let (S1, A1) = GM[[g1]](e, A)S0{σ} in
if S1 6= { } then

GM[[g2]](e, A1)S0S1
else

GM[[g3]](e, A)S0{σ}

and where mergeσ∈SAσ is as defined earlier on Page 70.
This definition of the semantics of if-then-else construct can be read as follows:

if S is a set of ex-equations, then each ex-equation is treated individually. For each
of these individual call descriptions, G′M defines the exit description depending
on whether the tested goal g1 fails for this call description or not. The resulting

76 CHAPTER 5. MERCURY SEMANTICS

exit descriptions and annotation tables are then combined into one single exit de-
scription and annotation table. This behaviour is similar to the detailed definition
of the semantics for procedures given in Section 5.3.4.

This definition is very specific and can only be used in the context of concrete
domains which represent each possible call by an individual element σ ∈ S . It is
not possible to use this definition for abstract domains where the call description
usually describes a set of concrete call substitutions by one single description.
E.g. a concrete call description {X = [], X = [1]} consisting of two different
call situations, would typically be abstracted by one single abstract formula in a
Pos-based groundness setting: x, saying that X is ground.

Similarly, the behaviour of negated goals can be described by:

GM[[not g]](e, A)S0S =
let (Si , Ai) = G′M[[not g]](e, A)S0σi , ∀σi ∈ S
in

(S , mergei Ai)

(5.2)

where G′M[[not g]] is defined as:

G′M[[not g]](e, A)S0σ =
let (S1, A1) = GM[[g]](e, A)S0{σ} in
if S1 = { } then

({σ}, A1)
else

({ }, A)

The conclusions for these semantic functions are similar to the conclusions for the
if-then-else construct.

In Section 5.3.4 we could simplify the definition of the semantics of proced-
ures arguing that Mercury is a strongly moded language, hence, both definitions,
whether detailed for each concrete call substitution individually, or defined for
the whole set of call substitutions, are in fact equivalent. However, this reasoning
can not be applied here.

Here we have two possible options: either we accept the difference between
the rules describing the concrete semantics and those describing the abstract se-
mantics, or we agree to lift the semantics for the concrete domains to a more
imprecise definition yet that can be used to express the abstract semantics of the
language too. The disadvantage of the first solution is that we will then need
to keep track of two formalisations of the Mercury semantics, making it more
cumbersome to prove the safeness of the abstract semantics (and its variations)
w.r.t. the concrete semantics of the language (instead of simply proving that the
auxiliary functions are safe approximations of each other, Theorem 5.1). While

5.4. GOAL-DEPENDENT SEMANTICS SEMM 77

loss of precision for describing the concrete semantics may be seen as a disad-
vantage for the second solution, as program analysis is inherently limited to ap-
proximate concrete execution, we argue that the loss of precision at this level is
acceptable, and therefore decide for the second approach trading precision for
clean formalisation.

Given the fact that at run-time, a call substitution can either satisfy the tested
goal or not, but not both, we need to refer to each single call substitution of the
original call description, compute its exit substitution, and combine the result.
By relaxing the definition of the if-then-else and negation construct, we can avoid
this behaviour. This relaxation can be done by considering that if-then-else and
negated goals are equivalent to non-deterministic disjunctions:

if g1 then g2 else g3 ≡ (g1, g2; g3)
not g ≡ if g then false else true

≡ (g, false; true)

where false and true are procedures that always fail, or always succeed re-
spectively8. In this case, reconsidering the code of ite(X, Y) in Example 5.8, the
exit description of ite(X, Y) for a call description S = { } becomes

{X = [] ∧Y = 1, X = [] ∧Y = 2, X = [1] ∧Y = 2}

The underlined ex-equation can never result from the program, so indeed, we
provide an overestimation of the possible concrete substitutions.

The semantic functions corresponding to this interpretation of the if-then-else
constructs and negations become:

GM[[if g1 then g2 else g3]](e, A)S0S = (5.3)
let (S1, A1) = GM[[g1]](e, A)S0S in
let (S2, A2) = GM[[g2]](e, A1)S0S1 in
let (S3, A3) = GM[[g3]](e, A)S0S in

(∪(S2, S3), merge(A2, A3))
GM[[not g]](e, A)S0S = (5.4)

let (S1, A1) = GM[[g]](e, A)S0S in
(S , A1)

These functions treat the descriptions as a whole, which makes them applic-
able to concrete as well as abstract description domains. It can easily be shown

8We have not incorporated these literals into the language, as they can be defined easily by the
other syntactical elements. E.g. false :− X = 1, X = 2. and true :− X = 1.

78 CHAPTER 5. MERCURY SEMANTICS

PM[[r; q]] = GM[[q]](RM[[r]]) initq initq
RM[[r]] = fix(FM[[r]])
FM[[p1 . . . pi . . . pnp]](e, A)(pi(Y), S0) = PrM[[pi]](e, A)(pi(Y), S0)
PrM[[h← g]](e, A)(a, S) = let S0 = ρa→h ((S)|a) in

let (S1, A1) = GM[[g]](e, A)S0S0 in
(comb(S , ρh→a ((S1)|h)), A1)

GM[[g1, g2]](e, A)S0S = let (S1, A1) = GM[[g1]](e, A)S0S in
GM[[g2]](e, A1)S0S1

GM[[g1; g2]](e, A)S0S = let (S1, A1) = GM[[g1]](e, A)S0S in
let (S2, A2) = GM[[g2]](e, A)S0S in

(S1 t S2, merge(A1, A2))
GM[[if g1 then g2 else g3]](e, A)S0S = let (S1, A1) = GM[[g1]](e, A)S0S in

let (S2, A2) = GM[[g2]](e, A1)S0S1 in
let (S3, A3) = GM[[g3]](e, A)S0S in

(∪(S2, S3), merge(A2, A3))
GM[[not g]](e, A)S0S = let (S1, A1) = GM[[g]](e, A)S0S in

(S , A1)
GM[[l]](e, A)S0S = (LM[[l]] e S , A[(pp(l), S0), S])
LM[[unif]] e S = add(unif, S)
LM[[p(X)]] e S = e(p(X), S)

Figure 5.4: Definition of the natural semantics for Mercury, SemM.

that the results using the first definition are always included in the results ob-
tained using the above definition for if-then-else and negation.

Figure 5.4 recapitulates the definition of the goal-dependent semantics of Mer-
cury programs, SemM. The types and signatures are the same as for Simple Mer-
cury (Figure 5.1 and Figure 5.2 resp.).

We define the concrete goal-dependent semantics of Mercury to be the above se-
mantics SemM instantiated with the concrete domain of variable substitutions
℘(Eqn+). Note that this semantics is well defined.

5.5 Towards Goal-Independent Based Semantics

In the previous sections we presented goal-dependent semantics for Simple Mer-
cury and core Mercury. These semantics correspond to the normal intuitive read-
ing given to logic programming languages. Another semantics, often used in
the context of logic programming languages, is the goal-independent based se-
mantics (Jacobs and Langen 1992; Codish, García de la Banda, Bruynooghe, and

5.5. TOWARDS GOAL-INDEPENDENT BASED SEMANTICS 79

Hermenegildo 1997; García de la Banda, Marriott, Stuckey, and Søndergaard
1998). This semantics is based on the intuition that each literal and every pro-
cedure can be given a meaning regardless of the way it is exactly called or used.
Given this goal-independent meaning, it suffices to combine it with an actual call
description in order to obtain the corresponding exit description. Example 5.9
illustrates this idea for append in the context of a groundness analysis based on
the Pos-domain.

Example 5.9 Consider the new abstract call description a ∧ c ∈ Pos⊥ for a call of the
non-deterministic version of append(A,B,C) (defined in Example 5.6 at page 67). We can
perform the same goal-dependent analysis as was done before for the call description c, but
we can also see that each of the contributions of the literals within the definition of append
is independent of the call description. The following table lists each of these contributions:

pp S
1 x
2 y↔ z
3 z↔ (xe ∧ zs)
4 zs ↔ (xs ∧ y)
5 x↔ (xe ∧ xs)

Indeed, regardless of how the literal X ⇐ [] is called, if the call succeeds, then the
variable X will always be ground, hence the boolean formula x. The reasoning behind the
other literals is similar.

After each call of append, each of these local contributions holds, and therefore, com-
bined, we can conclude that the greatest lower bound of each of these contributions yields
the net-contribution for calls to append. Projected onto the variables {x, y, z} we have
Sl = (x∧ y)↔ z, where the subscript l refers to the local component of the exit descrip-
tion, i.e., the component inherent to append.

This local component can be seen as the goal-independent contribution to calls to
append. Combining Sl with specific call descriptions yields the corresponding abstract
exit descriptions. In Pos this combination is done using the greatest lower bound opera-
tion, ∧:

Scall ⇒ Sexit
z ⇒ x ∧ y ∧ z

z ∧ x⇒ x ∧ y ∧ z

In fact, any call description matching the mode declaration of the procedure (third
argument must be input) always yields the same exit description, namely that all three
arguments of append will be ground. This exit description corresponds to the declared
output instantiation state of the procedure.

We generalise this idea of recording the local contributions of a procedure
by giving a goal-independent meaning to procedures, and using this meaning

80 CHAPTER 5. MERCURY SEMANTICS

for computing the goal-dependent annotations. The advantage of this approach
is that if a procedure is called with different call descriptions, only one fixpoint
computation is needed: the one for computing its goal-independent meaning.
All the call specific meanings can be derived in a straightforward way. In such
cases, the corresponding implementation of the semantics requires less time and
effort to execute, without losing precision (if the equivalence conditions are met,
see later in this chapter). Another advantage is related to the use of modules.
Procedures defined in separate modules can be given a goal-independent mean-
ing once and for all. This meaning can then be used during the analysis of the
procedures defined within other modules.

The Mercury language contains negations and if-then-else constructs. In our
first attempt of formalising the semantics of these constructs (Equation 5.1 and
Equation 5.2), these constructs are explicitly given an inherent goal-dependent
meaning. Trying to give these constructs a goal-independent meaning based on
this goal-dependent semantics is useless. If the concrete call description for the
negated or tested goal is not known, then the resulting exit description can not
correctly be computed. This means that the semantics based on these two equa-
tions can not be given a concrete goal-independent based semantics. Interestingly
enough, by giving in on the precision of the description of the concrete domain,
and using Equation 5.3 and Equation 5.4, the path towards a goal-independent
meaning is made easier.

The goal-independent based semantics will be defined in Section 5.7. We plan
to show that if a description domain satisfies some specific properties, then the
goal-independent based semantics of a program becomes equivalent to its goal-
dependent semantics. In order to clearly distinguish the properties that need to
be satisfied by the description domain, we use an intermediate formulation of
the goal-independent based semantics, a semantics which we call the differential
semantics.

5.6 Differential Semantics

In this section we develop a goal-dependent semantics for Mercury in which the
meaning of a procedure for a given call description is defined as the local com-
ponent of the final exit description of that procedure. This local component is the
part of the description that is due to the procedure. The global exit description,
as defined by the goal-dependent semantics for Mercury, is derived implicitly:
we consider that this exit description is computed by combining the call descrip-
tion with the corresponding local exit description using a special combination
operator (in fact using the auxiliary function comb). The semantics is still goal-
dependent as the definition of the meaning of a procedure is still directed by the
call description with which it is called. Yet, by separating the local contribution
from the global exit description we are already one step closer towards a goal-

5.6. DIFFERENTIAL SEMANTICS 81

independent based approach in which similar local contributions are derived,
yet in a separate and goal-independent way.

By the fact that in these semantics global components of the final description
are explicitly separated from the local components, we called this semantics the
differential semantics for core Mercury, denoted by SemMδ. This is in accordance
with the terminology used in (García de la Banda, Marriott, Stuckey, and Sønder-
gaard 1998). The semantic functions for SemMδ are listed in Figure 5.6. The types
and signatures of these functions are similar to the ones used in SemM. Figure 5.5
gives an overview of the signatures of these functions.

PMδ : Program→ (Ans×Ann)
RMδ : RuleBase→ AProcMeaning
FMδ : RuleBase→ AProcMeaning→ AProcMeaning
PrMδ : Procedure→ AProcMeaning→ AProcMeaning
GMδ : Goal→ AProcMeaning→ Ans→ Ans→

(Ans×Ann)
LMδ : Literal→ ProcMeaning→ Ans→ Ans→ Ans

Figure 5.5: Type signatures of the semantic functions used in SemMδ.

The set of auxiliary functions used in SemMδ is {init, comb, add}. The merge
operation used in Figure 5.6 is the same operation that was introduced in SemS
and SemM (Definition 5.5, page 62).

The intention of the semantics SemMδ is to make a distinction between a global
component and a local component of the descriptions that are defined. In this se-
mantics Sg, the global component, is meant to designate the part of the description
that is due to the call of the procedure to which the current language construct
belongs. This component remains the same for each of the language constructs
occurring within the same procedure call. The description subscribed with the
character l, Sl , is meant to capture the part of the description that is accumulated
through the influence of the language constructs that have preceded the current
language construct within the procedure call it belongs to. This is the so called
local component. The complete exit description, denoted by Sc, is the combina-
tion of the original call description Sg and the locally computed exit description
Sl : Sc = comb(Sg, Sl). Figure 5.7 gives a sketch of the relation between these
individual descriptions.

The resulting meaning of a goal or a literal is an update of that local com-
ponent and the annotation table related to the procedure call. The fact that Sl is
meant to denote the local component of the full exit substitution can also be seen
by the fact that the meaning of a procedure is given in terms of the meaning of its
goal w.r.t. the global component Sg, derived from the call substitution S , and an
initial local component, initialised using the init-function. Note that the resulting

82 CHAPTER 5. MERCURY SEMANTICS

PMδ[[r; q]] = GMδ[[q]](RMδ[[r]]) initq initq
RMδ[[r]] = fix(FMδ[[r]])
FMδ[[p1 . . . pi . . . pnp]](e, A)pi(Y)

= PrMδ[[pi]](e, A)pi(Y)
PrMδ[[h← g]](e, A)(a, S) = let Sg = ρa→h ((S)|a) in

let (Sl1 , A1) = GMδ[[g]](e, A)Sginith←g in
(ρh→a

((
Sl1

)∣∣
h

)
, A1)

GMδ[[g1, g2]](e, A)SgSl = let (Sl1 , A1) = GMδ[[g1]](e, A)SgSl in
GMδ[[g2]](e, A1)SgSl1

GMδ[[g1; g2]](e, A)SgSl = let (Sl1 , A1) = GMδ[[g1]](e, A)SgSl in
let (Sl2 , A2) = GMδ[[g2]](e, A)SgSl in

(Sl1 t Sl2 , merge(A1, A2))
GMδ[[if g1 then g2 else g3]](e, A)SgSl

= let (Sl1 , A1) = GMδ[[g1]](e, A)SgSl in
let (Sl2 , A2) = GMδ[[g2]](e, A1)SgSl1 in
let (Sl3 , A3) = GMδ[[g3]](e, A)SgSl in

(Sl2 t Sl3 , merge(A2, A3))
GMδ[[not g]](e, A)SgSl = let (Sl1 , A1) = GMδ[[g]](e, A)SgSl in

(Sl , A1)
GMδ[[l]](e, A)SgSl = (LMδ[[l]] e SgSl ,

A[(pp(l), Sg), comb(Sg, Sl)])
LMδ[[unif]] e SgSl = add(unif, Sl)
LMδ[[p(X)]] e SgSl = comb(Sl , e(p(X), comb(Sg, Sl)))

Figure 5.6: Differential semantics SemMδ.

5.6. DIFFERENTIAL SEMANTICS 83

S
ρa→h((S)|a)=Sg−−−−−−−−−→ Sg Sl Sc

p ← l1 Sg Sl1 = inith←g comb(Sg, Sl1)
...

...
...

li
... Sli comb(Sg, Sli)

...
...

...
ln. Sg Sln comb(Sg, Sln)

Sg Slexit = Sln comb(Sg, Slexit)
↓

Slr = ρh→a

((
Slexit

)∣∣
h

)
Figure 5.7: Schematic representation of the semantics of a procedure p ←
l1, . . . , ln for a call description S in SemMδ.

meaning of that goal is a renaming of the local component Sl1 projected on the
head of the procedure. This projection is needed as we specifically record only
the local contributions of procedure calls to their exit descriptions.

Most of the rules defining GMδ and LMδ are straightforward. In the semantics
for procedure call literals, we define the local exit description to be the combina-
tion of the local part of the call description (Sl) with the result of looking up the
exit description of the call in the rulebase meaning that is passed around. This
lookup operation is performed with respect to the complete call description, i.e.,
comb(Sg, Sl). Given the fact that we only record the local component of the con-
tribution of a procedure call (in e, the rulebase meaning), the result of that lookup
operation is the local component of the exit description due to the call.

We can repeat the same reasoning as for the natural semantics (Section 5.3.5),
showing that for instantiations with Noetherian domains and monotone auxiliary
functions, the differential semantics is not only well-defined, but the fixpoint can
also be computed by Kleene’s sequence.

In the following sections we prove the conditional equivalence of this se-
mantics with the natural semantics we gave earlier.

5.6.1 Conditional Equivalence

In this section we formulate a theorem that relates the goal-dependent semantics
to the differential semantics. Indeed, we can show that for some description do-
mains, PM[[r; q]] = PMδ[[r; q]].

Definition 5.7 Given the monotonic functions e : Atom → Ans → Ans as computed
in SemM, and e′ : Atom→ Ans→ Ans as computed in SemMδ, then

84 CHAPTER 5. MERCURY SEMANTICS

• e ; e′ iff ∀ (a, S0, S1) ∈ e, ∃ (a, S0, Sl) ∈ e′ : comb(S0, Sl) = S1.

• e′ ; e iff ∀ (a, S0, Sl) ∈ e′, ∃(a, S0, S1) ∈ e : comb(S0, Sl) = S1.

• e ∼ e′ iff e ; e′ and e′ ; e.

Definition 5.8 Let X be a description domain for which the auxiliary functions init,
comb, and add are defined. Let

PX
M[[r; q]] = (SM, AM)

PX
Mδ[[r; q]] = (SMδ , AMδ)

If SM ≡ SMδ ∧ AM ≡ AMδ , ∀r ∈ RuleBase, ∀q, then the goal-dependent semantics
and differential semantics are said to be equivalent for this domain X. This is denoted
by SemM(X)⇔ SemMδ(X).

Definition 5.9 (Head variable Idempotence) Let S ∈ Ans be a call description for a
procedure p(X1, . . . , Xn). Assuming that S respects the strongly moded and typed char-
acter of the Mercury language, the comb operation is said to be head variable idem-
potent iff

comb(S , S|{X1 ,...,Xn}) = S
i.e., adding the part of a description S that is only related with the head variables of the
procedure for which the description describes a call, is a null operation for head variable
idempotent comb operations.

Theorem 5.4 Let X be a complete lattice 〈X,vX ,tX ,uX ,⊥X ,>X〉, for which the aux-
iliary functions {init, comb, add}9 are defined. The goal-dependent semantics SemM(X)
is equivalent to the differential semantics SemMδ(X) iff the following statements hold:

neutral element:
comb(S , init) = S (5.5)

associativity:
comb(S1, comb(S2, S3)) = comb(comb(S1, S2), S3), (5.6)

additivity:
comb(S , S1 tX S2) = comb(S , S1) tX comb(S , S2), (5.7)

comb is head variable idempotent. (5.8)

add :
add(unif, comb(S1, S2)) = comb(S1, add(unif, S2))

(5.9)

projection preservation:
(comb(S1, S2))|Vars(S1) = comb(S1, S2|Vars(S1))

(5.10)

for all S , S1, S2, S3 ∈ X.
Note that comb does not need to be commutative.

9We omit the explicit superscripts, as they would only make the notation heavier.

5.6. DIFFERENTIAL SEMANTICS 85

Given the fact that the semantics are equivalent only if these conditions are
met by the domain instantiating these semantics, we call this conditional equival-
ence and denote it by c⇔. Therefore, here we have: SemM

c⇔ SemMδ.
The proof is given by structural induction (Nielson and Nielson 1996; Nielson

and Nielson 1992). We split the proof over different levels, namely by first prov-
ing the equivalence of the semantics of literals, then goals, and finally procedures.
This is done in the following three lemma’s. In each of these lemma’s we consider
a domain 〈X,vX ,tX ,uX ,⊥X ,>X〉 with auxiliary functions {init, comb, add}.

From these equivalences, the global equivalence follows naturally.
In the following lemma’s and proofs, we superscribe the different substitution

values, rulebase meanings, annotation tables with γ to refer to values in the con-
text of the goal-dependent semantics. We use the superscript δ to refer to these
values in the differential semantics.

Lemma 5.1 Let S = comb(Sg, Sl) and eδ ∼ eγ . If the conditions (5.5)-(5.10) hold,
then:

LM[[l]] eγS = Sγ

LMδ[[l]] eδSgSl = Sδ
l

⇓
Sγ = comb(Sg, Sδ

l)

for all l ∈ Literal.

Proof We need to prove the equivalence of the exit descriptions. We do this for
unifications and procedure calls separately.

• (unification) Sγ = add(unif, S) and Sδ
l = add(unif, Sl). Using condi-

tion (5.9) we have Sγ = comb(Sg, Sδ
l).

• (procedure call) If Sδ
lp

= eδ(p(X), S) and Sγ = eγ(p(X), S) where
S = comb(Sg, Sl), then we need to show that

comb(Sg, comb(Sl , Sδ
lp
)) = Sγ

Due to the associativity property expressed in Condition 5.6, we have
comb(Sg, comb(Sl , Sδ

lp
)) = comb(comb(Sg, Sl), Sδ

lp
) which is equal to

comb(S , Sδ
lp
). As eγ ∼ eδ, thus ∀(a, S , S ′) ∈ eγ , ∃(a, S , S ′l) such that

comb(S , S ′l) = S ′, hence in this case comb(S , Sδ
lp
) = Sγ .

Therefore, the lemma holds.
2

86 CHAPTER 5. MERCURY SEMANTICS

Lemma 5.2 Let S = comb(Sg, Sl), eδ ∼ eγ , and Aδ = Aγ . If the conditions (5.5)-
(5.10) hold, then:

GM[[g]](eγ , Aγ)SgS = (Sγ , Aγ
r)

GMδ[[g]](eδ , Aδ)SgSl = (Sδ
l , Aδ

r)
⇓

Sγ = comb(Sg, Sδ
l)

Aγ
r = Aδ

r

for all g ∈ Goal.

Proof We prove this lemma for each goal type.

• g = g1, g2. Applying structural induction twice.

• g = g1; g2. Using the definitions of SemM (Fig. 5.4) and SemMδ (Fig. 5.6)
we have, by induction:

comb(Sg, Sδ
l1
) = Sγ

1
comb(Sg, Sδ

l2
) = Sγ

2
⇓ (Cond. (5.7))

comb(Sg,tX{Sδ
l1

, Sδ
l2
}) = tX{Sγ

1 , Sγ
2 }

Also by induction, we have Aγ
1 = Aδ

1 , Aγ
2 = Aδ

2 ⇒ Aγ
r = Aδ

r .

• g = if g1 then g2 else g3. This is similar to the disjunctions. The lemma
holds by induction and by the additivity rule (Condition 5.7).

• g = not g1. Trivial case.

• g = l. This is the base case (Lemma 5.1) as far as the correctness of the
exit description concerns. The equivalence of the annotation tables
follows from the equivalence of the initial annotation tables and that
S = comb(Sg, Sl).

Therefore, the lemma holds.
2

Lemma 5.3 Let eδ ∼ eγ , and Aδ = Aγ . If the conditions (5.5)-(5.10) hold, then:

PrM[[h← g]](eγ , Aγ)(a, S) = (Sγ , Aγ
r)

PrMδ[[h← g]](eδ , Aδ)(a, S) = (Sδ
l , Aδ

r)
⇓

Sγ = comb(S , Sδ
l)

Aγ
r = Aδ

r

for all (h← g) ∈ Procedure, where h = p(X1, . . . , Xn) and a = p(Y1, . . . , Yn).

5.6. DIFFERENTIAL SEMANTICS 87

Proof We have

PrM[[h← g]](eγ , Aγ)(a, S) = (Sγ , Aγ
r)

= letSg = ρa→h ((S)|a) in
let (Sγ

1 , Aγ
1) = GM[[g]](eγ , Aγ)SgSg in

(comb(S , ρh→a
((
Sγ

1
)∣∣

h

)
), Aγ

1)

and
PrMδ[[h← g]](eδ , Aδ)(a, S) = (Sδ

l , Aδ
r)

= letSg = ρa→h ((S)|a) in
let (Sδ

l1
, Aδ

1) = GMδ[[g]](eδ , Aδ)Sginith←g in

(ρh→a

((
Sδ

l1

)∣∣∣
h

)
, Aδ

1)

where we need to prove that comb(S , Sδ
l) = Sγ and Aγ

r = Aδ
r .

By condition (5.5), we have comb(Sg, init) = Sg. We apply Lemma 5.2 and
thus obtain that Sγ

1 = comb(Sg, Sδ
l1
), and Aγ

1 = Aδ
1 hence Aγ

r = Aδr .

For the equivalence of the descriptions we make the following derivation:

Sγ = comb(S , ρh→a
((
Sγ

1
)∣∣

h

)
)

⇓ Induction: Sγ
1 = comb(Sg, Sδ

l1
)

= comb(S , ρh→a

((
comb(Sg, Sδ

l1
)
)∣∣∣

h

)
)

⇓ Sg = ρa→h ((S)|a)
= comb(S , ρh→a

((
comb(ρa→h (S|a) , Sδ

l1
)
)∣∣∣

h

)
)

⇓ ρh→a ((S)|h) = (ρh→a (S))|a , ∀S
= comb(S ,

(
ρh→a

(
comb(ρa→h ((S)|a) , Sδ

l1
)
))∣∣∣

a
)

⇓ ρh→a (comb(S1, S2)) = comb(ρh→a (S1) , ρh→a (S2)), ∀S1, S2

= comb(S ,
(
comb(ρh→a (ρa→h (S|a)) , ρh→a

(
Sδ

l1

)
)
)∣∣∣

a
)

⇓ ρh→a (ρa→h (S)) = S , ∀S
= comb(S ,

(
comb(S|a , ρh→a

(
Sδ

l1

)
)
)∣∣∣

a
)

⇓ Condition 5.10
= comb(S , comb(S|a ,

(
ρh→a

(
Sδ

l1

))∣∣∣
a
))

⇓ Condition 5.6
= comb(comb(S , S|a),

(
ρh→a

(
Sδ

l1

))∣∣∣
a
)

⇓ Condition 5.8
= comb(S ,

(
ρh→a

(
Sδ

l1

))∣∣∣
a
)

⇓ (ρh→a (S))|a = ρh→a (S|h) , ∀S
= comb(S , ρh→a

(
Sδ

l1

∣∣∣
h

)
)

= comb(S , Sδ
l)

88 CHAPTER 5. MERCURY SEMANTICS

Therefore Sγ = comb(S , Sδ
l), which proves the lemma.

2

We can now prove Theorem 5.4.

Proof (Theorem 5.4) By the fact that for each goal and for each literal we can re-
late its goal-dependent semantics to its differential semantics by the simple
relation comb(Sg, Sl) = S , we have exactly the same procedure calls in
both semantics, and therefore, at each iteration eγ ∼ eδ and Aγ = Aδ. If
a fixpoint is ever reached — which depends on the auxiliary operations
being monotone or continuous in the given description domain — then
RM[[r]] ∼ RMδ[[r]]. Given the fact that comb(init, init) = init, we can apply
Lemma 5.2. Therefore PM[[r; q]] = PMδ[[r; q]], ∀r ∈ Program.

2

The two last conditions, Condition 5.9 on the auxiliary function add and Con-
dition 5.10 on the comb operation related to the projection operation, may seem
odd at first sight. In the next section we show that these conditions are nev-
ertheless easily met by the concrete description domain we used until now. In
Chapter 6 we show that even the extended concrete domain that we use in the
context of structure sharing satisfies these conditions.

5.6.2 Concrete Differential Semantics

It is interesting to show that the differential semantics instantiated with the con-
crete domain ℘(Eqn+) is equivalent to the goal-dependent Mercury semantics
instantiated with that domain. We prove this in this section.

Definition 5.10 (Concrete Differential Semantics) Let Ans be the concrete domain
of existentially quantified ex-equations ℘(Eqn+) as used in the concrete goal-dependent
semantics for Simple Mercury (page 66) and for Mercury (page 78), where the com-
bination operation comb corresponds to the combination operation defined earlier in the
context of Simple Mercury (Definition 5.6), then the differential semantics instantiated
with this domain is called the concrete differential semantics of Mercury, denoted by
SemMδ(℘(Eqn+)).

Theorem 5.5 The concrete differential semantics SemMδ(℘(Eqn+)) is equivalent to the
concrete goal-dependent semantics SemM(℘(Eqn+)).

Proof We show that init℘(Eqn+), comb℘(Eqn+) and add℘(Eqn+) satisfy the required
properties. In the following we abbreviate these functions to init, comb and
add resp.

5.6. DIFFERENTIAL SEMANTICS 89

1. (Condition 5.5) init is neutral w.r.t. comb: ∀E ∈ ℘(Eqn+) we have
comb(E, init) = comb(E, {true}) = {e ∧ true | e ∈ E} = {e | e ∈ E} =
E.

2. (Condition 5.6) comb is associative: this comes as a direct consequence
of the associativity of the boolean ∧ operation.

3. (Condition 5.7) comb is additive: ∀E, E1, E2 ∈ ℘(Eqn+) we can write
the derivation comb(E, E1 ∪ E2) = {e ∧ e′ | e ∈ E ∧ (e′ ∈ E1 ∨ e′ ∈
E2} = {e ∧ e1 | e ∈ E ∧ e1 ∈ E1} ∪ {e ∧ e2 | e ∈ E ∧ e2 ∈ E2} =
comb(E, E1) ∪ comb(E, E2).

4. (Condition 5.8) comb is head variable idempotent. Consider a procedure
call p(X1, . . . , Xn) where H = {X1, . . . , Xn} represents the head vari-
ables of the procedure call. Let E ∈ ℘(Eqn+) be a valid call description
for p(X1, . . . , Xn). Let E = {e1, . . . , ek} and E|H = {e′1, . . . , e′l}.
E is a call description, therefore it must conform to the mode-infor-
mation associated with the called procedure. This means that after
projection on the head variables, all variables in the resulting descrip-
tion must have the same degree of instantiatedness. Knowing that
Mercury does not allow partially instantiated data structures, this
means that the solved form for each constraint set e in E|H will al-
ways involve the same set of variables, i.e., ∀e1, e2 ∈ E|H : Vars(e1) =
Vars(e2). This means that in order to have different constraint sets
e1, e2 in E|H, at least one variable must have a different value at-
tributed: ∀e1, e2 ∈ E|H ∧ e1 6= e2 : ∃X ∈ Vars(e1) : e1 |= X =
ti ∧ e2 |= X = t j ∧ ti 6= t j Given this situation, this implies that
∀e1, e2 ∈ E|H ∧ e1 6= e2 : e1 ∧ e2 |= false.

Relating the constraints from E to E|H we have one of the following
situations. Let e ∈ E, and e′ ∈ E|H, then

• either e |= e′, in which case e ∧ e′ = e

• or e 6|= e′, which means that there exists a variable X ∈ Vars(e′)
such that e |= X = t1, e′ |= X = t2 but where t1 6= t2, and
therefore e ∧ e′ |= false.

Given these two possibilities, we can conclude that

comb(E, E|H) = {e ∧ e′ | e ∈ E, e′ ∈ E|H} = E

hence, comb is head variable idempotent.

5. (Condition 5.9) Adding a unification to a combination of descriptions is
equivalent to combining the descriptions with the added unification: ∀E1, E2 ∈

90 CHAPTER 5. MERCURY SEMANTICS

℘(Eqn+) and ∀unif ∈ Prim we have

add(unif, comb(E1, E2))
= comb({unif}, comb(E1, E2))
= comb({unif}, comb(E2, E1)) (commutativity)
= comb(comb({unif}, E2), E1) (associativity)
= comb(add(unif, E2), E1)
= comb(E1, add(unif, E2)) (commutativity)

6. (Condition 5.10) ∀E1, E2 ∈ ℘(Eqn+), let V = Vars(E1), then

(comb(E1, E2))|V = ({e1 ∧ e2 | e1 ∈ E1 ∧ e2 ∈ E2})|V
= {∃V(e1 ∧ e2) | e1 ∈ E1 ∧ e2 ∈ E2}

Given the fact that ∀e1 ∈ E1 we have Vars(e1) ⊆ V therefore ∃V(e1 ∧
e) ⇔ e1 ∧ ∃Ve, ∀e ∈ ℘(Eqn+). Hence, {∃V(e1 ∧ e2) | e1 ∈ E1 ∧ e2 ∈
E2} = {e1 ∧ ∃Ve2 | e1 ∈ E1 ∧ e2 ∈ E2} = {e1 ∧ e′2 | e1 ∈ E1 ∧ e′2 ∈
(E2)|V} = comb(E1, (E2)|V)

All conditions from Theorem 5.4 are satisfied, hence we can conclude that
the semantics SemMδ(℘(Eqn+)) is equivalent to the concrete goal-dependent
semantics SemM(℘(Eqn+)).

2

5.6.3 Abstract Differential Semantics, Relative Precision

In the previous section we demonstrated the equivalence between the differen-
tial concrete semantics SemMδ(℘(Eqn+)) and the instantiated natural semantics
SemM(℘(Eqn+)). In the following chapters, we extend our concrete domain to
comprise other characteristics of the variables than only their bindings, yet we
again show that for these extended domains, the natural interpretation of the
language remains equivalent to the differential semantics. This is an essential
step to be able to relate our abstract semantics (which we plan to define only in
the context of the differential semantics, as it allows the straightforward step to
the goal-independent based semantics) to the original natural semantics of the
language, as the abstract domains we will be using do not satisfy the equivalence
conditions required by Theorem 5.4.

Note that if instantiations of the natural and differential semantics do not meet
the equivalence conditions stated by Theorem 5.4, then in general, it is impossible
to relate the results obtained for each of these instantiations: for some instanti-
ations this may mean that the descriptions obtained in the differential semantics
will always approximate the descriptions in the natural semantics; for other in-
stantiations, the approximating relation may work the other way around; and

5.7. GOAL-INDEPENDENT BASED SEMANTICS 91

even for other instantiations, there may be no general approximating relation at
all.

The most demanding equivalence condition of Theorem 5.4 seems to be the
required idempotence of the combination operator. If that is indeed the only
violation of that theorem, then it can be proved that when instantiated with that
domain, the natural semantics will be less precise than the concrete semantics.
This will be the case for the abstract domains we intend to use, more precisely,
the domain of abstract structure sharing (c.f. Chapter 6), where the combination
operation relies on the alternating closure of two sets, an operation known not to
be idempotent. This is therefore yet another argument for defining our abstract
semantics in the differential context.

Although this is an interesting aspect of the semantics developed in this thesis,
we will not detail it further.

5.6.4 Implementation Issues

As the presented differential semantics is still goal directed, the same reasoning
as for the goal-dependent semantics SemS and SemM holds (page 72). Hence, the
most natural way of implementing this semantics is a top-down lazy evaluation
scheme.

5.7 Goal-Independent Based Semantics

Here we present a goal-independent based semantics for Mercury programs. This
semantics consists of two parts: a set of clauses giving a goal-independent mean-
ing to the individual procedures in the rulebase of a program, and a set of clauses
that gives a goal-dependent meaning to a query q in the context of that program
using the goal-independent meaning defined by the former clauses.

Figure 5.9 presents the functions defining the goal-independent meaning of a
rulebase. The types and signatures of these functions are shown in Figure 5.8. The
goal-dependent meaning of a program, based on the goal-independent meaning
of its rulebase, is presented in Figure 5.11. Figure 5.10 presents the signatures of
the functions used in Figure 5.11.

The goal-independent meaning of a rulebase is seen as a table that maps each
procedure (identified by a corresponding call atom) to an exit description. Goal-
independence is here achieved by assuming that each procedure is called with
an empty call description, i.e., assuming that all variables are unbound. In the
context of a logic programming language, this represents a viable initial situation
allowing the derivation of goal-independent information. Thus, the exit descrip-
tion is obtained by computing the meaning of the procedure assuming that it is
called with the empty call description (returned by the auxiliary function inith←g).
The semantics of Mercury goals is therefore defined in a goal-dependent way,

92 CHAPTER 5. MERCURY SEMANTICS

GIProcMeaning = Procedure→ Ans
RM? : RuleBase→ GIProcMeaning
FM? : RuleBase→ GIProcMeaning→ GIProcMeaning

≡ RuleBase→ GIProcMeaning→ Atom→ Ans
PrM? : Procedure→ GIProcMeaning→ Atom→ Ans
GM? : Goal→ GIProcMeaning→ Ans→ Ans
LM? : Literal→ GIProcMeaning→ Ans→ Ans

Figure 5.8: Types and Signatures of the semantic functions used in SemM?.

RM?[[r]] = fix(FM?[[r]])
FM?[[p1 . . . pi . . . pnp]]epi(Y) = PrM?[[pi]]epi(Y)
PrM?[[h← g]]ea = ρh→a

((
GM?[[g]]e inith←g

)∣∣∣
h

)
GM?[[g1, g2]]eS = GM?[[g2]]e(GM?[[g1]]eS)
GM?[[g1; g2]]eS = let S1 = GM?[[g1]]eS in

let S2 = GM?[[g2]]eS in
S1 t S2

GM?[[if g1 then g2 else g3]]eS = let S1 = GM?[[g1]]eS in
let S2 = GM?[[g2]]eS1 in
let S3 = GM?[[g2]]eS in
S2 t S3

GM?[[not g]]eS = S
GM?[[l]]eS = LM?[[l]] e S
LM?[[unif]] e S = add(unif, S)
LM?[[p(X)]] e S = comb(S , e(p(X)))

Figure 5.9: Clauses defining the goal-independent semantics SemM? of a Mercury
rulebase.

thus similar to its definition in the context of the goal-dependent semantics for
Mercury. The only difference is that no annotation table is built. The meaning
for unifications is, as usual, the result of adding the unification to the call de-
scription of that literal. Finally, the meaning of a procedure call is defined as the
combination of the current call description with the stored goal-independent exit
description.

In this way, each procedure is given a meaning with the intention that this
meaning represents the contribution of that procedure to any call description
with which it might be called. Instead of computing this local contribution with
respect to a specific call pattern of a procedure, in this approach we define this
contribution independently.

The goal-independent based semantics of a Mercury program can now be

5.7. GOAL-INDEPENDENT BASED SEMANTICS 93

defined in terms of the goal-independent meaning of its rulebase. This is what is
represented in Figure 5.11, where e? represents the goal-independent meaning of
the rulebase.

PM• : Program→ (Ans×Ann)
RM• : RuleBase→ GIProcMeaning→ AProcMeaning
FM• : RuleBase→ GIProcMeaning→ AProcMeaning→ AProcMeaning
PrM• : Procedure→ GIProcMeaning→ AProcMeaning→ AProcMeaning
GM• : Goal→ GIProcMeaning→ AProcMeaning→ Ans→ Ans

→ (Ans×Ann)
LM• : Literal→ GIProcMeaning→ Ans→ Ans→ Ans

Figure 5.10: Signatures of the semantic functions used in SemM•.

In this semantics, the meaning of a program is defined as the goal-dependent
meaning of the query q, with respect to the goal-dependent annotated rulebase
meaning which itself is defined in terms of the goal-independent meaning of the
procedures within the rulebase (RM?[[r]]). Note, that just as for the differential
semantics, only the local contributions of the exit descriptions are computed and
recorded.

The clauses defining the semantics of a goal or literal are the same as the ones
used in the context of the differential semantics. The reason is that in this se-
mantics, we also construct the local contributions of the exit descriptions, based
on the already precomputed goal-dependent rule-base meaning e. The main dif-
ference of this semantics w.r.t. SemMδ is the definition of the semantics of proced-
ures, i.e., PrM•. This is the only clause that uses the goal-independent meaning
of the rulebase. Instead of computing the local component of the exit description
of the procedure based on the results of interpreting the goal of the procedure,
this clause uses the precomputed goal-independent meaning of the procedure.
As this result will always be the same, for each consecutive call of the procedure,
we obtain the effect that the exit descriptions are not part of the fixpoint process
in this semantics. The only values really involved in the fixpoint function are the
goal-dependent annotations. Given the fact that these annotations are based on
the already precomputed goal-independent meanings (as the exit descriptions of
each procedure is based on these meanings) we can conclude that one iteration
over the called procedures is sufficient. Hence, the fixpoint function stabilises
after one single iteration.

In the following section we discuss the equivalence of the goal-independent
based semantics SemM• with the differential semantics SemMδ. We also discuss
some implementation issues.

94 CHAPTER 5. MERCURY SEMANTICS

PM•[[r; q]] = let ι = initq in
GM•[[q]](RM•[[r]](RM?[[r]]))ι ι

RM•[[r]] e? = fix(FM•[[r]] e?)
FM•[[p1 . . . pi . . . pnp]]e

?(e, A)pi(Y)S
= PrM•[[pi]]e?(e, A)pi(Y)S

PrM•[[h← g]]e?(e, A)aS = let Sg = ρa→h ((S)|a) in
let (S1, A1) = GM•[[g]](e, A)Sginith←g in

(e?a, A1)
GM•[[g1, g2]](e, A)SgSl = let (Sl1 , A1) = GM•[[g1]](e, A)SgSl in

GM•[[g2]](e, A1)SgSl1
GM•[[g1; g2]](e, A)SgSl = let (Sl1 , A1) = GM•[[g1]](e, A)SgSl in

let (Sl2 , A2) = GM•[[g2]](e, A)SgSl in
(Sl1 t Sl2 , merge(A1, A2))

GM•[[if g1 then g2 else g3]](e, A)SgSl
= let (Sl1 , A1) = GM•[[g1]](e, A)SgSl in

let (Sl2 , A2) = GM•[[g2]](e, A1)SgSl1 in
let (Sl3 , A3) = GM•[[g3]](e, A)SgSl in

(Sl2 t Sl3 , merge(A2, A3))
GM•[[not g]](e, A)SgSl = let (Sl1 , A1) = GM•[[g]](e, A)SgSl in

(Sl , A1)
GM•[[l]](e, A)SgSl = (LM•[[l]] e SgSl , A[(pp(l), Sg), comb(Sg, Sl)])
LM•[[unif]] e SgSl = add(unif, Sl)
LM•[[p(X)]] e SgSl = comb(Sl , e(p(X), comb(Sg, Sl)))

Figure 5.11: Clauses defining the goal-independent based meaning SemM• of a
Mercury program. We use the notation e? to denote the goal-independent rule-
base meaning of the rulebase of the program.

5.7.1 Equivalence

Independent from the description domain, the interpretation of a Mercury pro-
gram under the differential semantics is always equivalent to its interpretation
in the goal-independent based semantics. Intuitively we can see that the defin-
ition of the local exit descriptions in the definition of SemMδ is independent of
the exact call description of the procedure, hence it should be equal to the goal-
independent meaning that we have defined for a rulebase. Moreover, the goal-
independent based semantics SemM• only records the local components of the
exit descriptions in its goal-dependent rulebase meaning e. This corresponds to
what is recorded in the goal-dependent rulebase meaning in the context of the
differential semantics. We may therefore conclude that these meanings will also

5.7. GOAL-INDEPENDENT BASED SEMANTICS 95

be equivalent. Finally, the use of the call descriptions in the definition of the indi-
vidual annotations is the same in the definition of SemM• as in SemMδ, so we can
expect that also the annotations are equivalent.

In the following paragraphs we prove this equivalence formally.
For this purpose, we show that the local components of the exit descriptions

defined in SemMδ are independent of the exact call descriptions. This call de-
scription independence is stated by the following theorem.

Lemma 5.4 Let

(Sl1 , A1) = PrMδ[[h← g]](e, A)(a1, S1)
(Sl2 , A2) = PrMδ[[h← g]](e, A)(a2, S2)

where e is a rulebase meaning such that

∀(p1, Sg1 , Sl1), (p2, Sg2 , Sl2) ∈ e : p1 = ρ (p2)⇒ Sl1 = ρ
(
Sl2

)
(5.11)

If a1 = ρ (a2), then Sl1 = ρ
(
Sl2

)
where ρ is the renaming function mapping variables

of a1 to the corresponding variables of a2.

Proof Just as we did in the (conditional) equivalence proof of SemM and SemMδ,
we develop intermediate proofs for each individual clause in the definition
of SemMδ.

1. (Base case) The local components of the exit descriptions obtained
with LMδ are independent of the call description of the procedure to
which it belongs to. Let

Sl1 = LMδ[[l]] e Sg1Sl
Sl2 = LMδ[[l]] e Sg2Sl

then ∀Sg1 , Sg2 we must have Sl1 = Sl2 .
Proof:
a© if l = unif, then

Sl1 = add(unif, Sl)
Sl2 = add(unif, Sl)

Obviously, Sl1 = Sl2 .
b© if l = p(X), then

Sl1 = comb(Sl , e(p(X), Sc1))
Sl2 = comb(Sl , e(p(X), Sc2))

where
Sc1 = comb(Sg1 , Sl)
Sc2 = comb(Sg2 , Sl)

96 CHAPTER 5. MERCURY SEMANTICS

As we assume Equation 5.11, we have that e(p(X), Sc1) = e(p(X), Sc2) =
Slp , ∀Sc1 , Sc2 . Hence

Sl1 = comb(Sl , Slp)
Sl2 = comb(Sl , Slp)

and therefore Sl1 = Sl2 , ∀Sg1 , Sg2 .

2. The local components of the exit descriptions obtained with GMδ are
independent of the call description of the procedure to which it be-
longs to. Let

(Sl1 , A1) = GMδ[[g]](e, A)Sg1Sl
(Sl2 , A2) = GMδ[[g]](e, A)Sg2Sl

then ∀Sg1 , Sg2 we have Sl1 = Sl2 .
Proof: For goals composed out of a single literal, we fall back on the
base case. For all the other types of goals, the above statement can be
proved by induction.

Finally, based on the previous statements, it is trivial to show that using the
definition of PrMδ, the obtained local component of the exit description is
also independent from the exact call description S .

2

Lemma 5.5 Let e be the differential rulebase meaning of a rulebase r, thus e = RMδ[[r]],
then e satisfies Equation 5.11 of Lemma 5.4.

Proof The rulebase meaning is defined as the least fixpoint over FMδ, which
is defined in terms of PrMδ. As we assume Noetherian description do-
mains with monotone auxiliary operations, we can compute this fixpoint
as a Kleene sequence. Let e0, e1, . . . , e(i− 1), ei , . . . be that sequence. We can
show that for each consecutive rulebase meaning in that sequence, Equa-
tion 5.11 holds. Indeed, it holds for the initial rulebase meaning e0 = ⊥.
Assuming that it holds for e(i − 1) we show that it holds for ei too, and
therefore, by induction, it holds for every rulebase meaning in that se-
quence. As Equation 5.11 holds for e(i− 1) we can apply Lemma 5.4. This
means means that whenever the semantics of a procedure is computed for
different call descriptions, the resulting local contributions will always be
identical, modulo possible renaming. This means that the new rulebase
meaning computed based on the old rulebase meaning will also satisfy
Equation 5.11.

2

5.7. GOAL-INDEPENDENT BASED SEMANTICS 97

Given the fact that the clauses of the semantics of procedures, goals and liter-
als in SemMδ are similar to the clauses of procedures, goals and literals in SemM?

w.r.t. the derived exit descriptions, it is correct to conclude that these exit de-
scriptions are the same. Or put differently, the goal-independent semantics of a
rulebase is equivalent to the local component of the exit descriptions of the rule-
base as defined by the differential semantics for our language. This is expressed
in the following lemma:

Lemma 5.6 Let e? = RM?[[r]], and eδ = RMδ[[r]], then for every entry in e?, i.e.,
∀(p1, S?) ∈ e? and every entry in eδ, i.e., ∀(p2, Sδ

g , Sδ
l) ∈ eδ we have p1 = ρ (p2)⇒

S? = ρ
(
Sδ

l
)

where ρ is the renaming function mapping variables of p2 on the corres-
ponding variables of p1.

Given the fact that the exit description of a procedure in SemM• is equal to the
goal-independent exit description of that procedure, the following lemma holds:

Lemma 5.7 Let e? = RM?[[r]], and e• = RM•[[r]]e?, then for every entry in e?, i.e.,
∀(p1, S?) ∈ e? and for every entry in e•, i.e., ∀(p2, S•g , S•l) ∈ e• we have p1 =
ρ (p2) ⇒ S? = ρ

(
S•l

)
where ρ is the renaming function mapping variables of p2

on the corresponding variables of p1.

By transitivity, we therefore have:

Lemma 5.8 Let
e? = RM?[[r]]
e• = RM•[[r]]e?

eδ = RMδ[[r]]

then ∀(p1, S•g , S•l) ∈ e• and ∀(p2, Sδ
g , Sδ

l) ∈ eδ : p1 = ρ (p2)⇒ S•l = ρ
(
Sδ

l
)

where
ρ is the renaming function mapping variables of p2 on the corresponding variables of p1.

As a consequence of the previous lemmas, we can correctly conclude that the
result of interpreting a program in SemMδ is equivalent to the result of interpret-
ing that same program in SemM•. This means that the exit descriptions of the
query are equal in both semantics as well as the generated annotations.

Theorem 5.6 Let
(Sδ , Aδ) = PMδ[[r; q]]
(S•, A•) = PM•[[r; q]]

then Sδ = S• and Aδ = A•.

Proof Indeed, the annotations are computed based on the rulebase meaning e
that is computed based on the goal-independent rulebase meaning of the
program. This rulebase meaning is equivalent to the rulebase meaning

98 CHAPTER 5. MERCURY SEMANTICS

constructed in SemMδ, therefore, by the similarity of the different clauses
defining SemM•, we can conclude that both semantics are equivalent.

2

Note that this equivalence is independent of the description domain. No ad-
ditional constraints are imposed on the domain.

5.7.2 Implementation Issues

The goal-independent based semantics is defined in two parts: a rulebase is
given a goal-independent meaning, upon which the program is given its goal-
dependent meaning. Intuitively, this definition of the semantics suggests a bot-
tom/up implementation where the procedures are given a goal-independent mean-
ing in isolation followed by a top/down execution scheme in the presence of an
actual query. However, in the concrete domain, this may not be the recommen-
ded way of implementing the language, as the goal-independent exit description
for procedures may in general be infinite.

5.8 Adding Pre-Annotations

In the differential semantics we separated the exit descriptions of procedures into
their global component, and their local component. In the definition of the goal-
independent based semantics this separation is made more explicit by defining a
separate set of clauses that define these local components independently of any
call descriptions. The same kind of separation can be done for the annotations: at
each program point we can split the obtained description into a global component
(the component that is due to the call description of the procedure) and a local
component (the component that reflects the contribution to the exit description
of the syntactical objects preceding the current program point). This is already
partially done in the differential semantics, where the annotations are obtained
by combining the current global component with the current local component.
We make this separation explicit by pre-annotating all the program points with
the goal-independent local components of the exit descriptions.

The reason why we insist so much on the annotations, and in this case even
goal-independent annotation, is that such annotations form the link between the
sequence of different analyses involved in the compile-time garbage collection
system developed in this thesis. We must therefore rely on their correctness.

The extension is very natural, and one can easily prove that the obtained se-
mantics is equivalent to the goal-independent based semantics, hence equivalent
to the differential semantics of Mercury programs.

5.8. ADDING PRE-ANNOTATIONS 99

In this semantics we need a first set of clauses that define the goal-independent
meaning of a rulebase, denoted by SemM?p. This meaning consists of the goal-
independent exit descriptions (like in SemM?) and the goal-independent annota-
tions. These annotations are collected in a table of type GIAnn : pp → Ans. The
signatures of these clauses are given in Figure 5.12, while the clauses themselves
are defined in Figure 5.13.

GIAnn = pp→ Ans
RM?p : RuleBase→ (GIProcMeaning×GIAnn)
FM?p : RuleBase→ (GIProcMeaning×GIAnn)

→ (GIProcMeaning×GIAnn)
≡ RuleBase→ (GIProcMeaning×GIAnn)

→ Atom→ Ans→ GIAnn
PrM?p : Procedure→ (GIProcMeaning×GIAnn)

→ (GIProcMeaning×GIAnn)
GM?p : Goal→ (GIProcMeaning×GIAnn)→ Ans→ (Ans×GIAnn)
LM?p : Literal→ GIProcMeaning→ Ans→ Ans

Figure 5.12: Signatures of the semantic functions used in SemM?p.

Using the goal-independent meaning of the rulebase, we define the resulting
goal-dependent semantics for Mercury programs, based on these goal-indepen-
dent exit descriptions, and goal-independent program point annotations, the so
called pre-annotations. Figure 5.14 shows the signatures of the functions defined
in Figure 5.15. Note that the signature of GM•p differs from the signature of the
semantics of goals given in our previous definitions: the semantics of a goal in
this setting only consists of the adequate recording of the program point annota-
tions. The exit descriptions as such are not required given the fact that the exit
description of the procedure can be derived without the exit description of the
goal in its body. Moreover, there is no need for defining the semantics of indi-
vidual literals as the annotation itself can be done independent of the nature of
the literal.

While the goal-dependent part shown in Figure 5.15 is defined in terms of
the fixpoint operation, it can be shown that the goal-dependent derivation of the
exit descriptions as well as the annotation of the program reaches a fixpoint after
one single pass. Indeed, in order to compute the exit description of a procedure,
the goal-independent information can simply be consulted, and all the program
point annotations can be performed in one go using the call description and the
already available goal-independent annotations.

100 CHAPTER 5. MERCURY SEMANTICS

RM?p[[r]] = fix(FM?p[[r]])
FM?p[[p1 . . . pi . . . pnp]](e, A)pi(Y) =

Pr[[pi]](e, A)pi(Y)
PrM?p[[h← g]](e, A)a = let (S1, A1) = GM?p[[g]](e, A)inith←g in

(ρh→a ((S1)|h) , A1)
GM?p[[g1, g2]](e, A)S = let (S1, A1) = GM?p[[g1]](e, A)S in

GM?p[[g2]](e, A1)S1
GM?p[[g1; g2]](e, A)S = let (S1, A1) = GM?p[[g1]](e, A)S in

let (S2, A2) = GM?p[[g2]](e, A)S in
(S1 t S2, merge(A1, A2))

GM?p[[if g1 then g2 else g3]](e, A)S =
let (S1, A1) = GM?p[[g1]](e, A)S in
let (S2, A2) = GM?p[[g2]](e, A1)S1 in
let (S3, A3) = GM?p[[g3]](e, A)S in

(S2 t S3, merge(A2, A3))
GM?p[[not g]](e, A)S = let (S1, A1) = GM?p[[g]](e, A)S in

(S , A1)
GM?p[[l]](e, A)S = (LM?p[[l]] e S , A[pp(l), S])
LM?p[[unif]] e S = add(unif, S)
LM?p[[p(X)]] e S = comb(S , e(p(X)))

Figure 5.13: Goal-independent semantics with pre-annotations SemM?p

5.8.1 Implementation Issues

In analogy to SemM? and SemM•, it is natural to implement the goal-independent
part of the semantics in a bottom up way, while the goal-dependent part is still
evaluated in a top-down way.

5.9 Overview of the different semantics

In the last few sections we have presented a number of different semantics for
the Mercury programming language. The reason for developing these different
semantics was to provide a link between the natural goal-dependent concrete in-
terpretation of a Mercury program, and a goal-independent based abstract inter-
pretation of such a program. We introduced the differential semantics as a neces-
sary intermediate semantics that allowed us to clearly identify the conditions that
need to be fulfilled by a description domain, in order to safely conclude that the
semantics are equivalent. We have also added an additional semantics that pre-
annotates the program with goal-independent program point annotations. These

5.9. OVERVIEW OF THE DIFFERENT SEMANTICS 101

PM•p : Program→ (Ans×Ann)
RM•p : RuleBase→ (GIProcMeaning×GIAnn)

→ (ProcMeaning×Ann)
FM•p : RuleBase→ (GIProcMeaning×GIAnn)

→ (ProcMeaning×Ann)→ (ProcMeaning×Ann)
≡ RuleBase→ (GIProcMeaning×GIAnn)

→ (ProcMeaning×Ann)→ Atom×Ans→ (Ans×Ann)
PrM•p : Procedure→ (GIProcMeaning×GIAnn)

→ (ProcMeaning×Ann)→ (ProcMeaning×Ann)
≡ Procedure→ (GIProcMeaning×GIAnn)

→ (ProcMeaning×Ann)→ Atom×Ans→ (Ans×Ann)
GM•p : Goal→ GIAnn→ (ProcMeaning×Ann)

→ Ans→ Ann
LM•p : Literal→ GIAnn→ (ProcMeaning×Ann)

→ Ans→ Ann

Figure 5.14: Signatures of the semantic functions used in SemM•p.

pre-annotations can be used to compute the goal-dependent annotations.
Schematically, we have the following relation between the semantics:

SemM
c⇐⇒ SemMδ ⇐⇒ SemM• ⇐⇒ SemM•p

(Th. 5.4)

where

• SemM: The natural goal-dependent semantics for Mercury. See Section 5.4.

• SemMδ: The differential semantics for Mercury. See Section 5.6.

• SemM•: The goal-independent based semantics for Mercury. See Section 5.7.

• SemM•p: The goal-independent based semantics with pre-annotations for
Mercury. See Section 5.8.

Hence, if a particular description domain D satisfies the conditions expressed
in Theorem 5.4, then automatically, the results of interpreting a Mercury pro-
gram in SemM(D) are equivalent to the results of interpreting that program in
SemM•p(D). Interestingly, the concrete domain of existentially quantified term
equations ℘(Eqn+) satisfies these conditions (Theorem 5.5). This means, that
for an analysis in a description domain A defined in the context of the goal-
independent based semantics with pre-annotations, it suffices that the auxiliary

102 CHAPTER 5. MERCURY SEMANTICS

PM•p[[r; q]] = let (e?, A?) = RM?p[[r]] in
GM•p[[q]]A?(RM•p[[r]](e?, A?))

RM•p[[r]](e?, A?) = fix(FM•p[[r]](e?, A?))
FM•p[[p1 . . . pi . . . pnp]](e?, A?)(e, A)pi(Y)S =

PrM•p[[pi]](e?, A?)(e, A)pi(Y)S
PrM•p[[h← g]](e?, A?)(e, A)aS = let Sg = ρa→h ((S)|a) in

let A′ = GM•p[[g]]A?(e, A)Sg in
(e?a, A′)

GM•p[[g1, g2]]A?(e, A)Sg = letA1 = GM•p[[g1]]A?(e, A)Sg in
GM•p[[g2]]A?(e, A1)Sg

GM•p[[g1; g2]]A?(e, A)Sg = let A1 = GM•p[[g1]]A?(e, A)Sg in
let A2 = GM•p[[g2]]A?(e, A)Sg in

merge(A1, A2)
GM•p[[if g1 then g2 else g3]]A?(e, A)Sg =

let A1 = GM•p[[g1]]A?(e, A)Sg in
let A2 = GM•p[[g2]]A?(e, A1)Sg in
let A3 = GM•p[[g3]]A?(e, A)Sg in

merge(A2, A3)
GM•p[[not g]]A?(e, A)Sg = GM•p[[g]]A?(e, A)Sg
GM•p[[l]]A?(e, A)Sg = let Sl = A?(pp(l)) in

A[(pp(l), Sg), comb(Sg, Sl))

Figure 5.15: Goal-dependent semantics SemM•p based on the goal-independent
semantics with pre-annotations SemM?p.

functions initA, addA and combA safely approximate the concrete instantiations
of these functions respectively, such that SemM•p(A) can be considered a safe
approximation of SemM(℘(Eqn+)): SemM•p(A) ∝ SemM(℘(Eqn+)). No further
conditions are required.

An interesting question to ask in the presence of the above presented se-
mantics is how the abstract goal-dependent semantics of a Mercury program
relates to the abstract goal-independent based semantics of the same program.
If the abstract domain satisfies the equivalence conditions of Theorem 5.4, then,
of course, the results obtained in both semantics are equally precise. In general,
if some of the equivalence conditions are not satisfied by the abstract description
domain, then the relative precision is not comparable. For some programs, the
results obtained in one semantics can be more precise than the results obtained in
the second semantics, but for other programs, this can be the other way around.

5.10. MERCURY WITH MODULES 103

5.10 Mercury with Modules

In this chapter we have developed a number of semantics of Mercury programs,
assuming that these Mercury programs are defined in one single module. Obvi-
ously, real Mercury programs will be split into different modules. The effect of
compiling a program is to translate each of the modules of the program into the
appropriate target code, and to combine these into one single executable. This
means that for the concrete domain, the program can still be seen as one single
monolithic block. Yet, for program analyses that operate on the source code, mod-
ules may pose a problem, especially if one wants to be able to analyse one module
at a time, without having to load the source code of all of the modules of the user
program. In such cases, pure goal-dependent analyses are not possible, leaving
no other choice then to define goal-independent based analyses instead. Indeed,
with goal-independent based analyses, the actual analysis is performed by the
goal-independent part which can be used to give a meaning to each of the pro-
cedures defined in a module, without having to know the exact call descriptions
of these procedures. The results of the goal-independent analysis, whether con-
sisting of the goal-independent descriptions only, or if need be, also comprising
the goal-independent annotations for (some of) the program points within the
analysed procedures, may then be stored in dedicated files, the so called optim-
isation interface files. It then suffices to load these files during the analysis of other
modules instead of having to load the complete source code.

Note that this scheme works fine as long as the modules are purely hierarchic-
ally organised, i.e., the modules interdependence graph contains no loops. When
loops are present, special techniques may be needed to correctly propagate the
analysis results. One of these techniques consists of selectively recompiling mod-
ules (Bueno, García de la Banda, Hermenegildo, Marriott, Puebla, and Stuckey
2001; Nethercote 2001), a technique that we will be using too, although in a less
selective way (c.f. Chapter 11). If these loops are not only purely on the level of
the modules, but also on the level of the procedures defined in them, then simple
recompilation may not suffice. Indeed, if module m1 defines a procedure p1, and
module m2 defines a procedure p2 such that p1 is used in the procedure defini-
tion of p2, and vice versa, then the general analysis scheme may have to be altered
so as to guarantee precise yet correct results. See (Nethercote 2001) where some
techniques handling such cases are detailed.

In this work, we consider looping modules, and especially looping proced-
ure definitions in looping modules, as a bad programming habit reflecting a bad
module structure of the user program. A simple tool reorganising the user code
seems a much easier solution to this problem than adapting the analyses to cor-
rectly cope with those situations.

104 CHAPTER 5. MERCURY SEMANTICS

5.11 Conclusion

In this chapter we have presented a number of different definitions for the se-
mantics of Mercury programs, the most important of which being the concrete
goal-dependent semantics SemM and the goal-independent based semantics with
pre-annotations SemM•p.

In the following chapters we define adequate new instantiations of SemM re-
flecting not only the usual variable bindings (as in the particular instantiation
SemM(℘(Eqn+))), but also other properties necessary to be able to reason about
possible compile-time garbage collection. The semantics SemM•p and the differ-
ential semantics from which it is derived, will be used to formalise the analyses
enabling us to approximate these run-time descriptions at compile-time.

Chapter 6

Data Structure Sharing

In this chapter we develop the required formalisations for the definition of a con-
crete domain suitable to represent terms that are shared in memory. This requires
the extension of the classic concrete domain of variable bindings. We approx-
imate this extended concrete domain by the abstract domain of data structure
sharing. We use this domain to define the abstract sharing semantics of Mercury
programs.

The concrete and abstract domains presented here for expressing data struc-
ture sharing are similar to the domains defined in (Mulkers 1991). The main dif-
ference lies in the use of these domains. Whereas Mulkers (1991) formalises struc-
ture sharing using the top-down goal-dependent abstract interpretation frame-
work defined in (Bruynooghe 1991), we use our domain in the context of the dif-
ferent semantics defined for the Mercury language in the previous chapter. This
requires a careful design of the concrete structure sharing domain with which
we can prove that the results in a goal-independent setting are equivalent to the
results obtained when using that domain in the natural semantics.

6.1 Motivation

Consider a type t1 ∈ ΣT , defined by the type declaration:

t1 → f (int, int); g(t1).

Let X and Y be of type t1, and consider the following conjunction of construc-
tion unifications: X <= f (1,2), Y <=g(X).

In the context of the Melbourne Mercury Compiler, this sequence of unifica-
tions instantiates two cells on the stack, and three heap cells. See Figure 6.1.

As the term pointed at by Y is constructed using X, it is natural that parts of
the heap space are shared. More specifically, the term pointed at by X is shared

105

106 CHAPTER 6. DATA STRUCTURE SHARING

Y g/1

heapstack

1

2

X f/2

f/2

Figure 6.1: Graphical representation of memory sharing in the context of the Mel-
bourne Mercury Compiler.

with the term to which the first argument of g/1 points to. This sharing inform-
ation is essential in the process of detecting dead heap cells. Indeed, although
X might not be used in the remainder of the code, as long as Y is used, the cells
pointed at by X may not be removed from the heap, nor may they be reused for
constructing other terms.

This small example illustrates our need to reason about parts of terms and
their memory sharing in a formal setting.

6.2 Types, Terms, and Subterms

We start by associating so called type trees to each type defined in a given program.
For these type trees, we define a formal way of selecting individual type nodes.
This leads us to the notion of a type selector. Given the fact that each Mercury term
is an instance of a type, we can directly map type selectors to term selectors. While
the former select type nodes from the type tree of some type t, the latter designate
subterms of a term of that type t. The formalisation of these subterms is used
as a basis for the concrete domain of representing shared heap cells. Recursive
types have infinite type trees. To be useful in the context of an abstract domain,
we need a finite representation for such types. By introducing an equivalence
relation on the selectors, we obtain the so called type graphs, hence guarantee a
finite representation. Each partition under this equivalence relation represents a
possibly infinite set of type nodes or subterms when applied on a specific type or
term of that type respectively. This is the basis of the abstract domain that we use
to represent structure sharing between the terms that the program variables may
point at at run-time.

This section is based on (Vanhoof 2001) where the same notions are used for

6.2. TYPES, TERMS, AND SUBTERMS 107

north south east west north south east west

ex

a b

dirdirint

list(T)

[|][]

list(T)T

[] [|]

list(T)T

[] [|]

...T

...

Figure 6.2: Type trees associated with the types ex and list(T) defined in Ex-
ample 6.1. AND-nodes are marked in italic. If they have children, an arc (or
circle) is used for connecting the edges to their children.

the binding time analysis that is developed in that work.
Recall that a type is a term from T (ΣT ,VT), and that each type constructor in

ΣT is defined by a type declaration. A type declaration enumerates the different
function symbols that are associated with a type, and also indicates the types of
the arguments of these function symbols. As such, types can be represented by
AND-OR trees. A type is an OR-node with a child node for each of the function
symbols associated with that type by the type declaration. For each non-constant
child, the type tree adds an AND-node representing all the types of the arguments
the particular function symbol takes.

Example 6.1 Consider the following type declarations:

dir → north; south; east; west.
ex → a(int, dir); b(dir).
list(T) → []; [T | list(T)].

The type trees of ex and list(T) are shown in Figure 6.2.

The OR-nodes within a type tree are of particular interest as they represent
the types of the subterms a term of that type may have. We refer to them as the
type nodes of the type tree.

A type node of a type tree is uniquely identified by a path from the root of
the type tree to the actual type node. Such a path is described as a sequence

108 CHAPTER 6. DATA STRUCTURE SHARING

from Σ×N. A path selecting a specific type node from a type tree is called a type
selector. The empty sequence, called the empty selector, is denoted by ε. Applied to
a type tree,ε selects the root node of the type tree, i.e., the type itself. The sequence
consisting of one single element (f , i), if applied to a type tree, selects the i’th type
node of the function symbol f that can be selected from the OR-node at the root
of the type tree. In general, a non-empty sequence (f1, i1) · (f2, i2) · . . . · (fn, in),
if applied to a type tree, selects the type node that corresponds to the selector
(f2, i2) · . . . · (fn, in) if applied to the type node selected by the path (f1, i1) applied
on the root of the original type tree.

Let Selector denote the set of all sequences over Σ×N. If s1, s2 ∈ Selector, then
s1 • s2 represents the concatenation of these sequences, i.e., s1 • s2 = (f11 , i11) ·
. . . · (fn1 , in1) · (f12 , i12) · . . . · (fn2 , in2) if s1 = (f11 , i11) · . . . · (fn1 , in1) and s2 =
(f12 , i12) · . . . · (fn2 , in2). The empty selector ε is a neutral element for the concat-
enation operation: ∀s ∈ Selector : ε • s = s •ε = s.

The formal definition of a type tree is given in terms of these type selectors:

Definition 6.1 (Type tree) Given a type t ∈ T (ΣT ,VT), the type tree of t, denoted
by T T t, is the set of type selectors from Selector – the set of all sequences over Σ× N,
where:

• ε ∈ T T t;

• if t = h(T1, . . . , Tn)θ where h/n is defined by the type description

h(T1, . . . , Tn)→ f1(t1); f2(t2); . . . fi(ti)

and where θ is a type substitution, then for all functors f j/m with j ∈ {1, . . . , i},
and for each argument position k ∈ {1, . . . , n} we have (f j, k) • s ∈ T T t, where
s ∈ T T (t′)θ with t′ = t(f j ,k).

Given a type t, and s ∈ Selector a type selector in t’s type tree, s ∈ T T t, then
we use the notation ts to denote the type of the type node identified by the type
selector s in the type tree for t.

Definition 6.2 (Ancestor Type Node) Let s1 and s2 be two type selectors in the type
tree of a type t, i.e., s1, s2 ∈ T T t. The type node selected by s1 in the type tree of t is said
to be an ancestor type node of the type node selected by s2 in the type tree of t, if and
only if there exists a selector s, such that s1 • s = s2.

Note that for every type t and every selector s ∈ T T t, ε is always an ancestor
of s.

6.2. TYPES, TERMS, AND SUBTERMS 109

Example 6.2 Using the type trees depicted in Figure 6.2, let s1 = ([|], 1) and s2 =
([|], 2), then we have:

exε = ex
s2 • s1 = ([|], 2) · ([|], 1)
list(T)s1 = T
list(T)s2 = list(T)
list(T)s2•s1 = T

Example 6.3 If the types dir, ex and list(T) are as defined in Example 6.1, then their
type trees are:

T T dir = {ε}
T T ex = {ε, (a, 1), (a, 2), (b, 1)}

T T list(T) =

ε,
([|], 1),
([|], 2),
([|], 2) · ([|], 1),
([|], 2) · ([|], 2),
([|], 2) · ([|], 2) · ([|], 1),
([|], 2) · ([|], 2) · ([|], 2),
([|], 2) · ([|], 2) · ([|], 2) · ([|], 1),
([|], 2) · ([|], 2) · ([|], 2) · ([|], 2),
. . .

Mercury is a strongly typed language. This means that every term used in a

program can be given a type. Let τ be a term of type t, then this term can be seen
as a subset of the type tree of t, such that in each encountered OR-node, all but
one branch is pruned away.

Definition 6.3 (Term Tree, Term Selectors) Let τ be a term of type t, then the term
tree Tτ ⊆ T T t denotes the set of selectors that correctly select any of the type nodes in
the graphical representation of τ . Elements from Tτ are called term selectors.

Example 6.4 Consider the term a(3, north). This term is of type ex, and can be graphic-
ally represented by a tree. Figure 6.3 shows this tree, and its explicit mapping to the type
tree. Here Ta(3,north) = {ε, (a, 1), (a, 2)}.

We add the notion of compatible term selectors:

Definition 6.4 (Compatible Selectors) Given a type t, and selectors s1, s2 ∈ T T t,
then s1 and s2 are said to be compatible, denoted by s1 ./ s2, iff:

• either s1 = (f , n1) • s′1, s2 = (f , n2) • s′2, n1 6= n2;

110 CHAPTER 6. DATA STRUCTURE SHARING

north south east west

a

dirint

north

a

dirint

north3

ex

b

dir

south east west

ex

(a) (b)

3

Figure 6.3: Schematic representation of the term a(3, north) of type ex (a) and its
mapping on the full type tree of ex (b).

• or s1 = s • s′1, s2 = s • s′2, s′1 ./ s′2.

Example 6.5 Consider the type ex as defined in Example 6.1. The selectors (a, 1) and
(a, 2) are compatible because they select type nodes starting from the same AND-node.
The selectors (a, 1) and (b, 1) are not compatible.

We have the following interesting property:

Proposition 6.1 Given a term τ of type t, then all term selectors in Tτ are mutually
compatible.

Definition 6.5 (Valid Term Selector) Given a term τ and a selector s then s is a valid
selector for τ iff s ∈ Tτ .

Definition 6.6 (Subterm) Let τ be a term of type t, and s ∈ Tτ , then s applied on the
term τ , denoted by τ s, selects the subterm with term tree Tτ s = {s′|s • s′ ∈ Tτ}. The
type of this subterm is given by ts.

The elements of type trees and term trees are called type selectors and term
selectors respectively. In general, we use “selector” to refer to either of these select-
ors.

6.2. TYPES, TERMS, AND SUBTERMS 111

list(T)

[|][]

T

Figure 6.4: Graphical representation of the type graph for list(T).

Example 6.6 Let τ1 = a(3, north) of type ex. Let s1 = (a, 1), s2 = (a, 2) and s3 =
(b, 1). Let τ2 = [3, 4, 5] of type list(int)1 and sa = ε, sb = ([|], 2), and sc = ([|], 2) ·
([|], 1). Then

Ta(3,north) = {ε, (a, 1), (a, 2)}
T[3,4,5] = {ε, ([|], 1), ([|], 2),

([|], 2) · ([|], 1), ([|], 2) · ([|], 2),
([|], 2) · ([|], 2) · ([|], 1), ([|], 2) · ([|], 2) · ([|], 2)}

τ
s1
1 = 3 τ sa

2 = [3, 4, 5]
τ

s2
1 = north τ

sb
2 = [4, 5]

τ sc
2 = 4

Note that for example, s3 is not a valid selector for τ1.

Type trees can in theory be infinite. The type tree for the type list(T) (Figure 6.2
and Example 6.3) illustrates this. A finite representation can be ensured by using
type graphs instead. A type graph is obtained from a type tree by folding a branch
tree leading to a type node back to an ancestor type node of the same type, if such
an ancestor type node exists.

Example 6.7 Figure 6.4 shows the type graph for the list(T)-type.

We formalise the notion of type graphs through an equivalence relation defined
on the set of selectors.

Definition 6.7 (Selector equivalence) Two selectors are considered to be equivalent
for a type t if the type nodes that they select have the same type and if either one of the
selectors is an ancestor of the other one. Formally: Let s1, s2 ∈ Selector applicable to a
type t. If ts1 = ts2 and if ∃s ∈ Selector : s1 • s = s2 or s2 • s = s1, then s1 ≡ s2.

As ≡ is reflexive, symmetric and transitive, it is a valid equivalence relation.
It is worthwhile to note that having the same type is not enough for two type

nodes to be equivalent.
1Note that τ2 is of type list(T)θ with the type substitution θ = {T/int}.

112 CHAPTER 6. DATA STRUCTURE SHARING

tree(T)

T

empty node

Figure 6.5: Graphical representation of the type graph for tree(T) as defined in
Example 6.9.

Example 6.8 Consider a type pair(T) defined by the following type description:

pair(T)→ (T− T)

Although the selectors ((−), 1) and ((−), 2) select type nodes of the same type, they are
not considered equivalent: ((−), 1) 6≡ ((−), 2).

Example 6.9 Consider the type tree(T) defined by the following type description:

tree(T)→ empty ; node(T, tree(T), tree(T))

for which the type graph is depicted in Figure 6.5. Here, the selectors (node, 2), (node, 3)
are equivalent to the root node, i.e. to the selector ε, and therefore are equivalent to each
other. This illustrates the idea that two selectors can be equivalent, although they are not
an ancestor of each other.

An interesting property of type selector equivalence is the following one that
states that if two selectors of a type are equivalent, then they must have a common
ancestor with which they are equivalent.

Proposition 6.2 Given a type t with type tree T T t, and s1, s2 ∈ T T t. If s1 ≡ s2
then ∃s ∈ T T t such that ∃e1, e2 ∈ Selector for which s1 = s • e1 and s2 = s • e2 and
s1 ≡ s2 ≡ s.

Note that in so called type based analyses (Bruynooghe, Codish, Gallagher,
Genaim, and Vanhoof 2003; Lagoon, Mesnard, and Stuckey 2003), the equival-
ence relation between selectors is based on type equivalence only and is therefore
a coarser definition of equivalence. The effect this has on the precision of the res-
ulting analysis and how it compares to the precision obtained with our current
definition of selector equivalence is discussed in Section 12.7.

In this thesis we only consider types for which the set of types of the type
nodes that can be selected is finite. This means that types may not be defined in

6.2. TYPES, TERMS, AND SUBTERMS 113

terms of strict instances of themselves. A type badlist(T) defined by the following
description rule is therefore excluded:

badlist(T)→ []; [T | badlist(badlist(T))]

The restriction allows us to guarantee that the equivalence relation ≡ partitions
each possibly infinite type tree into a finite number of equivalence classes. This is
a common restriction, although see (Okasaki 1998) for the use of such types.

Finally, for a type t and s ∈ T T t, we use the notations [s]t and st to denote the
equivalence class of selector s and the minimal element of that equivalence class
respectively in the context of that type t. Formally:

[s]t = {s′ ∈ T T t | s′ ≡ s}
st = s′ ∈ [s]t such that ∀s′′ ∈ [s]t : s′′ = s′ • e, for some e ∈ Selector.

If the type context is clear, [s]t and st are abbreviated to [s] and s respectively.

Example 6.10 In the context of the type list(T), we have

ε = ([|], 2) = ([|], 2) · ([|], 2) = . . . = ε

and
([|], 1) = ([|], 2) · ([|], 1) = ([|], 2) · ([|], 2) · ([|], 1) = . . . = ([|], 1)

Definition 6.8 (Type Graph) Given a type t ∈ T (ΣT ,VT), the type graph of t, de-
noted by T Gt, is the set of minimal elements of the equivalence classes that are obtained
using ≡ as the equivalence relation over the type tree T T t of that type:

T Gt = {s | s ∈ T T t}

The elements of T T t and T Gt are both in Selector, therefore, to make a clear
distinction between them, we systematically write selectors of the type graph of
a type by over-lining them.

Example 6.11 The type graphs of the types defined in Example 6.1 are:

T Gdir = {ε}
T Gex = {ε, (a, 1), (a, 2), (b, 1)}
T G list(T) = {ε, ([|], 1)}

Example 6.12 Consider the types list(A) and listone(B) defined by the following type
declarations:

list(A) → []; [A|list(A)].
listone(B) → [B|list(B)].

114 CHAPTER 6. DATA STRUCTURE SHARING

At first sight it might seem that the type listone(B) defines all the lists with at least
one element. In that case, we would have listone(B)ε = list(B), and ε = ([|], 2) =
([|], 2) · ([|], 2) = ε for the type listone(B). Also T G listone(B) = {ε, ([|], 1)}.

This is wrong. Indeed, although both types use the same term constructor [|], they are
different. This becomes clear by subscribing the term constructor from listone(B) with
lo, thus [|]lo. We then have:

T G listone(B) = {ε, ([|]lo, 1), ([|]lo, 2), ([|]lo, 2) · ([|], 1)}

While a single selector s ∈ T T t, applied on a term τ of type t, selects one
specific subterm τ s of that term (if it exists), we consider that an element s ∈
T Gt applied to τ designates the set of subterms selected by the selectors of the
equivalence class [s].

Example 6.13 Let τ = [3, 4, 5], then

τε = {[3, 4, 5], [4, 5], [5], []}
τ ([|],1) = {3, 4, 5}

The first selector, ε, selects all the sublists of the original list, including the original list
itself. The second selector, applied to a list, selects all the elements within that list.

If X is a variable bound to a term τ , and s a valid selector for τ , then we use the
notation for applying selectors on terms also in the context of variables pointing
to these terms. Thus Xε denotes the term τ , and Xs the subterm τ s. Similarly, if
s ∈ T Gtype(τ), then Xs denotes the set of subterms selected by the elements from
the equivalence class [s].

6.3 Concrete Domain for Structure Sharing

In Chapter 5 we introduced the concrete semantics of our Mercury language us-
ing the concrete domain of variable bindings represented by existentially quan-
tified term equations. This concrete domain is detailed enough to keep track of
the variable bindings, i.e., the values to which the variables in use are bound. Yet
as such it can not be used to reflect the more low-level information of memory
sharing that is needed in our work. We therefore augment this concrete domain
with a domain that does keep track of the sharing that may exist between terms
during the execution of the program.

To simplify the presentation, we do not make a distinction between primitive
types and other types and consider that terms of primitive types may also be
shared in memory2.

2Recall that in the MMC terms of primitive types have a simplified representation and can there-
fore not be shared, c.f. Section 3.8.3.

6.3. CONCRETE DOMAIN FOR STRUCTURE SHARING 115

6.3.1 From Data Structure to Collecting Sharing Sets

We use the notion of data structure to refer to the physical memory required for
storing the representation of a term (or subterm) referred to from the user pro-
gram. In Mercury data structures are memory cells from the heap.

Definition 6.9 (Data structure) Consider a variable X bound to a term τ at a specific
moment during the execution of a program – described by the ex-equation e, then 〈e, Xs〉
represents the heap cells used to store the subterm τ s. The tuple 〈e, Xs〉 is called the
data structure associated with the term Xs in the context e. We use Xs, without an
explicit context, to denote so called context-free data structures.

Type information is not explicitly present in the definition of a data structure as
we assume that a data structure is used in the context of a specific procedure in
which we consider the type information of its variables to be implicitly present
(c.f. Section 4.2.2).

Let X be a variable of type type(X), then we use DX to denote the set of
context-free data structures of the terms (and subterms of these terms) that X may
point to: DX = {Xs | s ∈ T T type(X)}. Let VI be the set of variables of interest.
We generalise the above notation such that DVI denotes the context-free data
structures over all the variables of interest: DVI = {Xs |Xs ∈ DX , X ∈ VI}. The
set of data structures over all the variables of interest is the domain 〈Eqn+,DVI〉.

Definition 6.10 (Valid Data Structure) A data structure 〈e, Xs〉 ∈ 〈Eqn+,DVI〉 is
valid iff ∃τ ∈ T (V , Σ) : e |= X = τ and s ∈ Tτ .

Note that context-free data structures are neither valid nor invalid as there is no
context to validate or invalidate them in.

By abuse of notation we use Xs to refer to the term Xs as well as to the (context-
free) data structure associated with that term. In that case we also say “the data
structure Xs” instead of “the data structure associated with the term Xs”.

We say that two terms are shared if the memory used to store these terms is the
same.

Definition 6.11 (Sharing Pair) Let XsX and YsY be two data structures in a context
e ∈ Eqn+, then XsX and YsY are shared iff the terms XsX and YsY occupy the same
memory space in the environment e, thus XsX = YsY . This memory constraint in the
context of the variable bindings e is denoted by 〈e, (XsX −YsY)〉, and is called a sharing
pair. In analogy with data structures, we call (XsX −YsY) a context-free sharing pair
if used in the absence of an explicit ex-equation.

We use SDVI to denote the set of context-free sharing pairs over a set of vari-
ables VI.

Of course, if two terms share memory then these terms must be equal and
therefore also have the same type:

116 CHAPTER 6. DATA STRUCTURE SHARING

Corollary 6.1 If 〈e, (XsX −YsY)〉 is a sharing pair, and e |= X = τX ∧ Y = τY, then
τ

sX
X = τ

sY
Y , and type(XsX) = type(YsY).

Obviously, sharing is commutative: 〈e, (XsX −YsY)〉 ⇔ 〈e, (YsY − XsX)〉.

Definition 6.12 (Valid Sharing Pair) A sharing pair 〈e, (XsX −YsY)〉 is valid iff the
data structures 〈e, XsX 〉 and 〈e, YsY 〉 are valid, and of course, XsX and YsY share.

If an environment e has more then one sharing relation, then we use the notion
of a sharing set:

Definition 6.13 (Sharing Set) Let e ∈ Eqn+ and C ∈ ℘(SDVI), then 〈e, C〉 is called
a sharing set with sharing pairs C in the context e. If C is used without an explicit
context, then it is called a context-free sharing set.

Again, we define the notion of validity:

Definition 6.14 (Valid Sharing Set) Let 〈e, C〉 be a sharing set, then this sharing set
is valid iff ∀S ∈ C : 〈e, S〉 is valid.

If a sharing set is valid, then all data structures used to express the sharing in-
formation are valid too. This means that if a variable X is involved in the sharing
set, then all selectors used on X must belong to the same term tree, hence, must
be compatible (c.f. Proposition 6.1). We therefore have the following corollary:

Corollary 6.2 If 〈e, C〉 ∈ 〈Eqn+, ℘(SDVI)〉 is a valid sharing set, then all term select-
ors used for the same variable in C are mutually compatible:

∀X ∈ VI : (XsX −YsY) ,
(

Xs′X − ZsZ
)
∈ C⇒ sX ./ s′X

Example 6.14 Consider the type declarations

t1 → f (t2); g(t2).
t2 → h(int).

and three variables X, Y and Z of type t1. The context-free sharing set{(
X(f ,1) −Y(f ,1)

)
,
(

X(g,1) − Z(f ,1)
)}

can not be valid in any environment e ∈ Eqn+. Indeed, 6 ∃τ ∈ T (V , Σ) such that
(f , 1) ∈ Tτ and (g, 1) ∈ Tτ as this would indicate that the variable X is bound to a term
with outermost functor f /1, but also to a term with outermost functor g/1. These two
bindings are incompatible.

Mercury is a logic programming language, hence our domain needs to be
suitable to express multiple solutions and multiple inputs. We therefore need
sets of sharing sets to describe all variable bindings and their sharing.

6.3. CONCRETE DOMAIN FOR STRUCTURE SHARING 117

Definition 6.15 (Collecting Sharing Set) A set of sharing sets

{〈e1, C1〉, . . . , 〈en, Cn〉} ∈ ℘(〈Eqn+, ℘(SDVI)〉)

is called a collecting sharing set.

Definition 6.16 (Valid Collecting Sharing Set) A collecting sharing set ECS is valid
if each of the sharing sets EC ∈ ECS is valid.

We limit our domain to valid sharing sets only. Therefore, the concrete domain
that we shall use to represent sharing between terms in a given program will be
the domain of valid collecting sharing sets, by abuse of notation also denoted
with ℘(〈Eqn+, ℘(SDVI)〉), where VI is the set of variables of interest.

6.3.2 Operations

We define some operations on the domain of sharing sets 〈Eqn+, ℘(SDVI)〉 and
extend them to the actual concrete sharing domain ℘(〈Eqn+, ℘(SDVI)〉).

When two data structures share, then their subterms share too. We make this
explicit using the termshift closure operation defined below.

Definition 6.17 (Termshift) The termshift-operation expands a sharing set to a new
set that explicitly includes the sharing information between all the subterms of the shar-
ing data structures included in the initial sharing set. Formally, we have termshift :
〈Eqn+, ℘(SDVI)〉 → 〈Eqn+, ℘(SDVI)〉 such that:

termshift(〈e, C〉) = 〈e, C′〉

where

C′ =

(XsX•s −YsY•s)

∣∣∣∣∣∣
(XsX −YsY) ∈ C,
e |= X = τX ,
sX • s ∈ TτX

As the term trees of the terms are finite sets, C′ is guaranteed to be a finite set too.

Note that as (XsX −YsY) ∈ C, if e |= X = τX , then there must be a τY such that
τ

sX
X = τ

sY
Y , which implies that if sX • s ∈ TτX , then sY • s ∈ TτY (Corollary 6.1).

We define the termshift operation for context-free structure sharing sets.

Definition 6.18 (Termshift for context-free structure sharing) Let C be a context-
free structure sharing set, i.e., C ∈ ℘(SDVI), then

termshift(C) =
{

(XsX•s −YsY•s)
∣∣∣∣ (XsX −YsY) ∈ C,

sX • s ∈ T T type(X)

}

118 CHAPTER 6. DATA STRUCTURE SHARING

Note that in this definition the absence of a concrete environment is com-
pensated by using the type tree of the variable instead of the term tree of the
term to which that variable would have been bound in a given environment.
This definition may lead to an infinite set of structure sharing pairs in the result-
ing set. This is not a problem if we consider the termshift operation to be a lazy
termshift (Bruynooghe, Janssens, and Kågedal 1997) where terms are termshifted
on demand.

When a data structure XsX shares with YsY , but also with ZsZ , then automatic-
ally this means that YsY is shared with ZsZ . In other words, sharing is a transitive
property between data structures. To compute all the shared data structures im-
plied by transitivity over a set of data structures we use the transitive closure op-
eration, transclos. The following definition gives a general definition of transclos
and can be adapted to the sharing sets in 〈Eqn+, ℘(SDVI)〉 in a straightforward
way.

Definition 6.19 (Transitive Closure) Consider a set of elements A. Then the transit-
ive closure transclos : A× A → A× A is defined as the minimal relation such that if
(a, b) and (b, c) is in the transitive closure of a set S, then also (a, c) must be in S.

For elements in 〈Eqn+, ℘(SDVI)〉 we define:

transclos(〈e, C〉) = 〈e, transclos(C)〉

Definition 6.20 (Projection) Let 〈e, C〉 ∈ 〈Eqn+, ℘(SDVI)〉 and V ⊆ VI, then the
projection of 〈e, C〉 on the variables V is defined as:

(〈e, C〉)|V = 〈 (e)|V , (C)|V〉

where (e)|V is the projection operation defined on Eqn+ (Definition 2.8), and (C)|V is
given by:

(C)|V =

(XsX −YsY)

∣∣∣∣∣∣
(XsX −YsY) ∈ transclos(termshift(〈e, C〉))
and
X, Y ∈ V

Definition 6.21 (Renaming) Let 〈e, C〉 ∈ 〈Eqn+, ℘(SDVI)〉 and X, Y be two se-
quences of variables in VI, then the renaming of 〈e, C〉 w.r.t. to the mapping X → Y
is defined as:

ρX→Y (〈e, C〉)) = 〈ρX→Y (e) , ρX→Y (C)〉
where ρX→Y (e) is given by Definition 2.9, and ρX→Y (C) is:

ρX→Y (C) =

{(
Yi

sYi −Yj
sYj

) ∣∣∣∣∣
(

Xi
sXi − X j

sXj
)
∈ C,

(Xi , Yi), (X j, Yj) ∈ X → Y}

}

6.3. CONCRETE DOMAIN FOR STRUCTURE SHARING 119

We generalise these operations to elements from ℘(〈Eqn+, ℘(SDVI)〉). Let
ECS ∈ ℘(〈Eqn+, ℘(SDVI)〉), then

termshift(ECS) = {termshift(EC) | EC ∈ ECS}
transclos(ECS) = {transclos(EC) | EC ∈ ECS}
(ECS)|V = { (EC)|V | EC ∈ ECS}
ρX→Y (ECS) = {ρX→Y (EC) | EC ∈ ECS}

6.3.3 Ordering

The sharing domain is a domain composed of the traditional information of vari-
able bindings augmented with an explicit memory sharing part. It is therefore
natural to define an ordering in terms of the ordering of each of the components
of the domain.

We start by ordering sharing sets.
We define the following order relation for context-free structure sharing sets.

Definition 6.22 (Ordering in ℘(SDVI)) Let a ∈ SDVI be a context-free sharing pair
and C, C1, C2 ∈ ℘(SDVI) context-free sharing sets.

We say that a is directly subsumed by the sharing set C iff a ∈ C, where ∈ is the
usual set-inclusion. The sharing pair a is subsumed by the sharing set C, denoted by
a �c C, iff a is directly subsumed by transclos(termshift(C)).

The sharing set C1 is subsumed by C2, denoted by C1 ⊆c C2, iff each of the sharing
pairs expressed in C1 is subsumed by C2: ∀a ∈ C1 : a �c C2.

The least upper bound operation for context-free structure sharing sets is simply their
union.

Two context-free sharing sets are equivalent if they are mutually subsumed,
i.e., ∀C1, C2 ∈ ℘(SDVI), C1 is equivalent with C2, simply denoted as C1 ≡ C2, iff
C1 ⊆c C2 and C2 ⊆c C1.

In ℘(〈Eqn+, ℘(SDVI)〉), we have:

Definition 6.23 (Ordering in ℘(〈Eqn+, ℘(SDVI)〉)) Collecting sharing sets are ordered
by the set-inclusion operation, modulo the equivalence of each of the components.

Let EC ∈ 〈Eqn+, ℘(SDVI)〉 and ECS ∈ ℘(〈Eqn+, ℘(SDVI)〉), then the sharing
set EC is subsumed by ECS, denoted with EC ≤c ECS, iff ∃EC′ ∈ ECS, such that if
EC′ = 〈e′, C′〉, and EC = 〈e, C〉, then e′ ≡ e, and C′ ≡ C.

Let ECS1, ECS2 ∈ ℘(〈Eqn+, ℘(SDVI)〉), then ECS1 is subsumed by ECS2, de-
noted with ECS1 vc ECS2, iff each of the sharing sets in ECS1 is subsumed by ECS2:
∀EC ∈ ECS1 : EC ≤c ECS2.

The least upper bound of two collecting sharing sets in ℘(〈Eqn+, ℘(SDVI)〉) is the
union of these sets, modulo equivalence of the underlying components of the domain, here
denoted by tc.

120 CHAPTER 6. DATA STRUCTURE SHARING

We can show that
〈
℘(〈Eqn+, ℘(SDVI)〉),vc

〉
is a complete lattice where ⊥ =

{ } and > = {〈e, C〉 | e ∈ Eqn+, C ∈ ℘(SDVI)}.
Just like in ℘(Eqn+) we have the bottom element { } representing a failing

derivation.

6.3.4 Instantiated Concrete Semantics

We now define our concrete Mercury semantics with a domain that specifically
keeps track of the sharing information between the data structures that are con-
structed during the execution of the program.

Definition 6.24 (Concrete Sharing Semantics) The concrete Mercury semantics with
respect to sharing of data structures is defined by the semantic functions SemM (Fig-
ure 5.4) instantiated with the domain ℘(〈Eqn+, ℘(SDVI)〉) and the auxiliary functions
initc, combc and addc defined as follows:

initc = {〈true, { }〉}

combc(ECS1, ECS2) =

〈e, C1 ∪ C2〉

∣∣∣∣∣∣∣∣
〈e1, C1〉 ∈ ECS1,
〈e2, C2〉 ∈ ECS2,
e = e1 ∧ e2, e is solvable,
C2|in ⊆c C1|in

addc(unif, ECS) = combc(ECS, ECSunif)

where in are the input variables of the language construct (the procedure) to which the
descriptions ECS1 and ECS2 belong, and where ECSunif = {〈Eunif, Cunif〉}. Eunif is as
defined in Definition 5.6 (Page 66), and Cunif is given by:

CX:=Y = {(Xε −Yε)}
CX⇐ f (Y1 ,...,Yn) = {

(
X(f ,1) −Yε

1

)
,
(

X(f ,2) −Yε
2

)
, . . . ,

(
X(f ,n) −Yε

n

)
}

CX⇒ f (Y1 ,...,Yn) = {
(

X(f ,1) −Yε
1

)
,
(

X(f ,2) −Yε
2

)
, . . . ,

(
X(f ,n) −Yε

n

)
}

CX==Y = { }

The restriction C2|in ⊆c C1|in in the definition of combc is needed to express
the fact that, given concrete sharing information for a procedure, this proced-
ure can not add new sharing nor change the sharing between entities that where
already instantiated when the procedure was called. Indeed, if two variables X
and Y are already bound to some terms (thus fully ground) before the call to a
procedure, and say that there is no sharing between the data structures XsX and
YsY before that call, then no matter what that procedure does with these data
structures, it can not alter the fact that the memory that each of these data struc-
tures represents is unshared.

6.3. CONCRETE DOMAIN FOR STRUCTURE SHARING 121

Example 6.15 Consider the procedure definition:

% : − pred noth ing (T , T , T) .
% : − mode noth ing (in , in , i n) i s det .
noth ing (X, Y, Z) : − t r ue .

where true is a procedure call that always succeeds. Consider the natural semantics for
Mercury (Figure 5.4). Applying PrM to the above procedure with call atom nothing(A,B,C)
and call description

S = {〈e, {(AsA − BsB)}〉, 〈e, {(BsB − CsC)}〉}

where e = (A = τ ∧ B = τ ∧ C = τ) and τ ∈ T (V , Σ), then

S0 = {〈e1, {(XsA −YsB)}〉, 〈e1, {(YsB − ZsC)}〉} – Renaming
S1 = S0 – Nothing happens in the goal.

with e1 = (X = τ ∧ Y = τ ∧ Z = τ). And thus combc(S , ρh→a ((S1)|h)) =
combc(S , S). Without the special restriction in the definition of combc, we have:

combc(S , S) =

〈e, {(AsA − BsB)}〉,
〈e, {(BsB − CsC)}〉,
〈e, {(AsA − BsB) , (BsB − CsC)}〉

The underlined new concrete sharing set means that a call to procedure nothing/3—a
procedure that really does nothing—can create additional sharing. Indeed:

(AsA − CsC) �c {(AsA − BsB) , (BsB − CsC)

This is not the behaviour we want, especially as all variables of the call were already
bound!

Using the definition for combc given in Definition 6.24, we have:

in(nothing(A, B, C)) = {A, B, C}

and thus
({(AsA − BsB)})|{A,B,C} = {(AsA − BsB)}
({(BsB − CsC)})|{A,B,C} = {(BsB − CsC)}

As {(AsA − BsB)} 6⊆c {(BsB − CsC)} we obtain: combc(S , S) = S . As desired, no
additional sharing relations are created between the input arguments of the called proced-
ure.

We now prove the important theorem stating the equivalence between the
natural semantics and the differential semantics for the particular case of this con-
crete structure sharing domain. This proof is essential, as it allows us to define the
abstract structure sharing semantics in the differential context only and prove that

122 CHAPTER 6. DATA STRUCTURE SHARING

this semantics is correct w.r.t. to concrete differential semantics, which automatic-
ally proves that it is correct w.r.t. the natural concrete structure sharing semantics.
This is essential, as not only will that enable us to define structure sharing ana-
lysis in the context of modules (given the equivalence of the differential semantics
with the goal-independent based semantics), but we will show that abstract struc-
ture sharing in the context of the natural semantics will in general result in less
precise descriptions than in the differential semantics context.

Theorem 6.1 The natural concrete sharing semantics for Mercury is equivalent with the
differential semantics instantiated with the same concrete domain, i.e.,

SemM(℘(〈Eqn+, ℘(SDVI)〉))
c⇔ SemMδ(℘(〈Eqn+, ℘(SDVI)〉))

Proof We must show that each of the statements in Theorem 5.4 holds for our
concrete domain. We use EC, EC1, . . . to represent elements in ℘(SDVI)
and ECS, ECS1, . . . for elements in ℘(〈Eqn+, ℘(SDVI)〉). In this proof we
will often refer to Theorem 5.5 (page 88) that states that

SemM(℘(Eqn+)) c⇔ SemMδ(℘(Eqn+))

1. Neutral element (Condition 5.5):

combc(ECS, initc) = combc(ECS, {〈true, { }〉})
= {〈e ∧ true, C ∪ { } | 〈e, C〉 ∈ ECS}
= ECS

2. Associativity (Condition 5.6): This follows immediately from the as-
sociativity of the underlying operations, namely the combination of
ex-equations using the boolean conjunction operation, and the union
operation used for merging the sharing sets.

3. Additivity (Condition 5.7):

combc(ECS1, ECS2 tc ECS3)}

=

〈e, C1 ∪ C2〉

∣∣∣∣∣∣∣∣
〈e1, C1〉 ∈ ECS1,
〈e2, C2〉 ∈ ECS2 or 〈e2, C2〉 ∈ ECS3,
e = e1 ∧ e2, e is solvable,
C2|in ⊆c C1|in

=

〈e, C1 ∪ C2〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈e1, C1〉 ∈ ECS1, 〈e2, C2〉 ∈ ECS2,
e = e1 ∧ e2, e is solvable,
C2|in ⊆c C1|in

or 〈e2, C2〉 ∈ ECS3,

e = e1 ∧ e2, e is solvable,
C2|in ⊆c C1|in

= combc(ECS1, ECS2) tc combc(ECS1, ECS3)

6.3. CONCRETE DOMAIN FOR STRUCTURE SHARING 123

4. Head variable idempotence (Condition 5.8): The projection of ECS
onto the head variables H must satisfy the modes for p. This means
that only input variables can be further instantiated, hence structure
sharing can only occur between input variables:

Vars((ECS)|H) ⊆ in(p(X1, . . . , Xn))

This leads to the following derivation:

combc(ECS, (ECS)|H)

=

〈e, C1 ∪ C2

∣∣∣∣∣∣∣∣
〈e1, C1〉 ∈ ECS,
〈e2, C2〉 ∈ (ECS)|H
and e = e1 ∧ e2, e is solvable,
C2|in ⊆c C1|in

⇓ EC′ ∈ (ECS)|H ∧ in ⊆ H ⇒ (EC′)|in = EC′

=

〈e, C1 ∪ C2〉

∣∣∣∣∣∣
〈e1, C1〉 ∈ ECS, 〈e2, C2〉 ∈ (ECS)|H
and e = e1 ∧ e2, e is solvable,
C2 ⊆c C1|in

⇓ C1 ⊆c (C2)|V ⇒ C1 ⊆c C2, ∀C1, C2, V

=

〈e, C1 ∪ C2〉

∣∣∣∣∣∣
〈e1, C1〉 ∈ ECS, 〈e2, C2〉 ∈ (ECS)|H
and e = e1 ∧ e2, e is solvable,
C2 ⊆c C1

⇓ C1 ⊆c C2 ⇒ C1 ∪ C2 = C2, ∀C1, C2
= {EC | EC ∈ ECS} = ECS

5. add-compatibility (Condition 5.9): Let ECS be the result of combining
ECS1 and ECS2: ECS = combc(ECS1, ECS2). We develop the expres-
sion addc(unif, ECS) to combc(combc(ECS1, ECS2), ECSunif). By the
associativity of combc, the latter is equivalent to

combc(ECS1, combc(ECS2, ECSunif))

which, by applying the definition of addc is equivalent to

combc(ECS1, addc(unif, ECS2))

6. Projection preservation (Condition 5.10): Let V = Vars(ECS1), then

124 CHAPTER 6. DATA STRUCTURE SHARING

we have:

(combc(ECS1, ECS2))|V

=

EC

∣∣∣∣∣∣∣∣
〈e1, C1〉 ∈ ECS1, 〈e2, C2〉 ∈ ECS2,
e = e1 ∧ e2, e is solvable,
C2|in ⊆c C1|in ,
EC = 〈e, C1 ∪ C2〉

∣∣∣∣∣∣∣∣
V

=

EC

∣∣∣∣∣∣∣∣
〈e1, C1〉 ∈ ECS1, 〈e2, C2〉 ∈ ECS2,
e = e1 ∧ e2, e is solvable,
C2|in ⊆c C1|in ,
EC = 〈 e|V , C1|V ∪ C2|V〉

=

EC

∣∣∣∣∣∣∣∣
〈e1, C1〉 ∈ ECS1, 〈e2, C2〉 ∈ ECS2,
e = e1 ∧ e2, e is solvable,
C2|in ⊆c C1|in ,
EC = 〈e1 ∧ e2|V , C1 ∪ C2|V

We have in ⊆ V, therefore

C2|in ⊆c C1|in ⇒ (C2|V)|in ⊆c C1|in

which proves that

(combc(ECS1, ECS2))|V = combc(ECS1, ECS2|V)

Each of the statements holds, therefore we can conclude that the natural
concrete sharing semantics is equivalent with the differential concrete shar-
ing semantics.

2

We illustrate the equivalence through the example of annotating the determ-
inistic procedure of append for a particular call description.

Example 6.16 Consider the definition of the deterministic version of concatenating two
lists as defined in Example 4.4. We will study the annotation of that procedure and its
program points for the particular call append(A,B,C) where A is bound to a list [O1,O2],
and B is bound to a list [O3]. The variables O1, O2, O3refer to specific terms of a type that
is irrelevant for this exposition. We assume that there is no structure sharing between the
elements of these particular lists.

In the context of the natural semantics we obtain the following rulebase meaning of
the append-procedure for the particular call descriptions that the initial call description,

6.3. CONCRETE DOMAIN FOR STRUCTURE SHARING 125

i.e., 〈A = [O1, O2] ∧ B = [O3], { }〉, generates3:

e C
→ append(A, B, C)
call: A = [O1 , O2] ∧ B = [O3] { }

exit: A = [O1 , O2] ∧ B = [O3]
∧C = [O1 , O2 , O3]

(

C([|],1) − A([|],1)
)

,(
C([|],2)·([|],1) − A([|],2)·([|],1)

)
,(

C([|],2)·([|],2) − Bε
)

→ append(Xs, Y, Zs)

call: X = [O1 , O2] ∧Y = [O3]
∧X = [Xe|Xs]

(

X([|],1) − Xε
e

)
,(

X([|],2) − Xε
s

)

exit: X = [O1 , O2] ∧Y = [O3]
∧X = [Xe|Xs] ∧ Zs = [O2|Y]

(
X([|],1) − Xε

e

)
,(

X([|],2) − Xε
s

)
,(

Z([|],1)
s − X([|],1)

s

)
,(

Z([|],2)·([|],2)
s −Yε

)

→ append(Xs, Y, Zs)

call: X = [O2] ∧Y = [O3]
∧X = [Xe|Xs]

(

X([|],1) − Xε
e

)
,(

X([|],2) − Xε
s

)

exit: X = [O2] ∧Y = [O3]
∧X = [Xe|Xs] ∧ Zs = Y

(

X([|],1) − Xε
e

)
,(

X([|],2) − Xε
s

)
,

(Zε
s −Yε)

The same call descriptions are encountered when using the differential setting, yet the
exit descriptions will now only list the effect of the literals within the procedure definition,

3Note that given the deterministic context, each of the collecting sets consists of only one element.
We can therefore omit the surrounding parentheses.

126 CHAPTER 6. DATA STRUCTURE SHARING

without repeating the call description with which it was called:

e C
→ append(A, B, C)
call: A = [O1 , O2] ∧ B = [O3] { }

exit: C = [O1 , O2 , O3]

(

C([|],1) − A([|],1)
)

,(
C([|],2)·([|],1) − A([|],2)·([|],1)

)
,(

C([|],2)·([|],2) − Bε
)

→ append(Xs, Y, Zs)

call: X = [O1 , O2] ∧Y = [O3]
∧X = [Xe|Xs]

(

X([|],1) − Xε
e

)
,(

X([|],2) − Xε
s

)
exit: Zs = [O2|Y]

(

Z([|],1)
s − X([|],1)

s

)
,(

Z([|],2)·([|],2)
s −Yε

)
→ append(Xs, Y, Zs)

call: X = [O2] ∧Y = [O3]
∧X = [Xe|Xs]

(

X([|],1) − Xε
e

)
,(

X([|],2) − Xε
s

)
exit: Zs = Y

{
(Zε

s −Yε)
}

The program point annotations obtained for all these call descriptions are listed in Fig-
ures 6.6-6.8 for the natural semantics, and in Figures 6.9-6.11 for the differential se-
mantics context.

(X = [O1 , O2] ∧Y = [O3]) = e1 { } = C1
1 e1 C1
2 − −
3 e1 C1

4 e1 ∧ X = [Xe|Xs]

(

X([|],1) − Xε
e

)
,(

X([|],2) − Xε
s

)
5 e1 ∧ X = [Xe|Xs] ∧ Zs = [O2|Y]

(
X([|],1) − Xε

e

)
,(

X([|],2) − Xε
s

)
,(

X([|],1)
s − Z([|],1)

s

)
,(

Yε − Z([|],2)
s

)

Figure 6.6: Annotation table for the deterministic procedure append in the natural
semantics context. The first line defines the particular call description.

6.4. AN ABSTRACT DOMAIN FOR STRUCTURE SHARING 127

(X = [O2] ∧Y = [O3]) = e2 { } = C2
1 e2 C2
2 − −
3 e2 C2

4 e2 ∧ X = [Xe|Xs]

(

X([|],1) − Xε
e

)
,(

X([|],2) − Xε
s

)
5 e2 ∧ X = [Xe|Xs] ∧ Zs = Y

(

X([|],1) − Xε
e

)
,(

X([|],2) − Xε
s

)
,

(Yε − Zε
s)

Figure 6.7: Annotation table for the deterministic procedure append in the natural
semantics context. The first line defines the particular call description.

(X = [] ∧Y = [O3]) = e3 { } = C3
1 e3 C3
2 e3 C3
3 e3 C3
4 − −
5 − −

Figure 6.8: Annotation table for the deterministic procedure append in the natural
semantics context. The first line defines the particular call description.

6.4 An Abstract Domain for Structure Sharing

The concrete domain proposed in the previous section relies on the notion of
data structures to keep track of memory sharing. Given a variable X in an en-
vironment described by a constraint e, then the data structure 〈e, Xs〉 denotes the
set of memory cells used to store the subterm Xs, where s is a valid selector for
the specific term to which X is bound to in e. In the abstract domain, we make
abstraction of the exact environment using a context-free approximation for the
sharing data structures and approximating the exact selectors of the concrete data
structures by using the equivalence classes over selectors instead. We first define
our abstract domain with informal hints w.r.t. the concrete meaning of elements
of this domain. The formal concretisation function is given afterwards (Defini-
tion 6.28).

Let s ∈ T Gtype(X), then we use Xs to denote all the data structures that could
possibly be selected using the selectors in the equivalence class [s] considering
that X is bound to any possible valid term of type type(X).

Example 6.17 Consider a variable X of type list(ex) (list(T) and ex as defined in Ex-

128 CHAPTER 6. DATA STRUCTURE SHARING

X = [O1 , O2] ∧Y = [O3] { }
1 { } { }
2 − −
3 { } { }

4 X = [Xe|Xs]

(

X([|],1) − Xε
e

)
,(

X([|],2) − Xε
s

)
5 X = [Xe|Xs] ∧ Zs = [O2|Y]

(
X([|],1) − Xε

e

)
,(

X([|],2) − Xε
s

)
,(

X([|],1)
s − Z([|],1)

s

)
,(

Yε − Z([|],2)
s

)

Figure 6.9: Annotation table for the deterministic procedure append in the differ-
ential semantics context. The first line defines the particular call description.

X = [O2] ∧Y = [O3] { }
1 { } { }
2 − −
3 { } { }

4 X = [Xe|Xs]

(

X([|],1) − Xε
e

)
,(

X([|],2) − Xε
s

)
5 X = [Xe|Xs] ∧ Zs = Y

(

X([|],1) − Xε
e

)
,(

X([|],2) − Xε
s

)
,

(Yε − Zε
s)

Figure 6.10: Annotation table for the deterministic procedure append in the dif-
ferential semantics context. The first line defines the particular call description.

ample 6.1), then Xε represents the set of context-free data structures

{Xε, X([|],2), X([|],2)·([|],2), . . . , }

i.e., all the sublists and their elements, including the list itself. The elements of the list
without the list nodes, i.e., X([|],1), X([|],2)·([|],1) etc., are selected by X([|],1).

Definition 6.25 (Abstract Data Structure) Let X be a variable and sX such that sX ∈
T Gtype(X), then XsX is called an abstract data structure corresponding to the minimal
selector sX .

An abstract data structure XsX is meant to represent the set of concrete context-
free data structures {Xs | s ∈ [sX]}. Note that abstract data structures are by
definition context-free.

6.4. AN ABSTRACT DOMAIN FOR STRUCTURE SHARING 129

X = [] ∧Y = [O3] { }
1 { } { }
2 { } { }
3 { } { }
4 − −
5 − −

Figure 6.11: Annotation table for the deterministic procedure append in the dif-
ferential semantics context. The first line defines the particular call description.

If X is a variable, then we use DX to denote the set of abstract data structures
over X: DX = {Xs | s ∈ T Gtype(X)}. If VI is the set of variables of interest, then
we generalise the above notation such that DVI denotes the set of abstract data
structures over all the variables in VI: DVI = {XsX |XsX ∈ DX , X ∈ VI}.

In analogy to concrete sharing, we represent abstract sharing between two
abstract data structures as a tuple

(
XsX −YsY

)
denoting the fact that the abstract

data structure XsX shares with YsY . This relation is commutative:
(
XsX −YsY

)
⇔(

YsY − XsX
)
. Let SDVI = {

(
XsX −YsY

)
|XsX , YsY ∈ DVI}, then ℘(SDVI) is the

abstract domain we use for representing sharing information.
We overload the termshift operation defined for the concrete domain in an

obvious way for the abstract domain.

Definition 6.26 (Termshift in the Abstract Domain) Just as in the concrete domain,
the termshift operation expands a given set of abstract sharing data structures to a set that
explicitly includes the sharing information of the subterms of the involved data structures.
We have termshift : ℘(SDVI)→ ℘(SDVI) such that:

termshift(A) =
{(

XsX•s −YsY•s
) ∣∣∣∣ (

XsX −YsY
)
∈ A and

sX • s ∈ T Gtype(X)

}
Note that abstract sharing is also only defined for variables having the same type,
therefore, requiring that sY • s ∈ T Gtype(Y) in the above definition is not neces-
sary.

As type graphs are finite sets, the termshift operation also results in a finite
set of sharing abstract data structures.

Example 6.18 Let X and Y be of type list(T), then

termshift({
(
Xε −Yε

)
}) = {

(
Xε −Yε

)
,
(

X([|],1) −Y([|],1)
)
}

Note that
(

X([|],2) −Y([|],2)
)

is equivalent to
(
Xε −Yε

)
and therefore does not explicitly

appear in the termshifted set.

130 CHAPTER 6. DATA STRUCTURE SHARING

Using this termshift operation we define the order relation in ℘(SDVI).

Definition 6.27 (Ordering in ℘(SDVI)) Let a ∈ SDVI , A ∈ ℘(SDVI), then a is
subsumed by A, denoted by a ≤a A, iff a ∈ termshift(A), where ∈ is the usual set-
inclusion operation.

Let A1, A2 ∈ ℘(SDVI), then A1 is subsumed by A2, denoted by A1 va A2, iff
each of the elements of A1 is subsumed by A2: ∀a ∈ A1 : a ≤a A2.

The least upper bound of two sets of abstract sharing data structures is the union of
these sets, here denoted by ta.

Note that ≤a is defined as the simple set-inclusion w.r.t. the termshifted ab-
stract set, but not its transitive closure. This is an essential aspect of our domain
and will become explicit through the definition of the concretisation function we
use.

We can easily show that
〈
℘(SDVI),va

〉
is a complete lattice with bottom ele-

ment ⊥a = { } and top element >a = SDVI .

Definition 6.28 (Concretisation Function) We define the concretisation function γS :
℘(SDVI)→ ℘(〈Eqn+, ℘(SDVI)〉) as follows:

γSA =
{
〈e, C〉

∣∣∣∣ (XsX −YsY) �c C⇒
(
XsX −YsY

)
≤a A,

〈e, C〉 is valid

}
There are three interesting aspects to this concretisation function.

1. The concrete environments to which the concretisation maps the abstract
information are as such irrelevant. The only purpose of the environment
is to validate the concrete sharing information. Note that as the concrete
domain is restricted to satisfiable ex-equations, it suffices to require that the
structure sharing is valid in the context of the ex-equation without verifying
the ex-equation itself.

2. The definition shows that the abstract information only reflects possible in-
formation: the concrete sharing to which the abstract sharing maps to has
to be “allowed” by that abstract sharing set, yet not all the sharing reflected
by the abstract sharing set has to be present in each of its resulting concrete
sharing sets. This is in contrast of the so called definite sharing, c.f. Sec-
tion 6.6.

3. It makes also clear that A and its transitive closure have a different meaning.

We illustrate some of these aspects in the following examples.

Example 6.19 Using the type definitions of example 6.1 (page 107), consider the vari-
ables E1, E2 of type ex.

6.4. AN ABSTRACT DOMAIN FOR STRUCTURE SHARING 131

Consider the abstract sharing relation
(

E1
(a,2) − E2

(b,1)
)

. This relationship ex-
presses that if E1 is bound to a term with outermost functor a/2 and E2 is bound to
a term with outermost functor b/1, then the subterms E(a,2)

1 and E(b,1)
2 might share.

This is exactly expressed by the result of the concretisation function:

γS
({(

E1
(a,2) − E2

(b,1)
)})

= {〈e, { }〉 | e ∈ Eqn+} tc

{
〈e,

{(
E(a,2)

1 − E(b,1)
2

)}
〉
∣∣∣ e ∈ Eqn+

}
The concretisation includes the empty sharing set, meaning that the abstract sharing also
covers the situation where there is no sharing in the concrete domain. This illustrates the
fact that our domain is intended to collect possible sharing among data structures, and
not definite sharing.

Example 6.20 Let L1 and L2 be two variables of type list(ex) (see Example 6.1), then the
sharing relationship

(
L1

ε − L2
ε
)

expresses that the lists, their elements, or any parts of
their sublists, may share in memory. Indeed, let e ∈ Eqn+, then the concretisation con-
tains the concrete sharing sets 〈e, { }〉— i.e., no sharing between the lists, the concrete
sharing sets

〈e, {(Lε
1 − Lε

2)}〉,
〈e, {

(
L([|],2)

1 − Lε
2

)
}〉,

〈e, {
(

L([|],2)
1 − L([|],2)

2

)
}〉,

〈e, {
(

L([|],2)
1 − L([|],2)·([|],2)

2

)
}〉,

. . .
〈e, {

(
L([|],2)·([|],2)

1 − Lε
2

)
}〉,

. . .

which express the possible sharing between sublists of L1 and L2. It also comprises sets
such as

〈e, {
(

L([|],1)
1 − L([|],1)

2

)
}〉,

〈e, {
(

L([|],1)
1 − L([|],2)·([|],1)

2

)
}〉,

〈e, {
(

L([|],1)
1 − L([|],1)

2

)
,
(

L([|],2)·([|],1)
1 − L([|],2)·([|],1)

2

)
, . . .}〉

. . .

expressing the fact that only some of the elements of L1 and L2 are shared in memory.
Combinations are also possible: e.g. the concrete sharing set

〈e, {
(

L([|],1)
1 − L([|],1)

2

)
,
(

L([|],2)
1 − L([|],2)

2

)
}〉

132 CHAPTER 6. DATA STRUCTURE SHARING

— the first element of L1 is shared with the first element of L2, and the tails of L1 and L2
are also shared in memory — is also an element of the concretisation of the above abstract
sharing set.

Note that if two lists share, then all their sublists share. Yet it is impossible to have
sharing between the list and its sublist without allowing infinite terms. Therefore, a
concrete sharing set like 〈e,

{
(Lε

1 − Lε
2) ,

(
L([|],2)

1 − Lε
2

)}
〉, which by transitivity implies

the sharing pair
(

Lε
1 − L([|],2)

1

)
, is not possible as 6 ∃e ∈ Eqn+ such that the above sharing

can occur.

As a final illustration of the concretisation function, and therefore the meaning
of abstract sharing relationships, we sketch the sharing between the elements of
lists only:

Example 6.21 Let L1 and L2 be again variables of type list(ex) (see Example 6.1), then
the sharing relation

(
L1

([|],1 − L2
([|],1)

)
expresses the fact that there might be some shar-

ing between the elements of the two lists (but not between the lists themselves!). The
concretisation of this sharing relation is the set of all combinations of concrete sharing
between elements of the two lists, except those combinations that by transitive closure
imply internal sharing within one of the lists. E.g. the concrete (context-free) sharing set{(

L([|],1)
1 − L([|],1)

2

)
,
(

L([|],2)·([|],1)
1 − L([|],1)

2

)}
is not included in the concretisation of

the given abstract sharing set, as this implies the sharing pair
(

L([|],1)
1 − L([|],2)·([|],1)

1

)
which is not covered by the given abstract sharing relation.

If the abstract sharing description explicitly includes
(

L1
sL1 ([|], 1)− L1

sL1 ([|], 1)
)

,
then, of course, the concretisation function will include concrete situations where some of
the elements of the list are shared in memory.

In order to apply theorem 5.1 about safe approximating semantics we need
to guarantee that (℘(〈Eqn+, ℘(SDVI)〉), γS , ℘(SDVI)) is an insertion, i.e., γS

should be monotonic and co-strict. We prove this in the following lemma.

Lemma 6.1
(
℘(〈Eqn+, ℘(SDVI)〉), γS , ℘(SDVI)

)
is an insertion.

Proof 〈℘(〈Eqn+, ℘(SDVI)〉),vc〉 and 〈℘(SDVI),va〉 are complete lattices. There-
fore we only need to prove that γS is monotonic and co-strict.

Consider two abstract sets of data structures A1 and A2, and two concrete
collecting sharing sets ECS1 and ECS2. Let A1 va A2 and ECS1 = γS (A1),
and ECS2 = γS (A2). Let 〈e, C〉 ∈ ECS1, then by the definition of the
concretisation function, ∀((XsX −YsY) �c C) ⇒

(
XsX −YsY

)
≤a A1. As

A1 va A2 we have: ∀((XsX −YsY) �c C) ⇒
(
XsX −YsY

)
≤a A2. Thus

EC ∈ ECS2 too. In general: ∀EC ∈ ECS1 ⇒ EC ∈ ECS2, therefore
ECS1 vc ECS2.

6.4. AN ABSTRACT DOMAIN FOR STRUCTURE SHARING 133

It is easy to show that γS maps SDVI to 〈Eqn+, ℘(SDVI)〉, hence is co-
strict. Indeed, the concretisation function maps the set of all possible ab-
stract sharing pairs to all possible, yet valid, structure sharing sets.

2

6.4.1 Additional Operations

Before instantiating the auxiliary functions with this abstract domain, we first
define projection and renaming.

Definition 6.29 (Projection) The projection operation for the abstract domain ℘(SDVI)
is straightforward:

(A)|V =
{(

XsX −YsY
)
|
(

XsX −YsY
)
∈ A and X, Y ∈ V

}
where V ⊆ VI.

Definition 6.30 (Renaming) The renaming of a set of abstract sharing data structures
is defined in the obvious way:

ρX→Y (A) =

{(
Yi

si −Yj
s j
) ∣∣∣∣∣

(
Xi

si − X j
s j
)
∈ A

and (Xi , X j), (Yi , Yj) ∈ X → Y

}

Where X and Y are two sequences of variables in VI.

6.4.2 Instantiated Auxiliary Functions

If we plan to use 〈℘(SDVI),va〉 as a description domain in the context of one
of our semantics of Mercury programs, we need to define the auxiliary functions
inita, comba and adda, the instantiated auxiliary functions of init, comb and add
resp.

As we will see, the operations inita and adda are pretty straightforward unlike
comba. We shall first discuss comba.

The domain ℘(〈Eqn+, ℘(SDVI)〉) is closed under transitive closure. We ex-
pressed this through the definition of the order relation vc defined on elements
from ℘(〈Eqn+, ℘(SDVI)〉). In the abstract domain, we have defined the order re-
lation not w.r.t. the transitive closure operation as this would lead us to a serious
loss of expressivity. Consider the following example:

Example 6.22 Let E1 and E2 be two variables pointing to terms of a certain type T. Let
L1, L2, L3 be three lists of type list(T) such that L1 = [E1, E2], L2 = [E1], L3 = [E2],
thus where L1 and L2 share the memory occupied by E1, and L1 and L3 share E2. Clearly

134 CHAPTER 6. DATA STRUCTURE SHARING

there is no sharing between L2 and L3. Making abstraction of the variable bindings, then
in the concrete domain this particular case of sharing would be correctly described by{(

L([|],1)
1 − L([|],1)

2

)
,
(

L([|],2)·([|],1)
1 − L([|],1)

3

)}
The only way to correctly describe this situation in the abstract domain is to include

the abstract sharing data structures{(
L1

([|],1) − L2
([|],1)

)
,
(

L1
([|],2)·([|],1) − L3

([|],1)
)}

As ([|], 2) · ([|], 1) = ([|], 1), the above set is equivalent to{(
L1

([|],1) − L2
([|],1)

)
,
(

L1
([|],1) − L3

([|],1)
)}

If we had defined ≤a in terms of the transitive closure of the abstract set, then the
concretisation of the abstract set given above would also cover

(
L([|],1)

2 − L([|],1)
3

)
, i.e.,

the elements of L3 are shared with elements of L2. This is not what we intended.

In general, defining the order relation in ℘(SDVI) in terms of the transitive
closure would lead to tremendous loss of precision, in particular for recursive
types. As described in (Mulkers 1991) we can avoid the use of the transitive
closure by using the alternating closure for combining old with new sharing sets.

We define the alternating closure operation altclos for any set of unordered
tuples.

Definition 6.31 (Alternating Closure) Consider a set of elements S. Then the altern-
ating closure altclos : S× S→ S× S→ S× S is defined as:

altclos(X, Y) =

(a0, an)

∣∣∣∣∣∣∣∣∣∣
(a0, a1) · (a1, a2) · . . . · (an−1, an)

over X and Y, n ≥ 1,
such that ∀i, 0 < i < n, (ai−1, ai) ∈ X ∪Y{

(ai−1, ai) ∈ X ⇒ (ai , ai+1) ∈ Y
(ai−1, ai) ∈ Y ⇒ (ai , ai+1) ∈ X

The alternating closure is commutative and associative. Indeed, altclos(A, B) =
altclos(B, A) and both altclos(A, altclos(B, C)) and altclos(altclos(A, B), C) repres-
ent the tuples that are obtained by constructing paths alternating over the three
sets, i.e., no path contains two consecutive edges stemming from the same initial
set A, B, or C.

We can now define our abstract Mercury semantics w.r.t. memory sharing.

6.4. AN ABSTRACT DOMAIN FOR STRUCTURE SHARING 135

Definition 6.32 (Abstract Sharing Semantics) The abstract Mercury semantics with
respect to sharing of data structures is defined as the differential semantics SemMδ (Fig-
ure 5.6) instantiated with 〈℘(SDVI),va〉 as description domain and the following func-
tions inita, comba and adda as the auxiliary functions init, comb and add resp.:

inita = {}
comba(A1, A2) = altclos(termshift(A1), termshift(A2))
adda(unif, A) = comba(A, Aunif)

where Aunif is defined as:

AX:=Y = {
(
Xε −Yε

)
}

AX⇐ f (Y1 ,...,Yn) =
{(

X(f ,1) −Y1
ε
)

,
(

X(f ,2) −Y2
ε
)

, . . . ,
(

X(f ,n) −Yn
ε
)}

AX⇒ f (Y1 ,...,Yn) =
{(

X(f ,1) −Y1
ε
)

,
(

X(f ,2) −Y2
ε
)

, . . . ,
(

X(f ,n) −Yn
ε
)}

AX==Y = {}

We must show that the abstract semantics are a safe approximation of the
concrete semantics. Applying Theorem 5.1 it suffices to show that inita ∝ initc,
comba ∝ combc, and adda ∝ addc to conclude that

SemMδ(℘(〈Eqn+, ℘(SDVI)〉)) ∝ SemMδ(℘(SDVI))

Lemma 6.2 inita ∝ initc.

Proof The proof is straightforward. inita = { }, and γS ({ }) = {〈e, { }〉 | e ∈
Eqn+} which clearly subsumes the value {〈true, { }〉} = initc.

2

The ordering in the concrete domain is centred around the transitive closure,
while in the abstract domain, all sharing information is propagated through the
alternating closure. The essence of the proof of comba ∝ combc relies in show-
ing that the transitive closure over elements of the union of two concrete sets of
sharing structures can always be formulated as the alternative closure over these
two sets. This is shown in the following lemma. The lemma is formulated for
context-free sharing sets.

Lemma 6.3 Let C1, C2 ∈ ℘(SDVI).
If there exists a finite sequence Seq such that{

Seq = (t0 − t1) , (t1 − t2) , . . . , (tn−1 − tn) ,
0 ≤ i < n : (ti − ti+1) �c C1 ∪ C2

(6.1)

136 CHAPTER 6. DATA STRUCTURE SHARING

which corresponds to computing a transitive closure, then there exists a finite sequence
Seq′ such that

Seq′ =
(
t′0 − t′1

)
, (t′1 − t′2) , . . . ,

(
t′m−1 − t′m

)
,

t′0 = t0, t′m = tn,
0 < i < m :(

t′i−1 − t′i
)
�c C1 ⇒

(
t′i − t′i+1

)
�c C2

and(
t′i−1 − t′i

)
�c C2 ⇒

(
t′i − t′i+1

)
�c C1

(6.2)

which corresponds to an alternating sequence.

Proof The lemma and proof are similar to Lemma 4.1.21 in (Mulkers 1991), but
as the domains show some differences we give a new specialised proof
here.

If Equation (6.1) does not already satisfy Equation (6.2) then there exists a
value k, 0 < k < n, such that (tk−1 − tk) , (tk − tk+1) �c C1 (or C2). We can
apply one of the following reductions:

1. If tk−1 = tk+1 = t then both tuples can be removed from the sequence,
hence

Seq = (t0 − t1) , . . . , (tk−2 − t) , (t− tk+2) , . . . (tn−1 − tn)

2. If tk−1 6= tk+1, then the sequence (tk−1 − tk) , (tk − tk+1) implies the
existence of a tuple of sharing data structures such that (tk−1 − tk+1) �c
C1 (similarly for C2). This means that the original sequence can be re-
duced to

Seq = (t0 − t1) , . . . , (tk−1 − tk+1) , . . . , (tn−1 − tn)

We can repeat these reductions until the sequence does not contain any
neighbouring tuples both only subsumed by either C1 or C2. This situation
satisfies Equation (6.2).

2

Lemma 6.4 Let ECS1, ECS2 ∈ ℘(〈Eqn+, ℘(SDVI)〉), and A1, A2 ∈ ℘(SDVI) such
that

ECS1 vc γS (A1), ECS2 vc γS (A2)

Then for all EC1 = 〈e1, C1〉 ∈ ECS1 and EC2 = 〈e2, C2〉 ∈ ECS2, if e = e1 ∧ e2 and
e is solvable, then ∀ (XsX −YsY): if (XsX −YsY) �c (C1 ∪ C2) then

(
XsX −YsY

)
≤a

comba(A1, A2).

6.4. AN ABSTRACT DOMAIN FOR STRUCTURE SHARING 137

Proof If (XsX −YsY) �c (C1 ∪ C2) then this means that there exists a sequence
Seq = (t1

st1 − t2
st2) ,

(
tn−1

stn−1 − tn
stn

)
satisfying Equation (6.1) w.r.t. the

sharing information in C1 and C2, and t1
st1 = XsX and tn

stn = YsY . By
Lemma 6.3 this means that Seq can be transformed into a sequence

Seq′ =
(

t′1
st′1 − t′2

st′2
)

. . . . ,
(

t′m−1
st′m−1 − t′m

st′m
)

alternating between elements subsumed by the sharing information in EC1

and elements subsumed by the sharing part of EC2, and t′1
st′1 = XsX and

t′m
st′m = YsY . As ECS1 vc γS (A1) and ECS2 vc γS (A2), we know that for

each k, 2 ≤ k ≤ m, if
(

t′k−1
st′k−1 − t′k

st′k
)
�c C1, then

(
t′k−1

st′k−1 − t′k
st′k

)
va

A1, idem for C2 and A2 (definition of the concretisation function). This

means that there exists an sequence
(

t′1
st′1 − t′2

st′2
)

, . . . ,
(

t′n−1
st′n−1 − t′n

st′n

)
alternating over elements that are subsumed by A1 and A2, i.e., elements

of the sets termshift(A1), and termshift(A2), where t′1
st′1 = XsX and t′n

st′n =
YsY . This implies that

(
XsX −YsY

)
≤a altclos(termshift(A1), termshift(A2)),

thus we have
(
XsX −YsY

)
≤a comba(A1, A2).

2

Using the previous two lemma’s we come to the central lemma, being that the
abstract combination operation is a safe approximation of the concrete combina-
tion operation:

Lemma 6.5 comba ∝ combc.

Proof Applying the definition of∝ (Definition 5.2), we need to prove that ∀A1, A2 ∈
℘(SDVI), ∀ECS1, ECS2 ∈ ℘(〈Eqn+, ℘(SDVI)〉) : ECS1 vc γS (A1), ECS2 vc
γS (A2)⇒ combc(ECS1, ECS2) vc γS (comba(A1, A2)).

138 CHAPTER 6. DATA STRUCTURE SHARING

With the definition for combc(ECS1, ECS2), we have:

combc(ECS1, ECS2)

=

〈e, C1 ∪ C2〉

∣∣∣∣∣∣
〈e1, C1〉 ∈ ECS1, 〈e2, C2〉 ∈ ECS2,
e = e1 ∧ e2, e is solvable,
C2|in ⊆c C1|in

vc

{
〈e, C1 ∪ C2〉

∣∣∣∣ 〈e1, C1〉 ∈ ECS1, 〈e2, C2〉 ∈ ECS2,
e = e1 ∧ e2, e is solvable

}
vc

{
〈e, C〉

∣∣∣∣ 〈e1, C1〉 ∈ ECS1, 〈e2, C2〉 ∈ ECS2,
e = e1 ∧ e2, e is solvable, C = C1 ∪ C2

}

vc

〈e, C〉

∣∣∣∣∣∣∣∣
(XsX −YsY) �c C
⇒ (XsX −YsY) �c (C1 ∪ C2),
〈e1, C1〉 ∈ ECS1, 〈e2, C2〉 ∈ ECS2,
e = e1 ∧ e2, e is solvable

⇓ Lemma 6.4, ECS1 vc γS (A1), ECS2 vc γS (A2)

vc

〈e, C〉

∣∣∣∣∣∣∣∣∣∣∣∣

(XsX −YsY) �c C
⇒ (XsX −YsY) �c (C1 ∪ C2)
⇒

(
XsX −YsY

)
≤a comba(A1, A2),

〈e1, C1〉 ∈ ECS1, 〈e2, C2〉 ∈ ECS2,
e = e1 ∧ e2, e is solvable,
ECS1 vc γS (A1), ECS2 vc γS (A2)

vc

{
〈e, C〉

∣∣∣∣ (XsX −YsY)〉 �c C
⇒

(
XsX −YsY

)
≤a comba(A1, A2)

}
⇓ Definition of the concretisation function.

vc γS (comba(A1, A2))

This proves the lemma.
2

Finally, we need to prove that the abstract operation adda safely approximates
the concrete operation addc. This is done in the following lemma.

Lemma 6.6 adda ∝ addc.

Proof Both adda and addc are defined in terms of the combination operator,
comba resp. combc. It suffices to show that for all unifications unif, ECSunif vc
γS (Aunif) where ECSunif is as defined in Definition 6.24, and Aunif as in
Definition 6.32. The proof is trivial. Take for example the unification X :=
Y. In the abstract domain this yields AX:=Y = {

(
Xε −Yε

)
}, the concretisa-

tion of which clearly includes the concrete sharing set 〈X = Y, {(Xε −Yε)}〉.
The same conclusions can be drawn for the remaining three cases of uni-
fication.

2

6.4. AN ABSTRACT DOMAIN FOR STRUCTURE SHARING 139

Lemma 6.2, Lemma 6.5 and Lemma 6.5 allow us to conclude with the theorem:

Theorem 6.2 (Safe Sharing Approximation) SemMδ(℘(SDVI)) is a safe approx-
imation for the concrete sharing semantics SemMδ(℘(〈Eqn+, ℘(SDVI)〉)).

Example 6.23 In Example 6.16 we studied the deterministic version of append (defined
in Example 4.4) in the concrete semantics. In this example we repeat the exercise, yet now
in the abstract semantics.

In the concrete domain, the initial call for append(A,B,C) was 〈A = [O1, O2] ∧ B =
[O3], { }〉, which in the abstract domain can be safely approximated by { }, reflecting the
absence of any structure sharing among the input variables of the call. We obtain the
following rulebase meaning for each of the encountered call descriptions:

A
→ append(A, B, C)
call: { }

exit: {
(

C([|],1) − A([|],1)
)

,
(
Cε − Bε

)
}

→ append(Xs, Y, Zs)
call: {

(
X([|],1) − Xe

ε
)

,
(
Xε − Xs

ε
)
}

exit: {
(

Zs
([|],1) − Xs

([|],1)
)

,
(
Zs

ε −Yε
)
}

As can be seen, the exit descriptions for both calls are the same (upon renaming). This is
exactly what is expected from the differential semantics in the abstract setting.

The program point annotations are depicted in Figure 6.12.

{ }
1 { }
2 { }
3 { }
4 {

(
X([|],1) − Xe

ε
)

,
(
Xε − Xs

ε
)
}

5 {
(

X([|],1) − Xe
ε
)

,
(
Xε − Xs

ε
)

,
(
Yε − Zs

ε
)
}

Figure 6.12: Annotation table for append in the abstract differential semantics con-
text. The first line defines the particular call description.

Given the general equivalence between the differential semantics and the goal-
independent based semantics, we have:

SemMδ(℘(SDVI))⇔ SemM?(℘(SDVI))

140 CHAPTER 6. DATA STRUCTURE SHARING

6.5 The Analysis System

In our multiple prototypes we have implemented the structure sharing analysis
using the above described notions and operations. Given the equivalence of the
abstract sharing semantics with the goal-independent based instantiation with
that same abstract domain, we have obviously chosen to implement structure
sharing using the goal-independent based semantics. This has the advantage
that for every procedure only one exit description needs to be computed. This
is not the case in the differential semantics settings, as is also illustrated by the
rulebase meaning obtained for the deterministic version of append described in
Example 6.23. Moreover, analysis in the presence of modules becomes straight-
forward as it suffices to record the goal-independent analysis results of each of
the analysed modules into dedicated files (the so called optimisation interface
files). These results can then be used for the analysis of procedures that depend
on procedures defined in other modules, without having to consult the entire
source code of these other modules.

6.6 Related Work

The notion of sharing in the context of logic programming languages is often used
to refer to variable sharing instead of memory structure sharing as we used the
term here. Variable sharing is an extensively studied property of logic programs
enabling many different transformations and optimisations of these language: it
is for example essential for the efficient exploitation of AND-parallelism, it is also
important for optimising the efficiency of general unification, it also appears in-
directly in the computation of other properties of interest, such as for example
freeness information, etc. The most known sharing domain is the domain intro-
duced by (Jacobs and Langen 1992) for which many variations have been studied.
See (Bagnara, Zaffanella, and Hill 2005) for a survey of the different sharing ana-
lysis techniques that are current now.

Although sharing also collects some form of shared memory (the free vari-
ables), the behaviour of the operations defined on the domains representing such
sharing is completely different from the behaviour we need for structure sharing.
Indeed, during the execution of a logic program, free variables become instanti-
ated. This means that the number of pairs of variables that may possibly share
some variables will diminish as execution goes on. This behaviour will also be
reflected in the abstract domain describing variable sharing. In our case of struc-
ture sharing, we have a somewhat opposite behaviour: as execution goes on, new
terms are built or transformed, which means that more and more memory blocks
are shared by the same terms. Hence, the size of the set of possibly shared terms
will have the general tendency of growing during the evaluation of a predicate
instead of shrinking like is more the case with variable sharing. Therefore, in-

6.7. CONCLUSION 141

tuitively, we think that while the underlying basic representation of the variable
sharing information could in some sense form an inspiration for representing
memory sharing, the operations and therefore the precision enhancements de-
veloped for variable sharing are not of great use in our context.

In the variable sharing literature, one can also find the notion of structural in-
formation (Bagnara, Hill, and Zaffanella 2000). Here, the structural information
is not so much the structure of the terms that are constructed in the program,
yet is used to describe the structure of the calls to given predicates. A typical
example (Codish, Marriott, and Taboch 2000) is to statically detect the use of dif-
ference lists. If a predicate is always called with a difference list as one of its
arguments, then the precision of the variable sharing results can be significantly
increased if such a predicate is first transformed. Yet variable sharing, even in the
presence of structure information, can not be used to derive the run-time property
of memory sharing (Bagnara, Hill, and Zaffanella 2000).

6.7 Conclusion

In this chapter we have defined a formal setting for discussing the fact that terms
pointed at by different variables may occupy the same heap space at run-time.
This notion is important as we need to be able to trace back to all the variables
that may point to a particular block of heap space, in order to guarantee that that
heap space may or may not be reused for other purposes. We introduced the
notions of data structures and sharing pairs, in a concrete setting, as well as in an
abstract setting.

Using these domains, we defined the concrete natural structure sharing se-
mantics of Mercury programs as an instantiation of SemM, and the abstract struc-
ture sharing semantics as an instantiation of SemMδ. We showed that in the con-
crete domain, the natural semantics is equivalent to the differential semantics,
which by transitivity demonstrates the correctness of the abstract differential se-
mantics w.r.t. the concrete natural semantics of Mercury.

142 CHAPTER 6. DATA STRUCTURE SHARING

Chapter 7

In Use Information

This chapter defines the notions of forward use and backward use variables. This
information is needed for deducing liveness information.

7.1 Introduction

If one halts the execution of a program just after executing the literal at some spe-
cific program point —let us call this program point the current program point—,
then the instantiated heap cells1 at that moment can be put into two categories.
Either they are still used by a literal executed after the literal at the current pro-
gram point, or they are not. If they are not used anymore, then this means that
no other instruction during the further execution of the program needs to access
the information kept in them. Hence, the literal at the current program point may
have had the last and unique access to some of these unused heap cells in which
case these heap cells are said to be dead after the current literal. On the other hand,
if some subsequent instruction does access the cells, then these heap cells are still
in use. We call such heap cells live heap cells. Liveness can be due to two basic
computation mechanisms:

1. the cells are accessed because any of the goals belonging to the same exe-
cution path as the current program point, and following the literal at the
current program point, is using the cells. This is called forward use;

2. Mercury is a logic programming language, which means that in the pres-
ence of non-deterministic code, i.e., backtracking, goals defined prior to the
current program point, may still be needing the values stored in those heap
cells. This is called backward use.

1The heap may of course be larger than the set of heap cells that is actually filled. The empty heap
cells are of no interest here.

143

144 CHAPTER 7. IN USE INFORMATION

If we call the procedure definition to which the current program point belongs
the current procedure definition, then we can split heap cells in forward or backward
use each into two groups, namely: forward and backward use local w.r.t. the cur-
rent procedure, and forward and backward use that is global w.r.t. that procedure
definition and the particular call with which it was called. The former group
consists of the heap cells that are accessed by any of the goals within the current
procedure definition, while the latter are heap cells accessed by any other goal.
Of course, these two groups may overlap.

Example 7.1 Consider the following fragment of Mercury code.

% : − pred member (t , l i s t (t)) .
% : − mode member (out , i n) i s nondet .
member (E , L) :−

(1) L => [F |R] ,
(

(2) E := F
;

(3) member (E,R)
) .

% : − pred generate (t , l i s t (t)) .
% : − mode generate (out , out) i s nondet .
generate (X, LL) :−

(4) LL <= [f (1) , f (2) , g (3)] ,
(5) member (X , LL) .

We study the state of the relevant heap cells when execution reaches program point
(2) a first time, i.e., when member/2 is called with the second argument L bound to the
same list as pointed at by LL, and when no backtracking has occurred yet.

• local forward use: after successful completion of the assignment of F to E, the set
of instantiated variables becomes {L, F, R, E}. As program point (2) belongs to the
execution path (1)− (2) and is therefore not followed by any other literals, none of
these instantiated variables is in local forward use w.r.t. program point (2).

• local backward use: member/2 is non-deterministic, which means that backtrack-
ing may occur and that some data structures, although not in (local) forward use,
might still be of importance in the presence of backtracking. Concretely, at program
point (2), all the structures that the variables from the second branch may point to
can be seen as being in backward use, hence the set {E, R}.

• global forward/backward use: the global forward/backward use at (2) (or at
any program point within the same procedure definition) is determined by the local
and global forward/backward use at program point (5), i.e., the context in which
member/2 was called. As generate/2 has two output arguments, chances are that

7.2. FORWARD USE 145

these arguments will be in forward use w.r.t. the program point where generate is
called. Hence, as an end effect, both E and L can be in global forward use at (2).

In this chapter we focus on the local use. We will see that the global compon-
ents are automatically taken into account when propagating liveness information
(Chapter 8).

In the subsequent sections we abbreviate local forward use and local back-
ward use to forward use and backward use respectively.

7.2 Forward Use

Given a program point (i), called the current program point, and the procedure
definition to which (i) belongs, called the current procedure definition, we say that
a variable, say X, is in forward use w.r.t. (i) if:

• X is an instantiated variable after performing the literal at (i). These are
the variables that either get instantiated by one of the literals preceding the
current literal or the literal itself, or are variables that are input to the current
procedure;

• and X is used in one of the literals following the literal at the current pro-
gram point and covered by the same execution path as to which the current
program point belongs.

In a more formal way, the variables in forward use at a program point (i) in a
procedure h ← g, denoted by forward : pp → ℘(VI), where VI are the variables
of interest in the considered program, are defined as:

forward(i) =

((⋃
j∈pre(i) out(l j)

)
∪ out(li) ∪ in(h← g)

)
⋂

(
⋃

j∈post(i) Vars(l j))

The expression ∪ j∈pre(i)out(l j) represents the variables that get instantiated by
one of the literals preceding program point (i), the set of variables instantiated
at (i) is the set out(li), and the set in(h ← g) returns the input variables of the
procedure to which (i) belongs. The forward use variables are the variables from
the set of instantiated variables given by the union of the variables in the previous
sets and those variables that also occur in one of the literals following (i).

We generalise the above definition to goals instead of individual program
points: Let g′ be a subgoal of the goal in the procedure definition h← g, then:

forward(g′) =

((⋃
j∈pre(g′) out(l j)

)
∪ out(g′) ∪ in(h← g)

)
⋂

(
⋃

j∈post(g′) Vars(l j))

146 CHAPTER 7. IN USE INFORMATION

Note that forward use is a syntactic property of procedure definitions. The no-
tions of concrete or abstract domain are irrelevant here.

Example 7.2 Considering the program fragment given in Example 7.1, the following
table lists for each program point the set of variables that are instantiated after completion
of the literal corresponding to that program point (Ii), the set of variables that are used by
any of the literals following a program point (Ui), and the set of variables in forward use
for that program point (Fi).

pp Ii Ui Fi = Ii ∩Ui
1 {L, F, R} {E, F, R} {F, R}
2 {L, F, R, E} { } { }
3 {L, F, R, E} { } { }
4 {LL} {X, LL} {LL}
5 {X, LL} { } { }

Example 7.3 For the deterministic version of append of Example 4.4, we obtain the for-
ward use information tabled below:

pp Ii Ui Fi = Ii ∩Ui
1 {X, Y} {Z, Y} {Y}
2 {X, Y, Z} { } { }
3 {X, Y, Xe, Xs} {Xs, Y, Zs, Xe, Z} {Y, Xe, Xs}
4 {X, Y, Xe, Xs, Zs} {Z, Xe, Zs} {Xe, Zs}
5 {X, Y, Z, Xe, Xs, Zs} { } { }

with Ii , Ui , Fi have the same meaning as in the previous example.

7.3 Backward Use

A variable X is said to be in backward use w.r.t. a program point (i) within a
procedure definition p if that variable is instantiated at (i) and can be accessed
after backtracking has reentered the code prior to (i). By accessing we mean that
the value to which the variable is bound at (i) is input to some literal that may
be executed after (i). When we restrict this access to literals belonging to the
definition of procedure p, then we obtain the variables in local backward use.

In this definition we use variables as the descriptions for the memory cells
that they refer to. A more fine grained approach to backward use information
consists of using data structures instead, hence parts of the memory cells that the
variables may point to. This may indeed add some form of precision, yet comes at
the cost of a full program analysis to correctly derive backward use information.
We briefly illustrate and sketch this approach in Section 7.4.

7.3. BACKWARD USE 147

The derivation of backward use information is more complex than for forward
use. We use the same denotational approach as we did earlier, yet given the fact
that backward use information is due to non-deterministic goals instead of the
built-in literals (unifications), we need to define a separate semantics for Mercury
programs.

7.3.1 Basic Denotational Definition

The goal is to record backward use information for each program point in the
program. As we collect variables, we construct an annotation table with signa-
ture:

Annb = pp→ ℘(VI)

where VI is the set of variables of interest in our programs.
We first describe backward use for procedures, goals and literals.

Procedures. The signature of the semantic function Prb for procedures is
given by:

Prb : Procedure→ Annb → Annb

Let B be the annotation table mapping individual program points to their
backward use annotation, then we define backward use for such a procedure as:

Prb[[h← g]]B = let (b1, B1) = Gb[[g]]B initb in
B1

In this domain initb = { }, i.e., initially there are no variables considered to be in
backward use w.r.t. the main goal of the procedure.

Goals. To derive backward use for a goal, we need the following information:

• The annotation table mapping program points to backward use informa-
tion. This table needs to be updated. We use the symbol B.

• The set of variables that are already in backward use and are due to the
goals that are prior to the current goal – b.

Using this information and of course the goal itself we compute a new set of
variables that are in backward use w.r.t. this goal. We also update the annotation
table. The signature for Gb is therefore:

Gb : Goal→ Annb → ℘(VI)→ ℘(VI)→ Annb

We define Gb for backward use information as follows:

148 CHAPTER 7. IN USE INFORMATION

• conjunction. For a conjunction, we accumulate the collected backward use
information:

Gb[[g1, g2]]B b = let (b1, B1) = Gb[[g1]]B b in
Gb[[g2]]B1 b1

• disjunction. For a disjunction we need to differentiate two cases: determin-
istic selection and general non-deterministic disjunction. If the disjunction
represents a deterministic selection, then once one of the branches is selec-
ted, there is no backtracking to any of the other branches possible. This
means that a deterministic selection does not add any additional backward
use variables by itself, thus:

Gb[[g1; g2]]B b = let (b1, B1) = Gb[[g1]]B b in
let (b2, B2) = Gb[[g2]]B1 b in

(b1 ∪ b2, B2)
if switch((g1; g2)) = true

After annotating each of the branches, the resulting set of backward use
variables of the disjunction is the union of the backward use variables of
each of the branches.

When a disjunction is not a switch then backtracking is possible. In this
case, we need to clearly specify the backward use information passed to the
first branch of the disjunction, the backward use information passed to the
second branch, and finally, the backward use information that is returned
as a result of the disjunction and that will be used for computing backward
use in subsequent goals:

– First branch. Clearly, all the input variables to the second branch are
all variables that will definitely be accessed if that second branch is ex-
ecuted. Also the variables in forward use w.r.t. that second branch will
be accessed when the computation using the first branch fails. There-
fore, all these variables are added to the already existing set of back-
ward use variables.

– Second branch. Once the second branch is performed, no choice points
are left, and therefore, execution has no alternative branch to perform
in that disjunction. This means that for the second branch, no extra
variables need to be added to the backward use set. Note that this is
in accordance with the selection rule being left-to-right.

– Result. As execution may come back to this disjunction, we must guar-
antee that all variables used after that disjunction remain unaltered.
For this purpose we could explicitly add all the variables in forward
use w.r.t. the disjunction to the resulting set of variables in backward
use. Observe that these variables are already in b1 ∪ b2. Indeed, due to

7.3. BACKWARD USE 149

the strongly moded character of Mercury all variables used beyond the
scope of a disjunction must have the same instantiation after each of
the branches of that disjunction, hence forward(g1; g2) = forward(g1) =
forward(g2). As forward(g2) is explicitly added to the set I which be-
comes a subset of b1 we have: forward(g1; g2) ⊆ b1 ∪ b2. Therefore,
nothing needs to be added to the union of both backward use sets.

We obtain the following semantic rule for non-deterministic disjunctions:

Gb[[g1; g2]]B b = let I = in(g2) ∪ forward(g2) in
let (b1, B1) = Gb[[g1]]B (b ∪ I) in
let (b2, B2) = Gb[[g2]]B1 b in

(b1 ∪ b2, B2) otherwise

• if-then-else. If the test goal of an if-then-else fails, then the else branch is
performed. This means that the input variables as well as forward use vari-
ables of the else branch are in backward use w.r.t. the test goal. Unlike Pro-
log, an if-then-else does not commit to the first solution of the condition if
the condition is met (Henderson, Conway, Somogyi, and Jeffery 1996): if
the computation along an execution path covering the then branch leads to
a failing derivation, then the computation may backtrack to the else branch.
This can only happen if the test goal in the if-then-else is non-deterministic.
We consider these two cases separately.

If the tested goal is deterministic, we define concrete backward use as:

Gb[[if g1 then g2 else g3]]B b
= let I = in(g3) ∪ forward(g3) in

let (b1, B1) = Gb[[g1]]B (b ∪ I) in
let (b2, B2) = Gb[[g2]]B1 b in
let (b3, B3) = Gb[[g3]]B2 b in

(b2 ∪ b3, B3)
if det(g1) = det or semidet

Here, the then branch is explicitly annotated starting from the initial back-
ward use variables. Indeed, if the test goal is deterministic, once the then
branch is selected, execution can never return to the else branch.

If the test is non-deterministic, then the goal “if g1 then g2 else g3” becomes
equivalent to the non-deterministic disjunction “(g1, g2; g3)”. Developing
the semantic rules applicable to this disjunction, we obtain the following

150 CHAPTER 7. IN USE INFORMATION

rule:
Gb[[if g1 then g2 else g3]]B b

= let I = in(g3) ∪ forward(g3) in
let (b1, B1) = Gb[[g1]]B (b ∪ I) in
let (b2, B2) = Gb[[g2]]B1 b1 in
let (b3, B3) = Gb[[g3]]B2 b in

(b2 ∪ b3, B3)
otherwise

The particularities of this rule are: 1© the variables that are input or in for-
ward use to the second branch are considered in backward use when hand-
ling the first branch, 2© the annotation of g2, the then part, starts with the
result of annotating the g1, as dictated by the semantic rule for conjunctions,
3© the variables in forward use w.r.t. the if-then-else goal may not be altered

within that goal which is in accordance with the rule for non-deterministic
disjunctions.

This differentiation adds a form of precision. We could simplify and only
use the second semantic rule for all types of if-then-else goals, yet for de-
terministic tests we know that b1 \ b ⊆ I, i.e., the only difference between
the resulting b1 and the initial b is the fact that we have added the input
variables of the else branch. Also, adding the forward use variables is not
be needed when the test is deterministic.

• negation. A negation can not introduce new choice points. The set of vari-
ables in backward use therefore remains the same. Of course, the negated
goal itself must still be annotated.

Gb[[not g]]B b = let (b1, B1) = Gb[[g]]B b in
(b, B1)

• literal. Here we have: Gb[[l]]B b = Lb[[l]]B b.

Literals. For Lb, which has a similar signature to Gb namely

Lb : Literal→ Annb → ℘(VI)→ ℘(VI)→ Annb

we differentiate three cases: unifications (or other built-ins), deterministic pro-
cedure calls, and non-deterministic procedure calls. The two first cases introduce
no new additional data structures in backward use, while the non-deterministic
calls do.

As we want to present different possible definitions of the backward use vari-
ables contributed by a non-deterministic call, we add one auxiliary functions,
namely bu. The function is meant to determine the backward use variables to be

7.3. BACKWARD USE 151

taken into account at the considered program point and to be propagated to all
the goals and literals following that program point. Its generic signature is:

bu : Literal→ ℘(VI)→ ℘(VI)

The idea is that this function takes a given literal as argument as well as a set
of variables representing the backward use variables due to the previous goals
considered in the procedure definition, and returns a new set of backward use
variables.

The generic semantic rule defining literals is then:

Lb[[unif]]B b = (b, B[pp(unif), b])
Lb[[p]]B b = (b, B[pp(p), b]) if det(p) = det or semidet
Lb[[p]]B b = (bu(p, b), B[pp(p), bu(p, b)]) otherwise

Entire Program. Finally, the annotation of the entire program consists of a
straightforward annotation of each of the procedures defined in it.

Figure 7.2 recapitulates the entire backward use information defined on the
domain of concrete sets of data structures. Figure 7.1 shows the signatures of the
semantic functions.

Annb = pp→ ℘(VI)
Prb : Procedure→ Annb → Annb
Gb : Goal→ Annb → ℘(VI)→ ℘(VI)→ Annb
Lb : Literal→ Annb → ℘(VI)→ ℘(VI)→ Annb

Figure 7.1: Signatures of the semantic function defining Semb.

7.3.2 Instantiations for bu

We present two simple instantiations of the auxiliary function bu used to approx-
imate the variables that may still be needed upon backtracking due to non de-
terministic procedure calls.

Instantiation 1. A first rough instantiation of bu is to consider that all the ar-
guments of the called procedure, as well as all the forward use variables at that
program point, are added to the already existing set of backward use variables.
This is indeed safe as it guarantees that whenever execution comes back to the
current literal, all the data structures involved with that literal, as well as the
data structures that will again be accessed by the goals following that literal, will
remain untouched w.r.t. structure reuse. Thus, in this case we have:

bu1(p, b) = b ∪ forward(p) ∪Vars(p)

152 CHAPTER 7. IN USE INFORMATION

Instantiation 2. Obviously, the previous instantiation is a real over-approxima-
tion of what really is accessed upon backtracking, and may therefore severely
limit the possibilities of reuse in the presence of non-deterministic calls, not only
for the literals following the considered literal, but also for the considered literal
itself. The above definition can be refined by arguing that explicitly adding the
variables of the procedure call should not be needed. Differentiating the output
variables from the input variables of p, the non-deterministic procedure call, we
may reason as follows:

• The output variables of p, the non-deterministic procedure call, will usually
already be in forward use, and if some of these output variables are not in
forward use, then this means that the procedure call is free to do whatever
it likes to do with these arguments as they are not needed anyway in the
calling environment.

• If input variables are still needed after the call to p, then they will belong to
the set of variables in forward use or backward use (depending on whether
these variables are needed by forward or backward execution), and will
therefore already be accounted for. On the other hand, if an input variable
is not in use at that program point, then this means that the current call is the
last call manipulating that variable directly, hence, if the situation occurs, p
might as well allow structure reuse on the data structure pointed at by that
variable, and thus the reuse of that structure becomes a local concern of p.

The instantiated function will then look as follows:

bu2(p, b) = b ∪ forward(p)

Obviously, this instantiation, unlike the previous one, allows p to reuse parts
of its own input as long as this input is not used by any other literal in forward
or backward execution.

Example 7.4 We derive backward use information for the non-deterministic variant of
the recursive procedure append. Figure 7.3 recalls the definition of this procedure. This
figure explicitly shows the program points and also names each of the goals.

For each goal g we explicitly list the backward use information available at the mo-
ment when that goal is considered (bg), and the resulting backward use as a result of the
semantic function for that goal (b′g). The program point annotations are represented as
bi, for (1) ≤ i ≤ (5). The results are shown in Figure 7.4. The final program point
annotations, relative to the bu instantiations used, are recapitulated in Figure 7.5.

We use extra indentation to make the nesting of the goals explicit.
It is interesting to see that using the second instantiation, neither Y nor Zs are con-

sidered to be in backward use at program points (4) and (5). Indeed, Y is output of
the append procedure. Therefore, if that argument is not used in the callers context of

7.4. ANALYSIS BASED BACKWARD USE 153

append, there is no reason to keep that argument alive, and therefore protect it against
possible reuses. Argument Zs is an input argument for the recursive call, yet it is neither
in forward use, nor in backward use at that program point, hence, the recursive call is free
to reuse parts of Zs if need be.

Example 7.5 The resulting backward use annotations for the program given in Ex-
ample 7.1 is recapitulated in the following table:

pp forward(pp) Inst1 Inst2
1 {F, R} { } { }
2 { } {R} {R}
3 { } {E, R} { }
4 {LL} { } { }
5 {} {X, LL} { }

Using either Instantiation 1 or Instantiation 2, in both cases, variable R is considered to
be in backward use at program point (2). This is due to the non-deterministic disjunction,
where all input variables to the second branch are added to the backward use variables for
the first branch.

The difference between both instantiations becomes apparent at the procedure calls.
In the first instantiation, the literal is annotated with a backward use set including all
the arguments of the procedure call, resulting in the sets {E, R} at (3), and {X, LL} at
(5). Obviously, this is an overestimation, which can be avoided using Instantiation 2. In
this setting, no variables are considered to be in backward use at these non-deterministic
calls. This may seem odd, yet it can be explained using the same reasoning as we applied
for variables Y and Zs in the previous example of append. Indeed, the inputs are not in
backward use as the calls are not followed by any literals using these inputs, similarly
for the outputs. In case of the outputs, as they are output arguments of the procedure
definitions, it is up to the callers of these procedures to use the computed outputs. If the
outputs are not used, then of course, the current procedure may reuse the associated data
structures if need be.

7.4 Analysis Based Backward Use

The aspect that makes the previous approach simple is the fact that we describe the
backward use information of a non-deterministic procedure call using informa-
tion at the call site only: we started by adding forward use variables as well as
the actual arguments of the procedure call (Instantiation 1), and refined it to in-
clude only the forward use variables (Instantiation 2). Yet, the actual backward
use contribution can be refined even more by looking what parts of the forward
use variables are really accessed upon backtracking in that called procedure. This
information can be derived by looking into the called procedure, hence obtaining

154 CHAPTER 7. IN USE INFORMATION

a true analysis. If used with a description domain that is capable of describing
parts of memory cells to which variables may point to, which is exactly what the
domain of concrete and abstract data structures represents, a more precise defin-
ition of backward use information can be obtained. We illustrate this with the
following example.

Example 7.6 Consider the following procedure definition:

% : − type t (T) −−−> f (T , T) ; g (T) .
% : − pred sharedBU (t (T) , T) .
% : − mode sharedBU (in , out) i s nondet .
sharedBU (X,E) :−

(1) X => f (T1 , T2) ,
(

(2) E := T1
;

(3) E := T2
) .

some_predicate (. . .) : − . . . ,
A => f (A1 , A2) ,
(i) sharedBU (A,B) ,
A1 => . . . ,
. . . .

If backtracking is ever needed over a call to sharedBU, then only the second component
of X will ever be accessed, i.e., variable T2. Unfortunately, variable T2 is a local variable
to sharedBU. In order to use the information of T2 being in backward use in the context of
a call to sharedBU we must translate that information to the head variables of sharedBU.
We can either do a rough translation by considering that T2 is related to X, hence X is
in backward use, or we can make use of the structure sharing relation between T2 and X,
and therefore only add the data structure pointing to the second component of X to be in
backward use, i.e., X(f ,2) in the concrete domain, and X(f ,2) in an abstract setting.

The result of this finer grained approach to backward use information is that the call
sharedBU(A,B) adds A(f ,2) (or A(f ,2) in the abstract domain) to the entities in backward
use from program point (i) on. This is a correct description of the fact that only the second
component of the first argument should be protected from any reuse, as this component
will be accessed upon reentering sharedBU(A,B). Now, if we assume that only A1, the
second component of A, is in forward use w.r.t. the call to sharedBU(A,B), we could slim
down the set of structures in backward use even more, and obtain the empty set as the
resulting contribution of sharedBU(A,B) to the structures in backward use, again taking
into account all the available structure sharing information. As an end effect, we can
detect that the deconstruction of A1 performs the last access to A1, hence, reuse of the
deconstructed structure may be allowed.

Looking at our simplified approaches, we would have obtained:

7.4. ANALYSIS BASED BACKWARD USE 155

• (Instantiation 1) Variables A and B are the head variables of the call to sharedBU,
and variable A1 is in forward use, hence, we would augment the set of backward
use variables with the set {A, B, A1}. This is a clear overestimation of the above
results, and the deconstruction of A1 will never be recognised as a deconstruction
allowing subsequent reuse.

• (Instantiation 2) Here, only A1 is added to the set of variables in backward use.
This is needed as we do not exactly know what sharedBU(A,B) will need upon
backtracking. As a result, the analysis will fail to detect that the deconstruction
of A1 generates garbage cells, hence, the reuse of the deconstructed data structure
will not be permitted.

To define this analysis based approach we will need to define a new set of
semantic functions. Given the fact that the simplified approach differs from the
analysis based approach mainly in the definition of non-deterministic proced-
ure calls, and given the fact that backward use information remains a goal inde-
pendent property, the resulting semantic functions will be a hybrid form of the
goal-independent based semantics with pre-annotation SemM•p (Section 5.8) and
the previously defined simplified backward use derivation Semb. As illustrated
by the previous example, structure sharing information can be of importance to
deduce preciser information, hence, backward use analysis could be defined on
top of structure sharing analysis. This could be formalised by adding the goal-
independent annotation table obtained by the goal-independent structure shar-
ing analysis defined previously to the list of arguments of the semantic functions
defining backward use analysis. Obviously, a fixpoint computation is needed to
deal with recursive procedures.

We do not formalise the analysis based approach to backward use information
here as the gain in precision seems limited. Instead we illustrate the mechanism
of that approach by means of an example. We refer the reader to (Bruynooghe,
Janssens, and Kågedal 1997) where this analysis based approach was first de-
scribed, although the authors did not take structure sharing into account.

Example 7.7 We illustrate the derivation of the abstract backward use information for
the non-deterministic procedure of append (c.f. Example 7.4). As the basic process of
deriving that information is the same as for the simplified definition, the derivation of
backward use for append will follow the same scheme as depicted in Figure 7.4, with two
differences. First the domain of backward use information is now the domain of abstract
data structures, therefore, not Z is considered in backward use, but Zε, thus its abstract
data structure. The second difference occurs at goal g7, i.e., program point (4), where
the recursive non-deterministic procedure call is performed. In a first iteration we have
no backward use information of that call available, therefore, this will be approximated by
the empty set. Hence, bu(g7, bg7 , { }) = bg7 ∪ forward(g7) = {Xeε, Xsε}. With this

156 CHAPTER 7. IN USE INFORMATION

information, the resulting backward use information of the whole procedure is now:

b′g0
= {Zε} ∪ {Xeε, Xsε}
= {Zε, Xeε, Xsε}

Translated (using structure sharing information) and projected onto the input variables
of the append procedure, this yields the singleton set {Zε} (as both Xeε as well as the
elements in Xs are related to the elements of Z, and the elements of Z being automat-
ically accounted for in the abstract data structure Zε) as final backward use set for that
procedure.

After a second iteration, a fixed point is reached.

Clearly, in this example, an analysis based approach yields the same results
as our simplified definition. Intuitively, we therefore consider that an analysis
based approach to backward use information would be an overkill for the gain of
precision it would bring compared to the simplified definition.

7.5 Related Work and Conclusion

In this chapter we formally defined the notions of forward use and backward
use. The former expresses the set of variables that may be accessed beyond a
certain program point due to forward execution, while the latter collects the set
of variables (or data structures) that are accessed upon backtracking over a certain
program point.

In (Mulkers 1991) only forward use variables are considered for computing
liveness information. The author justifies this restriction by assuming that the
run-time system is enhanced in the appropriate way such that whenever data
structures are overwritten, a copy of the old values is kept. As we do not rely on
such an extension of the run-time system, collecting backward use information is
essential.

Forward use and backward use were both formulated in (Bruynooghe, Jans-
sens, and Kågedal 1997). Given our slight redefinition of the language using
single procedure goals instead of sets of clauses, we redefined both concepts in
the current Mercury syntax. Moreover, we gave some simplified definitions for
backward use w.r.t. (Bruynooghe, Janssens, and Kågedal 1997), and argued that
the precision obtained with these simplified views are acceptable compared to
the analysis based definition.

7.5. RELATED WORK AND CONCLUSION 157

Prb[[h← g]]B = let (b1 , B1) = Gb[[g]]B initb in
B1

Gb[[g1 , g2]]B b = let (b1 , B1) = Gb[[g1]]B b in
Gb[[g2]]B1 b1

Gb[[g1 ; g2]]B b = let (b1 , B1) = Gb[[g1]]B b in
let (b2 , B2) = Gb[[g2]]B1 b in

(b1 ∪ b2 , B2)
if switch((g1 ; g2)) = true

Gb[[g1 ; g2]]B b = let I = in(g2) ∪ forward(g2) in
let (b1 , B1) = Gb[[g1]]B (b ∪ I) in
let (b2 , B2) = Gb[[g2]]B1 b in

(b1 ∪ b2 , B2) otherwise
Gb[[if g1 then g2 else g3]]B b

= let I = in(g3) ∪ forward(g3) in
let (b1 , B1) = Gb[[g1]]B (b ∪ I) in
let (b2 , B2) = Gb[[g2]]B1 b in
let (b3 , B3) = Gb[[g3]]B2 b in

(b2 ∪ b3 , B3)
if det(g1) = det or semidet

Gb[[if g1 then g2 else g3]]B b
= let I = in(g3) ∪ forward(g3) in

let (b1 , B1) = Gb[[g1]]B (b ∪ I) in
let (b2 , B2) = Gb[[g2]]B1 b1 in
let (b3 , B3) = Gb[[g3]]B2 b in
let g = if g1 then g2 else g3 in

(b2 ∪ b3 , B3)
otherwise

Gb[[not g]]B b = let (b1 , B1) = Gb[[g]]B b in
(b, B1)

Gb[[l]]B b = Lb[[l]]B b
Lb[[unif]]B b = (b, B[pp(unif), b])
Lb[[p]]B b = (b, B[pp(p), b]) if det(p) = det or semidet
Lb[[p]]B b = (bu(p, b), B[pp(p), bu(p, b)]) otherwise

Figure 7.2: Simple backward use information, c.f. Section 7.3.2 for the function
bu(p, b).

158 CHAPTER 7. IN USE INFORMATION

g
2

g
3 g

1

g
0

g
4

5
g

g
6

g
7

g
8

append(X,Y,Z) :−

(

;

).

(1) X <= [],

Y := Z(2)

Z => [Xe|Zs],(3)

append(Xs,Y,Zs),

X <= [Xe|Xs]

(4)

(5)

% :− mode append(out,out,in) is nondet.
% :− pred append(list(T),list(T),list(T)).

Figure 7.3: Non-deterministic version of the list concatenation predicate append.
The goals are explicitly named.

7.5. RELATED WORK AND CONCLUSION 159

g0

bg0 = initb = { }

g1

bg1 = bg0 ∪ in(g4) = { } ∪ {Z} = {Z}

g2

 bg2 = bg1 = {Z}
b(1) = bg2 = {Z}
b′g2

= bg2 = {Z}

g3

 bg3 = b′g2
= {Z}

b(2) = bg3 = {Z}
b′g3

= bg3 = {Z}
b′g1

= b′g3
= {Z}

g4

bg4 = bg0 = { }

g5

 bg5 = bg4 = { }
b(3) = bg5 = { }
b′g5

= bg5 = { }

g6

bg6 = b′g5
= { }

g7

 bg7 = bg6 = { }
b(4) = bu(g7 , bg7) = bu(g7 , { })
b′7 = bu(g7 , bg7) = bu(g7 , { })

g8

 bg8 = b′g7
= bu(g7 , { })

b(5) = bg8 = bu(g7 , { })
b′g8

= bg8 = bu(g7 , { })
b′g6

= b′g8
= bu(g7 , { })

b′g4
= b′g6

= bu(g7 , { })
b′g0

= b′g1
∪ b′g4

= {Z} ∪ bu(g7 , { })

Figure 7.4: Backward use annotations for the non-deterministic procedure append
defined in Figure 7.3.

pp forward(pp) bpp Inst1 Inst2

(1) {Z} {Z} {Z} {Z}
(2) { } {Z} {Z} {Z}
(3) {Xe, Zs} { } { } { }

(4) {Xe, Xs} bu(g7 , { }) {Xe, Xs} ∪ {Xs, Y, Zs}
= {Xe, Xs, Y, Zs} {Xe, Xs}

(5) { } bu(g7 , { }) {Xe, Xs} ∪ {Xs, Y, Zs}
= {Xe, Xs, Y, Zs} {Xe, Xs}

Figure 7.5: Summary of the backward use annotations for the non-deterministic
procedure append for each of the possible instantiations of bu, c.f. Example 7.4.

160 CHAPTER 7. IN USE INFORMATION

Chapter 8

Liveness Information

This chapter defines the notion of liveness in the concrete domain, as well as in
the abstract domain. If a term on the heap is not live, then it is garbage. The way
we deal with this garbage is presented in the chapters that follow.

8.1 Introduction

Using the terminology of data structure introduced in the previous chapters, a
data structure is considered live at a given literal encountered during the execu-
tion of a particular program, if that data structure is accessed by a literal evalu-
ated after that given literal within the same program execution.

Example 8.1 Consider the following fragment of program code showing a sketch of a
procedure definition, where Y is of type list(int):

p (Y , . . .) :−
% . . .
(i) Y => [F i r s t | Rest] ,
% . . .

Consider the query (1) X = [1,2,3], (2) p(X,. . .), (3) q(. . .), with q a call to some other
procedure.

In program point (2) we can see that p has a unique reference to the heap cells pointed
at by X if X does not appear as an argument in the call of q. Let us consider that this
is the case, then we proceed our reasoning within the procedure definition of p, after X
being renamed to Y. At program point (i) we may wonder whether the deconstruction
has the last access to the heap cells used to represent the outermost functor of Yε. This is
the case if and only if

• Y is not live in the context in which p was called,

161

162 CHAPTER 8. LIVENESS INFORMATION

• Y or some other variable sharing the data structure with Y does not appear in any
of the literals following the literal at program point (i), not including the literal at
(i) itself,

• and there is no non-deterministic code prior to program point (i) involving Y or
any of its data structures.

If all these conditions are met, then we can safely decide that the deconstruction has
a unique reference to the memory representing the term to which Y is bound. The decon-
struction creates two new references to parts of that term, while the memory representing
the immediate list-cell to which Y points becomes garbage.

It is clear from the above example that liveness information in a program point
(i) within a procedure p depends

• on the liveness information of the procedure call to p, i.e., those structures
that are used and referenced at in the context of the call to p – global liveness1,

• on the syntactic occurrence of variables after that program point within the
procedure definition of p – forward use,

• it also depends on the occurrence of variables in alternative branches of the
literal at program point (i) – backward use.

• and finally, on structure sharing information, which can be derived by the
sharing analysis presented in the previous chapter,

In this chapter we give a formal definition of liveness information depending
on this information. The domain of expressing liveness information is the do-
main of concrete and abstract data structures. We first detail the ordering and
operations on these domains.

8.2 Data Structures as Lattices

We already defined the notions of concrete and abstract data structures in Chapter 6.

8.2.1 Concrete Data Structures

In analogy with the sharing domain where we defined the notions of sharing
sets and collecting sharing sets, we define data structure sets, and collecting data
structure sets. Let VI be the set of variables of interest, andDVI the set of context-
free data structures.

1This automatically includes global forward use and global backward use variables.

8.2. DATA STRUCTURES AS LATTICES 163

Definition 8.1 (Data Structure Set) A data structure set is a tuple 〈e, D〉 where e ∈
Eqn+ and D ∈ ℘(DVI).

Definition 8.2 (Valid Data Structure Set) A data structure set 〈e, D〉 is said to be
valid if each of the data structures appearing in D is valid w.r.t. e, i.e., ∀d ∈ D : 〈e, d〉
is valid.

Example 8.2 In a context described by the constraint e = (X = [1, 2, 3] ∧ Y = []),
〈e, {Xε, X([|],2)·([|],2), Yε}〉 is valid.

Mercury is a logic language, hence allowing multiple solutions and multiple
inputs. This can be modelled using collecting data structure sets.

Definition 8.3 (Collecting Data Structure Set) Sets of data structure sets are called
collecting data structure sets. The domain of collecting data structure sets is denoted
by ℘(〈Eqn+, ℘(DVI)〉).

Definition 8.4 (Valid Collecting Data Structure Set) A collecting data structure set
is valid iff each of its data structure sets is valid.

Just like we did for the aliasing information, we restrict our domain of interest
to the valid collecting data structure sets.

Example 8.3 Let X be of type ex defined in Example 6.1. Then the set of data structures
〈e, {Xε, X(a,1), X(a,2)}〉 is valid for each constraint e in which X is bound to a term with
outermost functor a/2. The set 〈e, {X(a,1), X(b,1)}〉 can never be valid as (a, 1) 6./ (b, 1)
which means that no ex-equation can model the fact that X is bound to a term with functor
a/2 as well as to a term with functor b/1.

Given a set of variables, we use the operation data to denote the set of context-
free data structures pointed at by these variables

data : ℘(VI)→ ℘(DVI)
data(V) = {Dε |D ∈ V}

We define the termshift operation on collecting data structure sets.

Definition 8.5 (Termshift) Let 〈e, D〉 ∈ 〈Eqn+, ℘(DVI)〉, then:

termshift(〈e, D〉) = {XsX•s |XsX ∈ D, ∃τX ∈ T (V , Σ) : e |= X = τX ,
sX • s ∈ TτX}

Let D ∈ ℘(DVI) be a context-free data structure set, then we have:

termshift(D) = {XsX•s |XsX ∈ D, sX • s ∈ T T type(X)}

164 CHAPTER 8. LIVENESS INFORMATION

The previous definitions are naturally extended to collecting data structure sets, i.e.,
for EDS ∈ ℘(〈Eqn+, ℘(DVI)〉):

termshift(EDS) = {termshift(ED) | ED ∈ EDS}

The ordering within the domain of data structure sets and collecting data
structure sets is as follows.

We define the ordering for context-free data structures as follows:

Definition 8.6 (Ordering in ℘(DVI)) Let d ∈ DVI , and D, D1, D2 ∈ ℘(DVI), then
the concrete data structure d is directly subsumed by the set of data structures D, iff
d ∈ D.

d is subsumed by D iff is it directly subsumed by termshift(D). This is denoted as
d �cd D.

D1 is subsumed by D2, denoted by D1 ⊆cd D2, iff, each of the individual data
structures described by the first data structure set is subsumed by the second: ∀d ∈ D1 :
d �cd D2.

The least upper bound operation for context-free data structure sets is simply their
union.

Sets of context-free data structures are equivalent if they are mutually sub-
sumed, i.e., D1 ⊆cd D2 and D2 ⊆cd D1, with D1, D2 ∈ ℘(DVI). Consequently,
two data structure sets 〈e1, D1〉 and 〈e2, D2〉, are equivalent if e1 and e2 are equi-
valent, and if D1 and D2 are equivalent. Equivalence between data structure sets
is denoted as ED1 ∼ ED2.

Definition 8.7 (Ordering in ℘(〈Eqn+, ℘(DVI)〉)) Collecting data structure sets are
ordered by the set-inclusion operation, modulo the data structure set equivalence.

Let ED ∈ 〈Eqn+, ℘(DVI〉), EDS ∈ ℘(〈Eqn+, ℘(DVI)〉), then ED is subsumed
by EDS, denoted by ED ≤cd EDS, iff ED ∈ EDS modulo the equivalence relation ∼.

Let EDS1, EDS2 ∈ ℘(〈Eqn+, ℘(DVI)〉), then EDS1 is subsumed by EDS2, de-
noted with EDS1 vcd EDS2, iff each of the data structure sets in EDS1 is subsumed by
EDS2: ∀ED ∈ EDS1 : ED ≤cd EDS2.

The least upper bound of two collecting sets is the union of these sets, denoted with
the symbol tcd.

The domain ℘(〈Eqn+, ℘(DVI)〉), ordered by vcd is a complete lattice with
bottom element { }, and top element the set of all valid data structure sets, i.e.,
{〈e, D〉 | e ∈ Eqn+, D ∈ DVI , 〈e, D〉 is valid}.

Given the fact that we will need structure sharing information in combina-
tion with information about simple data structures, we define an operation with
which a property about one single data structure can be extended to all the data
structures sharing the same set of heap cells it designates. This operation is de-
noted as extend and is defined as follows:

8.2. DATA STRUCTURES AS LATTICES 165

Definition 8.8 (extend) The signature of extend is:

extend : ℘(DVI)→ ℘(SDVI)→ ℘(DVI)

and its high-level definition is given by:

extend(D, C)
= D ∪ {XsX |YsY �cd D, (XsX −YsY) �c C}

The intuition behind that operation is to obtain the full set of data structures
sharing a common pool of heap cells represented by the original set of data struc-
tures: if a property holds for the heap cells pointed at by the data structures in
D, then this property will also hold for the data structures in extend(D, C) in the
presence of the concrete sharing set C as they point to the same heap cells.

The following lemma shows that the definition for extend can be simplified by
partially using plain set-inclusion operations instead of subsumption relations:

Lemma 8.1 For all D ∈ ℘(DVI) and for all C ∈ ℘(SDVI):

extend(D, C)

=
D

∪ {XsX |YsY ∈ D, ∃s . (YsY•s − XsX) �c C}
∪

{
XsX•s

∣∣∣ YsY ∈ D, ∃s . sY = s′Y • s,
(

Ys′Y − XsX
)
�c C

}
Proof The proof is straightforward. It suffices to unfold the definition of sub-

sumption: YsY �cd D ⇔ YsY ∈ D or ∃s . YsY•s ∈ D, and (XsX −YsY) �c

C ⇔ (XsX −YsY) ∈ C or ∃s . sX = s′X • s, sY = s′Y • s,
(

Xs′X −Ys′Y
)
∈ C. By

combining each of the possible situations, we obtain the given lemma.
2

We overload the extend operation to data structures and sharing sets with con-
text, and to sets of data structures and structure sharing sets. Let e ∈ Eqn+,
D ∈ ℘(DVI), C ∈ ℘(SDVI), EDS ∈ ℘(〈Eqn+, ℘(DVI)〉), EC ∈ 〈Eqn+, ℘(SDVI)〉,
and ECS ∈ ℘(〈Eqn+, ℘(SDVI)〉), then

extend(〈e, D〉, 〈e, C〉) = 〈e, extend(D, C)〉
extend(〈e, D〉, ECS) = {extend(〈e, D〉, , EC) | EC ∈ ECS}
extend(EDS, EC) = {extend(ED, EC) | ED ∈ EDS}
extend(EDS, ECS) = {extend(ED, EC) | ED ∈ DS, EC ∈ CS}

Note that extend of a data structure set w.r.t. a structure sharing set is only defined
if both sets are defined in the same context e.

166 CHAPTER 8. LIVENESS INFORMATION

Example 8.4 Consider the variables A and B of type list(T) (Example 6.1). Then

extend
(
{Aε},

{(
A([|],1) − B([|],1)

)})
=

{
Aε, B([|],1)

}
extend

({
A([|],1)

}
, {(Aε − Bε)}

)
=

{
A([|],1), B([|],1)

}
and

extend
(
{〈e, {Aε}〉, 〈e, {Bε}〉}, {〈e,

{(
A([|],1) − B([|],1)

)}
〉, 〈e, {(Aε − Bε)}}〉

)
=

{
〈e, {Aε, B([|],1)}〉, 〈e, {Aε, Bε}〉, 〈e, {Bε, A([|],1)}〉

}
where e ∈ Eqn+ such that the given data structures and structure sharing sets are valid.

Note that extend has the interesting property of being idempotent.

Proposition 8.1 The extend operation is idempotent:

∀EDS ∈ ℘(〈Eqn+, ℘(DVI)〉) and ∀ECS ∈ ℘(〈Eqn+, ℘(SDVI)〉)

we have:
extend(extend(EDS, ECS), ECS) = extend(EDS, ECS)

This is in accordance with the meaning we want to associate with the concrete
extend operation, namely to collect all pointers to heap cells sharing some com-
mon property. This property holds due to the transitive closure of the sharing
relation.

8.2.2 Abstract Data Structures

The abstract counterpart for ℘(〈Eqn+, ℘(DVI)〉) is the set of abstract data struc-
tures ℘(DVI).

In analogy with the concrete domain, we provide a function dataa that collects
the abstract data structures for a given set of variables.

dataa : ℘(VI)→ ℘(DVI)
dataa(V) = {Dε |D ∈ V}

We also define a termshift operation:

Definition 8.9 (Termshift) Let AD ∈ ℘(DVI), then

termshift(AD) = {XsX•s |XsX ∈ AD, sX • s ∈ T Gtype(X)}

and the ordering relation which is again defined in terms of the termshift op-
eration:

8.2. DATA STRUCTURES AS LATTICES 167

Definition 8.10 (Ordering in ℘(DVI)) Let a ∈ DVI , A ∈ ℘(DVI)), then the ab-
stract data structure a is subsumed by A, denoted by a <ad A, iff a ∈ termshift(A).

Let A1, A2 ∈ ℘(DVI)), then A1 is subsumed by A2, denoted by A1 vad A2, iff
each of the abstract data structures in A1 is subsumed by A2: ∀a ∈ A1 : a <ad A2.

The least upper bound is again the set-union operation, here denoted by the symbol
tad.

The domain 〈℘(DVI),vad〉 is a complete lattice with bottom element { } and
top element DVI .

Definition 8.11 (Abstract Extend) The abstract counterpart for extend, denoted by
extenda, is defined as follows:

extenda : ℘(DVI)→ ℘(SDVI)→ ℘(DVI)
extenda(A, AS) = A tad

{
XsX

∣∣ YsY <ad A,
(
YsY − XsX

)
≤a AS

}
This definition is similar to the definition of extend for concrete data structures

and concrete sharing sets. In analogy to the concrete extend we give the more
detailed version for extenda:

Lemma 8.2 For all A ∈ DVI and for all AS ∈ ℘(SDVI):

extenda(A, AS)

=
A

tad
{

XsX
∣∣ YsY ∈ A, ∃s .

(
YsY•s − XsX

)
≤a AS

}
tad

{
XsX•s

∣∣∣ YsY ∈ A, ∃s . sY = s′Y • s,
(

Ys′Y − XsX
)
≤a AS

}
Example 8.5 Consider the variables A and B of type list(T) (Example 6.1). Then

extenda

(
{Aε},

{(
A([|],1) − B([|],1)

)})
=

{
Aε, B([|],1)

}
extenda

({
A([|],1)

}
,
{(

Aε − Bε
)})

=
{

A([|],1), B([|],1)
}

Unlike extend, extenda is not idempotent. This is illustrated by the following
example.

Example 8.6 Let A = {Xε} and AS = {
(
Xε −Yε

)
,
(
Yε − Zε

)
}, then we have:

extenda(A, AS) = {Xε, Yε}
extenda(extenda(A, AS), AS) = extenda({Xε, Yε}, AS)

= {Xε, Yε, Zε}

We define the concretisation function mapping abstract data structures to con-
crete data structures as follows.

168 CHAPTER 8. LIVENESS INFORMATION

Definition 8.12 (Concretisation of Abstract Data Structures)

γD : ℘(DVI)→ ℘(〈Eqn+, ℘(DVI)〉)
γD(A) = {〈e, D〉 |XsX �cd D⇒ XsX <ad A, 〈e, D〉 is valid}

Note that the definition of the concretisation function covers only valid data
structure sets.

Lemma 8.3 (℘(〈Eqn+, ℘(DVI)〉), γD , ℘(DVI)) is an insertion.

Proof Both ℘(〈Eqn+, ℘(DVI)〉) and ℘(DVI) are complete lattices. It therefore
suffices to show that the concretisation function γD is both monotonic and
co-strict. Monotonicity is naturally implied by the definition of γD , in-
deed, if A1 vad A2, then clearly all concrete data structures in γD(A1)
will be present in the concretisation of A2. The top element in ℘(DVI) is
DVI which γD maps onto the set of all valid concrete data structure set in
℘(〈Eqn+, ℘(DVI)〉), i.e., {〈e, D〉 | e ∈ Eqn+, D ∈ DVI , 〈e, D〉 is valid}. This
corresponds to the top element in ℘(〈Eqn+, ℘(DVI)〉), and thus γD is co-
strict.

2

We show that extenda ∝ extend.

Lemma 8.4 extenda is a safe approximation for extend: extenda ∝ extend.

Proof Let ECS ∈ ℘(〈Eqn+, ℘(DVI)〉), ECS ∈ ℘(〈Eqn+, ℘(SDVI)〉), A ∈ ℘(DVI)
and AS ∈ ℘(SDVI), then we need to prove that if EDS ⊆cd γD(A) and
ECS vc γS (AS), then extend(EDS, ECS) ⊆cd extenda(A, AS). This can be
shown by applying the definitions of extend, extenda and γS .

2

8.3 Concrete Liveness

Throughout the previous chapters and sections we already sketched our intended
definition of liveness: a heap cell is considered live at some specific moment dur-
ing the execution of a program if it is accessed by any of the instructions executed
after that specific moment. In Chapter 7 we described that these instructions arise
by two different execution mechanisms: either it is an instruction that is part of
the same execution path as the considered moment—this was called forward use,
or the instruction is performed upon backtracking after that moment—so called
backward use.

Let us consider the following fragment of a program:

8.3. CONCRETE LIVENESS 169

p (X1 , . . . ,Xn) :−
. . . ,
(i) q (Y1 , . . . ,Ym) ,
. . . .

q (A1 , . . . ,Am) : −

Suppose we run the program that the above fragment is part of. At some
point during the execution of that program we encounter a call to procedure p/n.
That specific call can be described by a constraint set e and a structure sharing
set C (for the moment we assume a non collecting semantics). Moreover, let L0
be the set of heap cells that are live outside of the call to p expressed as a set
of data structures. As p has only access to the variables X1, . . . , Xn, we restrain
the call information to these variables, yielding the projected and renamed sets:
ep, Cp and L0,p. Let us now investigate how we can determine the set of live heap
cells when the program execution reaches program point (i) within that call to
p/n. The purpose of liveness information is to determine the set of heap cells that
the literal at (i) has last access to. Turning this description the other way around
means that heap cells are live if they are reached by any of the instructions that
can be executed after the literal at (i). The set of live heap cells thus consists of

• the heap cells that are accessed outside of p/n, thus L0,p;

• the heap cells that are instantiated before (i) and used after (i);

• the heap cells that are instantiated before (i) and used after a possible failure
of the literal at (i) or any of the literals following (i);

In this work we refer to heap cells by means of data structures, and of course,
once a data structure is said to be live, then all the data structures referring to
the same piece of memory must be considered live too. Therefore, the structure
sharing information available at program point (i) needs to be taken into account
too.

According to the above description, liveness is a property of the heap cells
that already exist before the literal at (i) is executed. In a formal way, this results
in sets of data structures that are always valid w.r.t. the constraint set describing
the bindings at that moment. Put differently, data structures can not be alive if
they do not exist yet. This poses a problem for correctly dealing procedure calls
as illustrated by the following reasoning. Consider a call to procedure q/m at
program point (i) in the definition of p/n. Let Li be the liveness computed at
program point (i). As liveness only includes existing data structures, we have:
Vars(Li)∩ out(q(Y1, . . . , Ym)) = { }, and thus, during a goal-dependent analysis
of q/m, the data structures associated to the output variables are not considered
live in the calling context of q/m, and the analysis could erroneously conclude
that some parts of these output data structures can be reused. This is clearly not

170 CHAPTER 8. LIVENESS INFORMATION

the behaviour we want. Therefore we refine the description of live data struc-
tures as follows. In our example of a call to p/n, again assuming a non collecting
semantics setting, the heap cells that are live at program point (i) are

• the heap cells that were already live before the call to p/n, i.e., L0,p;

• the heap cells that are already instantiated or become instantiated at (i), and
that are used by any of the instructions following the literal at (i);

• the heap cells that are already instantiated at (i), and that may be needed
upon backtracking.

In terms of data structures and therefore the pointers to these heap cells, we say
that the set of live data structures at a program point i is determined by

• the set of data structures that was live when entering p/n, L0,p;

• the set of data structures that correspond to variables that are instantiated
after the literal at (i) has been performed and that are used in any of the
literals following (i). This corresponds to the variables in forward use as
defined in Section 7.2;

• the set of data structures that correspond to variables instantiated at (i) has
been performed and used upon backtracking. This corresponds to the vari-
ables said in backward use, c.f. Section 7.3;

• and finally, we want to collect all the data structures pointing to the live
cells, therefore we need to extend all of the above liveness sets w.r.t. struc-
ture sharing as it exists at program point (i).

This view means that the live data structures are not necessarily valid in the con-
text of the constraints collected at program point (i), yet they will be valid in the
context of the constraint set obtained right after having performed the literal at
that program point.

It is important to note that while both forward and backward use collect data
structures that have become instantiated after the literal has been performed, we
use the structure sharing relations as they exist before the literal is executed. This
difference will be essential for the precision of the derived information in the
abstract domain. This will be made clear in Section 8.4.

Formally, let forward(i) and backward(i) denote the variables in forward use,
resp. backward use2, at program point (i), then let the function live with signature

live : pp→ 〈Eqn+, ℘(SDVI)〉 → ℘(DVI)→ ℘(DVI)
2Note that with the analysis based derivation of backward use information, we already obtain sets

of data structures instead of pure variables, hence, of course, in that case, no conversion with the data
operator is needed.

8.3. CONCRETE LIVENESS 171

be defined as follows:

live(i, 〈ei , Ci〉, L0) = let Fi = data(forward(i)) in
let Bi = data(backward(i)) in
〈ei , extend(L0 ∪ Fi ∪ Bi , Ci)〉

(8.1)

then the liveness at program point i, denoted by Li is computed as

Li = live(i, 〈ei , Ci〉, L0,p)

Equation (8.1) shows that liveness information at a specific program point de-
pends on the liveness information with which the procedure was called (L0,p),
structure sharing information (Ci), and forward and backward use information
(Fi and Bi). This definition implies that liveness is a call dependent property as
the liveness at a program point depends on the initial liveness L0,p with which
the procedure to which that program point belongs was called. Yet liveness in-
formation does not rely on liveness values at any of the preceding program points
which means that also the initial liveness of a procedure call is purely determined
by the forward/backward uses, the structure sharing, and the initial liveness fur-
ther up the call tree. Note that at the start of the execution of a given program,
the set of live heap cells is empty, hence, the initial liveness is always the empty
set.
As a consequence, no fixpoint computation is needed for deriving liveness in-
formation, once all the underlying information is present. Therefore, one could
argue to formalise the liveness derivation process as a fully separate process, that
purely depends on a pre-annotated program. Yet, given the fact that concrete
liveness information is not context-free (an environment representing the vari-
able bindings is needed to know the nature of the heap cells), and its close con-
nection to structure sharing information, we decide to formalise liveness analysis
using the concrete domain of structure sharing as a basis, explicitly augmented
with liveness information.

Therefore, just as we augmented the domain of ex-equations with sharing
information, we now augment structure sharing information with liveness in-
formation represented as a set of data structures. As the liveness information
is recomputed at each program point using the initial liveness information of
the procedure call, it might seem the most natural to thread the initial liveness
set along the program and include it in the current description of each program
point, hence using tuples 〈e, C, L0, L〉 with e ∈ Eqn+ — the ex-equation compon-
ent, C ∈ ℘(SDVI) — the structure sharing component, L0, L ∈ ℘(DVI) — and
the initial and current liveness components resp., to describe a single computa-
tion state at a specific program point, or in a collecting semantics setting, using
sets of such tuples. This could indeed be seen as a viable concrete domain for
deriving liveness information as it makes the link between a current liveness de-
scription and the initial liveness description on which it depends explicit, leaving

172 CHAPTER 8. LIVENESS INFORMATION

no doubt that that current description stems for that particular initial liveness
description. Unfortunately, this domain makes the definition of the semantics of
procedure call literals complicated. Indeed, in that definition, the initial liveness
components have to be replaced by the current liveness component in order to
have a correct call dependent derivation of the called procedures. Yet, for the res-
ulting semantics of the procedure call, the obtained initial liveness components
must again be replaced by the initial liveness components with which the proced-
ure call was considered. This is illustrated by the following example. Consider
the procedure definition of a procedure p/2 where the literal at program point (i)
is a procedure call to a procedure q/2.

% : − pred p (t , t) .
% : − mode p (in , out) .
p (X,Y) : − . . . , (i) q (A,B) , (i+1) r (C,D) ,

where t is a type with type tree T T t = {s1, s2, s3}: The call to p/n is described
by the collecting liveness set3

{〈ep,1, { }, {Xs1}, { }〉, {〈ep,2, { }, {Xs2}, { }〉}

At program point (i) we could have the description:

{〈e1, C1, {Xs1}, Lq,1〉, {〈e2, C2, {Xs2}, Lq,2〉}

In order to correctly derive the liveness properties for q called in such circum-
stances, the initial liveness components of the call description to q must be set to
the current descriptions, while the current descriptions themselves become irrel-
evant, hence obtaining the call description:

{〈e1, C1, Lq,1, { }〉, {〈e2, C2, Lq,2, { }〉}

Now suppose that this call description yields the exit description4

{〈e3, C3, Lq,1, { }〉, {〈e4, C4, Lq,2, { }〉}

The only parts of interest of this exit description are the ex-equations and the
structure sharing components. If we would continue the analysis using that exit
description as a basis to analyse the following literal at program point (i + 1),
then we would obtain wrong results. Indeed, the liveness at program point (i +
1) should depend on the same initial liveness as with which program point (i)

3Note that the current liveness description for a specific procedure call is in fact irrelevant, as only
the initial liveness component is of importance for the correct derivation of the liveness information
within a procedure. At best, the current liveness component could simply be identical to the initial
liveness component.

4Again, the current liveness descriptions are irrelevant, as they can be recomputed again if needed,
yet they don’t depend on the internals of the called procedure.

8.3. CONCRETE LIVENESS 173

was analysed, and not with the resulting initial liveness after having analysed
program point (i). Hence, to be correct, the results of the analysis of the literal at
program point (i) should be combined with the call description of that literal as
we would need to keep the initial liveness set of the former, and the constraint
set as well as the structure sharing set of the latter.
Therefore, using tuples containing the current liveness as well as the initial live-
ness sets leads to an obfuscated and complicated formalisation which is why we
propose the following simplified view.

At the start of the execution of a program, the query that will be performed
can be adorned with the description that none of the involved variables are con-
strained (the ex-equation is therefore simply true), that there is no structure shar-
ing, and obviously, as there are no data structures yet, there can not be any live
data structures either. During the execution of the program, each procedure
call is also described by tuples consisting of an ex-equation describing the vari-
able bindings and a structure sharing component describing the possible sharing
between the data structures of these variables. The liveness information for each
procedure call is uniquely determined by the local information available for that
call, but, as we argued earlier, it is also determined by the initial liveness of the
procedure where the procedure call occurs. In the previous section we opted for
threading that extra information along in the current description, yet now we
will show that each individual current description consisting of a tuple 〈e, C, L〉
(with e, C having the obvious meaning, and where L would denote the current
liveness information) corresponds to at most one such tuple of the original call
description of the procedure to which that tuple belongs, hence, each such tuple
can be mapped in a unique way to the original initial liveness information of the
procedure call. In order to prove this statement we first give the necessary details
of this new domain and define the corresponding semantics.

We use the following definition for liveness descriptions:

Definition 8.13 (Liveness Description) A tuple in 〈Eqn+, ℘(SDVI), ℘(DVI)〉 is a
liveness description. Let 〈e, C, L〉 be such a liveness description, then e is called the
constraint component, C the sharing component and L the liveness component.

The actual concrete domain is the powerset over liveness descriptions, i.e.,
℘(〈Eqn+, ℘(SDVI), ℘(DVI)〉), which we abbreviate to CL. Elements from this
domain are called collecting liveness descriptions.

8.3.1 Operations, Ordering

The operations on the domain of structure sharing are naturally adapted to the
collecting liveness descriptions: termshift, projection and renaming now include
the termshift, projection and renaming resp. of the liveness component.

174 CHAPTER 8. LIVENESS INFORMATION

Definition 8.14 (Ordering in 〈Eqn+, ℘(SDVI), ℘(DVI)〉) Let cl1 = 〈e, C1, L1〉 and
cl2 = 〈e, C2, L2〉 be two liveness descriptions, then we say that the first is subsumed by
the second, denoted by cl1 �cl cl2 iff C1 ⊆c C2, and L1 ⊆cd L2.

Note that the ordering of two liveness descriptions is only defined for equivalent
environments.

Two liveness descriptions are considered equivalent if they are mutually sub-
sumed.

The ordering in the power set of the above domain, i.e., CL is given by the
following definition:

Definition 8.15 (Ordering in CL) Collecting liveness descriptions are ordered by the
set-inclusion operation, modulo the equivalence of liveness descriptions.

Let cl ∈ 〈Eqn+, ℘(SDVI), ℘(DVI)〉, and CL ∈ CL, then cl is subsumed by CL,
denoted by cl ≤cl CL, iff cl ∈ CL.

Let CL1, CL2 ∈ CL, then CL1 is subsumed by CL2, denoted by CL1 vcl CL2, iff
∀cl ∈ CL1 : cl ≤cl CL2, in other words, CL1 ⊆ CL2.

Finally, the least upper bound of two concrete collecting liveness descriptions is simply
the union of these sets, denoted with the symbol tcl .

As liveness information is of interest at every program point and not only at
unification literals as suggested by our usual semantics in which the auxiliary
function add is used, we slightly adapt the natural semantics of Mercury pro-
grams.

8.3.2 Augmented Natural Semantics

For the clarity of the presentation we consider that forward use as well as back-
ward use information are available at each program point within our Mercury
programs. Forward use can be queried by the function forward (Defined in Sec-
tion 7.2). We assume that backward use information at a program point i is given
in a similarly way, i.e., by a function backward : pp → ℘(DVI) (c.f. Section 7.3 for
the possible interpretations of this function).

The derivation of liveness information follows slightly different rules as for
our previous domains, hence, based on the natural semantics SemM we present
a variation on that semantics, resulting in the semantics SemM+ with semantic
functions RM+ , PM+ , GM+ , etc. The variation lies mainly in the definition of lit-
eral goals as this is the only place of interest for recomputing the current liveness.
The only purpose of recomputing that liveness is to record it in the annotation
table obtained as a result of the semantics and to use the obtained call descrip-
tion for a correct derivation of the procedure calls. Hence, we have the following
definition:

8.3. CONCRETE LIVENESS 175

GM+ [[l]](e, A)S0S = let S1 = update(pp(l), S0, S) in
(LM+ [[l]] e S1, A[(pp(l), S0), S1])

using a new auxiliary function update. The intended meaning of update is to up-
date the liveness component of the call description for the current literal taking
into account the initial call description of the procedure to which the literal be-
longs. Leaving the remainder of the semantic rules the same, we automatically
obtain that a procedure call is looked at with an updated liveness component, and
therefore analysed in a correct way. The resulting exit description of such a pro-
cedure call may contain a new liveness component, yet, this liveness component
is irrelevant and is never actually used for any other computation.

Obviously, the new set of semantic functions is well defined if all the instanti-
ations of the auxiliary operations are monotonic.

Before defining the concrete liveness semantics, we introduce the following
handy operations mapping elements in CL to liveness descriptions in the domain
℘(〈Eqn+, ℘(SDVI)〉) and the other way around:

reduce : CL → ℘(〈Eqn+, ℘(SDVI)〉)
reduce(CL) = {〈e, C〉 | 〈e, C, L〉 ∈ CL}
augment : ℘(〈Eqn+, ℘(SDVI)〉)→ CL
augment(CS) = {〈e, C, { }〉 | 〈e, C〉 ∈ CS}

(8.2)

Definition 8.16 (Concrete Liveness Derivation) We instantiate the augmented nat-
ural semantics with our concrete liveness domain CL where the instantiated auxiliary
functions, initCL, addCL, combCL, updateCL are defined as follows:

initCL = augment(initc)
combCL(CLo, CLn) = augment(combc(reduce(CLo), reduce(CLn)))
addCL(unif, CL) = augment(addc(unif, reduce(CL)))

updateCL(i, CLo, CLn) =

〈e, C, L〉

∣∣∣∣∣∣∣∣∣∣
〈eo, Co, Lo〉 ∈ CLo,
〈en, Cn, Ln〉 ∈ CLn,
eo |= en, Co ⊆c Cn,
e = en, C = Cn,
L = live(i, 〈e, C〉, Lo)

where initc, addc, combc and ECSunif are as defined in Definition 6.24 (page 120).

We discuss the instantiation of each of the auxiliary functions.

• initCL. In this definition, initCL results in the description 〈true, { }, { }〉. This
description means that the query is executed starting from an empty con-
straint set, no structure sharing and no current (therefore initial) liveness.

176 CHAPTER 8. LIVENESS INFORMATION

• combCL. The main purpose of the combination operation combCL is to cor-
rectly combine the structure sharing information. As the liveness com-
ponents are irrelevant, and are recomputed when needed anyway, we can
simply reduce the liveness descriptions to correct sharing descriptions, com-
bine the resulting sharing descriptions, and then augment the result to ob-
tain elements in CL. The result is a set of liveness descriptions with new up-
dated constraint and structure sharing components, yet with re-initialised
liveness components.

• addCL. Adding a unification to a given description is analog to the combin-
ation operation as it simply consists of adding the sharing information to
the collecting liveness description. This means that we can simply define
addCL in terms of adding the unification to the structure sharing description
obtained from reducing the initial set of liveness descriptions.

• updateCL. The new auxiliary function updateCL updates the current live-
ness component by computing the liveness information for each tuple in
the description individually, using the liveness component of the liveness
description of the call with matching constraint component and matching
structure sharing component. We use the live operation introduced earlier
(Equation 8.1). Note that the new computed liveness component is inde-
pendent of the liveness component that was already present in the descrip-
tion.

As a conclusion, it is interesting to see that the liveness component is never
actually used to compute further call descriptions, except for the the new call
descriptions of procedure calls and for the purpose of being recorded in the an-
notation table.

We present an interesting property of the liveness information gathered that
way.

Definition 8.17 In a particular liveness call description 〈e, C, L〉, L is said to be syn-
chronised with the structure sharing component C, if ∀α ∈ L : (α −β) ⊆c C ⇒ β ∈
L0.

Corollary 8.1 In the context of Definition 8.16, for each derived liveness description
〈e, C, L〉 in a collecting call description CL for a procedure call, each L is synchronised
with the corresponding sharing component C.

This property is due to the fact that the liveness component at a literal is always
updated using updateCL (with a structure sharing component that is closed under
transitive closure) before performing the procedure call corresponding to that
literal.

8.3. CONCRETE LIVENESS 177

Neither combCL nor addCL are completely monotonic functions (as they both
initialise the liveness component of the resulting liveness description), yet all the
auxiliary operations are monotonic w.r.t. the structure sharing component. This
is simply the effect of liveness information being a local property based on in
use and structure sharing information only. Hence, with liveness derivation be-
ing a structure sharing driven process, and with the auxiliary operations being
monotone in their structure sharing components, we can safely conclude that the
resulting semantic functions are therefore monotonic too and thus SemM+(CL) is
well defined.

We illustrate the previous concepts with the classic example of the determin-
istic procedure of append.

Example 8.7 Consider the procedure definition of the deterministic version of append of
Example 4.4 which we repeat here:

% ; − pred append (l i s t (T) , l i s t (T) , l i s t (T)) .
% : − mode append (in , in , out) i s det .
append (X, Y, Z) :−

(
(1) X == [] ,
(2) Z := Y

;
(3) X => [Xe | Xs] ,
(4) append (Xs ,Y, Zs) ,
(5) Z <= [Xe | Zs]

) .

We consider the collecting liveness call description

CL0 ={
〈{X = [f (1)], Y = [f (2)]}, { }, {Yε}〉,
〈{X = [f (1)], Y = [f (1), f (2)]}, {

(
X([|],1) −Y([|],1)

)
}, {Yε, X([|],1)}〉

}

This specifies the bindings of X and Y. In the second description, the element of X is
shared with the first element of Y. In both descriptions, Yε is live outside of the call to
append. In the presence of the structure sharing between X and Y, the elements of X
must also be live in the calling environment described by the second description (in order
to be synchronised with the structure sharing information).

The descriptions that are obtained for each of the program points are given in Table 8.1.
From this table, we see that at program point (3) the list cell of the deconstructed

variable X is not live, hence may be reused for this specific call.

178 CHAPTER 8. LIVENESS INFORMATION

1
F1 = {Y}
CL1 = CL0

2
F2 = { }
CL2 = { }— Inconsistent constraint component

3

F3 = {Y, Xe, Xs}

CL3 =

e = {X = [f (1)], Y = [f (2)]}
C = { }
L = {Xeε , Xsε , Yε}
e = {X = [f (1)], Y = [f (1), f (2)]}
C = {

(
X([|],1) −Y([|],1)

)
}

L = {Xeε , Xsε , Yε , X([|],1)}

4

F4 = {Xe, Zs}

CL4 =

e = {X = [f (1)], Y = [f (2)], X = [Xe|Xs]}
C =

{(
Xeε − X([|],1)

)
,
(

Xsε − X([|],2)
)}

,

L = {Yε , Xeε , Zsε , X([|],1)}
e = {X = [f (1)], Y = [f (1), f (2)], X = [Xe|Xs]}

C =

(

X([|],1) −Y([|],1)
)

,
(

Xeε − X([|],1)
)

,(
Xsε − X([|],2)

)
,
(

Xeε −Y([|],1)
)

L = {Yε , Xeε , Zsε , X([|],1)}

5

F5 = { }

CL5 =

e =

{
X = [f (1)], Y = [f (2)],
X = [Xe|Xs], Zs = Y

}
C =

{(
Xeε − X([|],1)

)
,
(

Xsε − X([|],2)
)

, (Zsε −Yε)
}

L = {Yε , Zsε}

e =
{

X = [f (1)], Y = [f (1), f (2)],
X = [Xe|Xs], Zs = Y

}

C =

(

X([|],1) −Y([|],1)
)

,
(

Xeε − X([|],1)
)

,(
Xsε − X([|],2)

)
,
(

Xeε −Y([|],1)
)

,
(Zsε −Yε)

L = {Yε , X([|],1) , Zsε , Xeε}

Table 8.1: Liveness details for the deterministic append procedure (Example 8.7).
The local forward use at each of the program points is explicitly listed as Fi, 1 ≤
i ≤ 5. The backward use sets are empty.

8.4. ABSTRACT LIVENESS 179

8.4 Abstract Liveness

While the liveness information in the concrete domain can be collected using con-
crete data structures, in the abstract domain we approximate this information us-
ing abstract data structures instead. Just as for the concrete domain, in order to
compute the live data structures at a given program point within a procedure p,
we need: forward use information, backward use information, the live data struc-
tures in the call to p, and finally, sharing information that enables us to extend all
the known to be live data structures to all the data structures covering the same
heap space.

We illustrate the importance of using the structure sharing information as it
exists before the literal at the considered program point is performed.

Example 8.8 Recall that the objective of liveness analysis is to collect the set of live data
structures such that, based on that information, the compiler can safely decide which data
structures may be reused.

Now consider the simple deconstruction unification X ⇒ [Xe|Xs], where X is as-
sumed to be bound to a term of type list(int). Suppose that the literal belongs to a determ-
inistic derivation (hence no backward use), that only Xe and Xs are in forward use, and
that there is no structure sharing before the unification. Obviously, after the unification,
the tail of X will be shared with Xs. In the concrete domain this is described by the tuple(

X([|],2) − Xsε
)

. Yet in the abstract domain the most precise description of this relation

is
(
Xε − Xsε

)
, hence the information that only the tail of X is shared is lost.

When computing the set of live data structures, this loss of information becomes cap-
ital. Determining the live data structures in the absence of any structure sharing, we
obtain that only the (abstract) data structures Xeε and Xsε are live (due to forward use).
This allows us to conclude that the main functor that X points to is not live, and may
therefore be reused, which is a perfectly safe conclusion.

Yet, if the structure sharing that the literal creates is taken into account, then also Xε

will be considered live too.

For consistency, we will over-line each of the entities involved with the ab-
stract domain, to clearly differentiate them from elements of the concrete domain.
Let Ai be the correct approximation of the structure sharing information at a pro-
gram point (i) in p, and let L0,p be the set of abstract data structures that ap-
proximate the live heap cells in the calling context of p, then we can compute an
approximation for the live data structures at program point (i) in a similar way
as in the concrete domain. Let livea, with signature pp→ ℘(SDVI)→ ℘(DVI)→
℘(DVI), be defined as follows:

livea(i, A, L0) = let Fi = dataa(forward(i)) in
let Bi = dataa(backward(i)) in

extenda(L0 tad Fi tad Bi , A)
(8.3)

180 CHAPTER 8. LIVENESS INFORMATION

then the live structure at i are given by: Li = livea(i, Ai , L0,p).
Given the extra required information, and in analogy to the concrete domain

of liveness descriptions, we augment the domain of abstract structure sharing
with one additional component: the liveness component expressed in terms of
abstract data structures. Hence, our abstract descriptions are elements from the
domain 〈℘(SDVI), ℘(DVI)〉, denoted by AL. Elements in AL are called abstract
liveness descriptions and usually denoted by AL, AL1, etc.

8.4.1 Operations, Ordering

We extend the definitions of the operations defined for abstract structure sharing
to include the liveness components: termshift, projection and renaming now also
take care of the liveness component.

We define the ordering of the elements in AL using the ordering of the ele-
ments of the domains of its components:

Definition 8.18 (Ordering in AL) Let AL1 = 〈A1, L1〉, and AL2 = 〈A2, L2〉 both
be elements in AL, then AL1 is subsumed by AL2, denoted by AL1 val AL2, iff
A1 va A2 and L1 vad L2.

The least upper bound of elements in AL, denoted by tal , is defined as the abstract
liveness description composed of the least upper bound of the components of the given
descriptions: 〈A1, L1〉 tal 〈A2, L2〉 = 〈A1 ta A2, L1 tad L2〉.

8.4.2 Abstract Instantiation of the Augmented Semantics

In analogy to the concrete domain, we introduce two additional functions map-
ping abstract liveness sets to abstract sharing sets and vice versa.

reducea : AL → ℘(SDVI)
reducea(〈A, L〉) = A
augmenta : ℘(SDVI)→ AL
augmenta(A) = 〈A, { }, 〉

(8.4)

Definition 8.19 (Abstract Liveness Derivation) We define the abstract liveness se-
mantics to be the augmented semantics SemM+ instantiated with the domain AL and
the following auxiliary operations:

initAL = augmenta(inita)
combAL(AL0, ALn) = augmenta(comba(reducea(ALo), reducea(ALn)))
addAL(unif, AL) = augmenta(adda(unif, reducea(AL)))
updateAL(i, 〈A0, L0〉, 〈A, L〉) = 〈A, livea(i, A, L0)〉

8.4. ABSTRACT LIVENESS 181

where inita, comba, adda and Aunif are as defined in the abstract sharing semantics
(Definition 6.32) and where livea is given by Equation (8.3).

In the concrete domain we introduced the notion of synchronised liveness in-
formation. In the abstract domain, this notion is not present. The difference is due
to the fact that structure sharing in the concrete domain is closed under transitive
closure, while in the abstract domain, structure sharing is combined using the al-
ternating closure. Hence, in the concrete domain, if a data structure β is live, then
so are all the structures that are shared with it. In the abstract domain, β may
be live, yet, even in the presence of an explicit abstract structure sharing relation
such as (β−γ), γ does not need to be live. The following example illustrates
this.

Example 8.9 Let A = {(α −β) , (β−γ)}, in the presence of an initial liveness set
L0 = { }, and where the structures in forward or backward use at program point i are
given by the set Ui = {α}. Then updateAL(i, 〈A0, L0〉, 〈A, L〉) = 〈A, L′〉 where A0
and L are irrelevant here, and where

L′ = livea(i, A, L0)
= extenda(L0 tad Ui , A)
= extenda({α}, {(α −β) , (β−γ)})
= {α, β}

Hence, in the current liveness component, only α and β are live, even in the presence of
the structure sharing between β and γ. In fact, the absence of the explicit structure shar-
ing between α and γ in A means that the structure sharing pairs (α −β) and (β−γ)
stem from two different computation paths, hence are not combined with each other.

8.4.3 Safe approximation

We define the concretisation of abstract liveness descriptions as the composition
of the concretisation of each of its components: the concretisation γS of the shar-
ing component is given in Definition 6.28, and the concretisation γD of the ab-
stract data structures representing the liveness components is defined in Defin-
ition 8.12. As each of these concretisation functions is an insertion w.r.t. their
relative concrete and abstract domain (Lemma 6.1, and Lemma 8.3 resp.), the
global concretisation function, denoted by γL, is also an insertion between the
concrete domain CL and its abstract counterpartAL. According to Theorem 5.1 it
suffices to show that each of the auxiliary operations in SemM+(CL) is correctly
approximated by the instantiations of these auxiliary operations in SemM+(AL).
We show this for each of the individual auxiliary functions.

Lemma 8.5 initAL ∝ initCL.

182 CHAPTER 8. LIVENESS INFORMATION

Proof initAL = 〈{ }, { }〉. We have γL(initAL) = {〈e, { }, { }〉 | e ∈ Eqn+}, which
clearly subsumes initCL = {〈true, { }, { }〉}.

2

Lemma 8.6 combAL ∝ combCL.

Proof Clearly augmenta ∝ augment and reducea ∝ reduce. As comba ∝ combc
(Lemma 6.5), obviously combAL ∝ combCL.

2

Lemma 8.7 addAL ∝ addCL.

Proof Both addAL and addCL are defined in terms of augmenta, reducea, adda and
augment, reduce addc resp. With adda ∝ addc (Lemma 6.6) and augmenta ∝
augment, reducea ∝ reduce, we obtain addAL ∝ addCL.

2

Lemma 8.8 updateAL ∝ updateCL.

Proof Updating a liveness description only has an effect on the liveness com-
ponent, in the concrete domain, as well as in the abstract domain. There-
fore, it suffices to show that the concretisation of the abstract liveness com-
ponent is always an approximation of the concrete liveness components for
environments which are approximated by the abstract environment. Given
Lemma 8.4 which proves that extenda ∝ extend, and the definition of live
(Equation 8.1) and livea (Equation 8.3), we can easily show that livea ∝ live,
hence updateAL ∝ updateCL.

2

We illustrate the derivation of liveness information with the deterministic ver-
sion of append, c.f. Example 8.7.

Example 8.10 Consider the code of append and the definition of the concrete descrip-
tion CL0 from Example 8.7. Consider the abstract liveness call description AL0 =
〈{

(
X([|],1) −Y([|],1)

)
}, {Yε, X([|],1)}, { }〉. Concrete calls covered by this description

may at most have some sharing between the elements of X and Y, and only parts of Y
may be live outside the call. We have CL0 vcl γL(AL0).

Table 8.2 details the descriptions obtained at each of the program points.
Comparing this table with the table obtained for the concrete call CL0 from Ex-

ample 8.7, we can draw the same conclusions as there: calling append(X,Y,Z) with its
second list live, and the elements of X and Y aliased, leaves a dead list cell at the decon-
struction at program point (4).

The exit description as a result of analysing append/3 under these conditions has
only one relevant component, namely the structure sharing that the procedure call may
generate.

8.4. ABSTRACT LIVENESS 183

1
F1 = {Y}
AL1 = AL0

2

F2 = { }

AL2 = AL0 =

{
A = {

(
X([|],1) −Y([|],1)

)
}

L = {Yε , X([|],1)}

3

F3 = {Y, Xe, Xs}

AL3 =

{
A = {

(
X([|],1) −Y([|],1)

)
}

L = {Yε , X([|],1) , Xeε , Xsε}

4

F4 = {Xe, Zs}

AL4 =

A =

(

X([|],1) −Y([|],1)
)

,
(

X([|],1) − Xeε
)

,(
Xε − Xsε

)
,
(

Xeε −Y([|],1)
)

L = {Yε , Zsε , Xeε , X([|],1)}

5

F5 = { }

AL5 =

A =

(
X([|],1) −Y([|],1)

)
,
(

X([|],1) − Xeε
)

,(
Xε − Xsε

)
,
(

Xeε − Zs([|],1)
)

,(
Xs([|],1) − Zs([|],1)

)
,
(
Yε − Zsε

)
,(

X([|],1) − Zs([|],1)
)

L = {Yε , Zsε , Xeε , Xs([|],1) , X([|],1)}

Table 8.2: Abstract liveness details for the deterministic append procedure (Ex-
ample 8.10). Forward use is listed as Fi, 1 ≤ i ≤ 5, while the backward use sets
are empty sets.

184 CHAPTER 8. LIVENESS INFORMATION

8.5 Increased Precision by Differential Semantics

In the previous sections, the concrete and abstract instantiations for the update
function rely on extend, resp. extenda:

updateCL(i, CLo, CLn) =

〈e, C, L〉

∣∣∣∣∣∣∣∣∣∣
〈eo, Co, Lo〉 ∈ CLo,
〈en, Cn, Ln〉 ∈ CLn,
eo |= en, Co ⊆c Cn,
e = en, C = Cn,
L = live(i, 〈e, C〉, Lo)

updateAL(i, 〈A0, L0〉, 〈A, L〉) = 〈A, livea(i, A, L0)〉

where
live(i, 〈e, C〉, L0) = 〈e, extend(L0 ∪ data(Ui), C)〉
livea(i, A, L0) = extenda(L0 tad dataa(Ui), A)

where Ui = forward(i) ∪ backward(i).
Previously we have shown that extend is idempotent, while extenda is not.

This has consequences on the precision of the results for the abstract domain.

Example 8.11 Consider a procedure p with abstract call description 〈A, L0〉, where A =
{(α −β) , (β−γ)} and L0 = {α, β}. Example 8.9 showed that this call description is
perfectly acceptable as in the abstract domain liveness information does not need to be
synchronised with the structure sharing component.

Let (i) be a program point in p, then the liveness component at program point (i) is
obtained by extending the liveness component of the call description of the procedure to
which (i) belongs, and the local in use information, with the structure sharing informa-
tion at that program point. Let us assume that (i) is the first encountered program point
in (p), this means that the structure sharing is still A. If the in use information at (i)
is the empty set, then then the liveness component computed at program point (i) is:
Li = extend(L0, A) = {α, β, γ}. This means that γ is now suddenly considered live,
although in the call description it was not.

In the concrete domain, this overestimation does not occur as every concrete structure
sharing described by A will either have α shared with β or β with γ but never both in
the same liveness description. Hence, if α is live in the first case, then only β will be live.
Given the fact that extend is idempotent, extending a live set a number of times with the
same set of structure sharing sets will always yield the same results.

The imprecision arises from the fact that the liveness of the call description,
which was already extended once with the initial structure sharing of that call, is
extended w.r.t. to that initial structure sharing again at each program point in the
procedure looked at.
In Chapter 6 we have shown that the concrete structure sharing at a program
point can always be computed as the combination of the initial structure shar-
ing of the call, and the local structure sharing that is built up by the literals in

8.5. INCREASED PRECISION BY DIFFERENTIAL SEMANTICS 185

the procedure. We can therefore reason that when computing a new liveness de-
scription, the liveness of the call description, i.e., L0, needs only to be extended
w.r.t. the local structure sharing (instead of the global structure sharing), while the
in use information has to be extended w.r.t. the global structure sharing as usual.
We redefine live using the initial structure sharing and local structure sharing as
follows:

live(i, 〈e0, C0〉, 〈el,i , Cl,i〉, L0) =
let Ui = data(forward(i) ∪ backward(i)) in
let 〈e, C〉 = combc(〈e0, C0〉, 〈el,i , Cl,i〉) in
〈e, extend(L0, Cl,i) ∪ extend(Ui , C)〉

(8.5)

where i ∈ pp, e0, el,i ∈ Eqn+, C0, Cl,i ∈ ℘(SDVI), L0 ∈ ℘(DVI), and where combc
is the combination operator for concrete structure sharing tuples (Definition 6.24).
In the abstract domain, we can then correctly approximate this operation using
the following new definition of livea:

livea(i, A0, Al,i , L0) = let Ui = dataa(forward(i) ∪ backward(i)) in
let A = comba(A0, Al,i) in

extenda(L0, Al,i) tad extenda(Ui , A)
(8.6)

Given the fact that extenda ∝ extend, comba ∝ comb and obviously dataa ∝ data,
we can safely claim that livea ∝ live.

This definition of the liveness information clearly demands a semantics where
the local information is separated from the global information. This can be achie-
ved through the differential semantics. We therefore need to augment and instan-
tiate SemMδ accordingly.

Let SemMδ+ be the augmented differential semantics with semantic functions
RMδ+ , PMδ+ , GMδ+ , etc. All these semantic functions are defined as in the dif-
ferential semantics, except for the definition of literal goals and procedure calls.

GMδ+ [[l]](e, A)SgSl = let S ′g = combupdate(pp(l), Sg, Sl) in
(LMδ+ [[l]] e S ′gSl ,

A[(pp(l), Sg), S ′g])
LMδ+ [[unif]] e SgSl = add(unif, Sl)
LMδ+ [[p(X)]] e SgSl = comb(Sl , e(p(X), Sg))

In this definition, we use a new combupdate function that is a hybrid opera-
tion between the usual comb and update operations: it produces a new liveness
description in which the structure sharing is the result of combining the struc-
ture sharing of the global and local liveness descriptions, and where the current
liveness component is computed using the new live and livea-functions described
above. Instead of introducing a new auxiliary function combupdate, we could

186 CHAPTER 8. LIVENESS INFORMATION

have formulated the clauses using comb and update, yet this would require spe-
cial attention as to the correct ordering (the update needs to be done using a separ-
ate global and local description), but also to a correct definition of comb (applying
combCL or combAL (Definition 8.16, Definition 8.19 resp.) on the result of updating
the liveness descriptions has the effect of reinitialising the liveness description).
Therefore, a cleaner approach is to replace the normal functionality of update by
a function that not only affects the liveness component, but also the structure
sharing component. To make the change in functionality explicit, we replace the
auxiliary operation update with a new operation called combupdate that makes
these subtleties explicit.

We instantiate SemMδ+ with CL as follows.

Definition 8.20 (Differential Concrete Liveness Derivation) The differential con-
crete liveness derivation is defined as the augmented differential semantics SemMδ+ in-
stantiated with the domain CL, where the auxiliary functions init, comb, add, are instan-
tiated with the functions initCL, combCL, addCL as defined in Definition 8.16, and where
the new combupdate operation is instantiated with the function

combupdateCL(i, CLg, CLl)

=

〈e, C, L〉

∣∣∣∣∣∣∣∣
〈eg, Cg, Lg〉 ∈ CLg,
〈el , Cl , Ll〉 ∈ CLl ,
L = live(i, 〈eg, Cg〉, 〈el , Cl〉, Lg),
〈e, C〉 = combc({〈eg, Cg〉}, {〈el , Cl〉})

where live is defined by Equation (8.5) and combc is given by Definition 6.24 (Page 120).

As the structure sharing information in the context of the natural semantics
SemM is equivalent to the structure sharing information obtained in the differen-
tial semantics setting SemMδ, we may safely conclude that this remains true in the
augmented semantics. Given that equivalence and the immediate dependence of
liveness information on structure sharing, we can safely claim that SemMδ+(CL)
is equivalent to SemM+(CL).

Definition 8.21 (Differential Abstract Liveness Derivation) The differential abstract
liveness derivation is the augmented differential semantics SemMδ+ instantiated with the
domainAL, where the auxiliary functions init, comb, add are instantiated with the oper-
ations initAL, combAL and addAL resp., as defined in Definition 8.19, and where the new
combupdate operation is instantiated with the function

combupdateAL(i, 〈Ag, Lg〉, 〈Al , Ll〉)
= 〈comba(Ag, Al), livea(i, Ag, Al , L0)〉

where livea is defined by Equation (8.6).

8.6. RELATED WORK 187

8.6 Related Work

Liveness information for logic programs was first detailed by Mulkers (1991).
Roughly speaking the derived liveness information is similar to the liveness as
derived here: it is also represented as a tuple consisting of a component represent-
ing the bindings of the variables (using the notion of a concrete term environment),
a component representing their sharing, and finally, a component representing
the actual live data structures. The differences lie mainly in the complexity of the
underlying domains due to the absence of type and mode information in the un-
derlying language (Prolog), and the actual formalisation of the derivation process
which is done in terms of the well known generic framework for abstract inter-
pretation for logic programs developed in (Bruynooghe 1991). Here, we give a
simplified definition, adapted to the semantics of Mercury programs and formu-
lated as an annotation of the source code with the clear aim of being used for a
next analysis phase: reuse analysis. Formulating liveness analysis as we did also
enables us to discuss more easily about the modularisation of that process, which
is the aim of Chapter 10.

To our knowledge, the work of Mulkers (1991) and (Bruynooghe, Janssens,
and Kågedal 1997) is the only other complete formalisation of liveness analysis
expressed in the context of logic programming.

8.7 Conclusion

In this chapter we have given the definition of concrete and abstract liveness do-
mains, and used these domains in the context of a number of different semantics.
We first used the natural semantics SemM, and argued that these semantic func-
tions needed to be adapted so as to be able to correctly derive liveness informa-
tion. We called the result the augmented natural semantics for Mercury, and named
it SemM+ . Yet, as we instantiated this semantics with the abstract liveness do-
main, we showed that due to the fact that the extension operation on which the
propagation of liveness information is based, is not idempotent in the abstract
domain, we obtain a possible loss of precision. This loss of precision can be alle-
viated by separating the global structure sharing information from the local part.
This brought us to a new definition of obtaining the concrete liveness information
at a program point. This new definition needs the separation of a local and global
structure sharing, hence bringing us to the differential semantics. By augmenting
that semantics, we obtained SemMδ+ .

Figure 8.1 gives an overview of the different liveness derivations defined in
this chapter.

While SemM+(CL) and SemMδ+(CL) are equivalent, our previous discussion
shows that SemM+(AL) ∝ SemMδ+(AL), and therefore SemMδ+AL is inherently
more precise than SemM+(AL).

188 CHAPTER 8. LIVENESS INFORMATION

SemM+(CL) ⇔ SemMδ+(CL)
(Definition 8.16) (Definition 8.20)

↑∝ ↑∝
SemM+(AL) ∝→ SemMδ+(AL)

(Definition 8.19) (Definition 8.21)

Figure 8.1: Overview of the instantiated liveness semantics for Mercury.

Chapter 9

Reuse Analysis, First Prototype
Implementation

In this chapter we define the notions of data structure reuse, and report on our
first prototype implementation of the liveness analysis presented in the previous
chapter.

9.1 Structure Reuse, Terminology

The purpose of liveness analysis is to find opportunities for reusing heap cells
as soon as they become dead. Indeed, liveness information may be interesting
as such, but it is especially interesting to know the data structures that are not
live. Given the safeness of our abstract domain in combination with the natural
augmented semantics, we know that at each program point we obtain an over-
estimation of the live heap cells. Therefore, if a specific data structure does not
belong to the current liveness component of a program point, then the current
literal definitely has a unique reference to that data structure, if at all.

Example 9.1 Consider the procedure definition of the deterministic version of append
given in Example 4.4 (page 42). Using the natural augmented semantics instantiated
with the abstract domain of liveness descriptions, i.e., SemM+(AL∗), we derive that for
the abstract call description 〈{ }, {Zε}〉—i.e., the input arguments do not share, and only
the output argument Z is used and thus live in the calling environment of append — the
liveness description at program point (3) consists of the tuple 〈{ }, {Yε, Xeε, Xsε, Zε}〉.

Indeed, before executing the literal at program point (3), no sharing exists between
the available instantiated arguments X and Y (A3 = { } in Table 9.1). At (3) the
variables Y, Xe, Xs are in forward use. As append is written in its deterministic version,

189

190 CHAPTER 9. REUSE ANALYSIS

pp Fpp App Lpp

1 {Y} { } {Yε, Zε}
2 { } { } {Zε}
3 {Y, Xe, Xs} { } {Yε, Xeε, Xsε, Zε}
4 {Xe, Zs} {

(
Xε − Xsε

)
,
(

X([|],1)− Xeε
)
} {Xeε, X([|],1), Zsε, Zε}

5 { }

(
Xε − Xsε

)
,(

X([|],1)− Xeε
)

,(
Zs([|],1) − X([|],1)

)
,(

Zsε −Yε
)

 {Zε}

Table 9.1: Liveness descriptions for the deterministic procedure append assum-
ing the liveness call description 〈{ }, {Zε}〉. Fpp represents the variables in local
forward use (c.f. Example 7.3), App is the goal-independent structure sharing in-
formation, while Lpp represents the liveness information for each program point.

no variables are in backward use. Hence, the set of live data structures at (3) consists of
{Yε, Xeε, Xsε, Zε}, where Zε is due to the calling environment in which it is live.

With this result we see that Xε is not part of the current liveness information at
that program point. This means that the deconstruction has a unique reference to the
immediate heap cells to which Xε refers. If the deconstruction succeeds, then it creates
two new references to the subterms of the main list-functor. While the structures pointed
at by these two new references may still be needed during the rest of the program, we have
the guarantee that the heap cells storing the main list cell have become garbage. Figure 9.1
gives a graphic representation of this situation.

The liveness descriptions obtained for each of the program points in append are shown
in Table 9.1.

In the previous example we specifically looked at the deconstruction literal
for commenting on the heap cells that might become garbage. This is not without
reason. Indeed, of all literal types, deconstruction unifications are the only literals
where last and unique references to specific heap cells are released, and where we
know the shape of what is released. The former is important because of course
we want to detect as soon as possible where garbage cells are produced when
executing the program, and the latter factor is of interest as we can then decide at
compile-time what to do with these available heap cells.

We introduce the following terminology:

Definition 9.1 (Top Level Data Structure) Consider a concrete data structure 〈e, Xs〉,
then the heap cells used to store the outermost functor of the term Xs (in the context e),

9.1. STRUCTURE REUSE, TERMINOLOGY 191

...

...

[|]/2

Xe

Xs

X

...

stack heap

garbage

[|]/2

[|]/2

Figure 9.1: Memory reuse possibilities of the deterministic append procedure:
Xε is not live, therefore the cells representing the main list functor (shown in
grey) are definitely garbage after the deconstruction at program point (3) in Ex-
ample 9.1.

is called the top level data structure of Xs. We use the same notion for abstract data
structures: the top level data structure for Xs consists of the heap cells used to store the
outermost functors of the terms that may be bound to the subterms Xs of X.

Usually, the notions of top level data structures are used in the context of de-
constructions and constructions, in which case it is perfectly possible to determ-
ine the shape of the top level data structure of the deconstructed variable.

Example 9.2 The top level data structure for the abstract value Xε in the context of
Example 9.1 are the heap cells marked as garbage in Figure 9.1.

Example 9.3 Let X be bound to a term f (g(1), h(2)), then the heap cells needed to store
the functor f /2 and its arguments (i.e., the references to its arguments) represent the top
level data structure of X.

Definition 9.2 (Available for Reuse) The top level data structure of a data structure
is said to be available for reuse iff these heap cells are not live.

In the context of a specific deconstruction X => f (Y1, . . . , Yn) at a program point
(i) with concrete liveness description CL (or abstract liveness description AL), the top
level data structure of Xε (or in the abstract domain Xε) becomes available for reuse in
CL (resp. AL) iff Xε (resp. Xε) is not live according to the current liveness component in
CL (resp. AL).

192 CHAPTER 9. REUSE ANALYSIS

Example 9.4 In Example 9.1, the top level data structure of Xε become available for
reuse at program point (3).

Just as the name suggests, top level data structures that are available for reuse
can be used for allocating new terms on the heap. This reallocation can be decided
at compile-time given the fact that we know the shape and therefore the size of
the available heap cells. The simplest form of reallocation is the situation where
a deconstruction is followed by a suitable construction unification both covered
by the same execution path.

Definition 9.3 (Matching Deconstruction-Construction Pair) We say that a decon-
struction literal X => f (Y1, . . . , Yn) and a construction literal Z <= g(T1, . . . , Tm)
are a matching pair iff

• there exists an execution path1 to which both literals belong, and the deconstruction
occurs before the construction2,

• the size of the heap cells used for the top level data structure of the deconstructed
data structure is at least as big as the size of the heap cells used for the top level data
structure of the constructed data structure.

A matching deconstruction-construction pair is called a perfect match if the
top level data structures of the deconstructed and constructed data structures
represent the same functor. A matching pair is called a near match if the involved
top level data structures represent functors with the same arity.

All matching deconstruction-construction pairs of a program are a potential
source for reusing heap cells. Yet some of these matching pairs may overlap when
they share the same deconstruction. We introduce the notion of a candidate for
reuse:

Definition 9.4 (Candidate for Reuse) In a matching deconstruction-construction pair,
the term that is constructed in the construction literal is a candidate for reuse for the
term that is deconstructed in the deconstruction literal.

One deconstruction can have multiple candidates for reuse.
We define the notions of direct reuse and indirect reuse.

Definition 9.5 (Direct Reuse) Given a procedure with call description AL ∈ AL,
then this procedure is said to have opportunities of direct reuse if it contains match-
ing deconstruction-construction pairs in which the top level data structures of the decon-
structed data structures become available for reuse for that call description.

1Hence, both literals belong to the same procedure definition.
2Recall that we assume that the analysis passes when implemented in a compiler, may not be

followed by any compiler pass that would possibly reorder the literals in a procedure definition. This
means that all subsequent passes of the compiler must be order preserving w.r.t. the literals.

9.2. PROTOTYPE DESCRIPTION 193

The notion of indirect reuse applied to procedures is defined in a recursive
way:

Definition 9.6 (Indirect Reuse) A procedure with call description AL ∈ AL is said
to have opportunities of indirect reuse if it contains calls to procedures with direct or
indirect reuse.

To distinguish the phase of merely deriving liveness analysis from the phase
in which we check for direct or indirect reuses, we call the latter reuse analysis.

Definition 9.7 (Reuse Analysis) Reuse analysis is the process of checking for direct
and indirect reuses in called procedures.

In the previous chapter we have defined the liveness annotation process using
the goal-dependent natural semantics of Mercury programs. This yields a new
set of program point annotations for each encountered call description. Hence,
the liveness analysis is polyvariant. For each encountered call description, reuse
analysis may discover a different set of reuse opportunities. If these reuse op-
portunities were to be compiled into low-level program code realising the actual
structure reuse, then for each call description, a new version for the procedure
should be generated. Yet in general, we do not distinguish versions of a proced-
ure by the call description with which they are called, but by the combinations of
the reuse opportunities they allow. We therefore use the following definition:

Definition 9.8 (Reuse Version of a Procedure) A procedure may be decoupled in a
number of versions. Each version repeats the program code of the original procedure
definition, yet explicitly annotates or implements the possibilities of direct reuse, and
explicitly implements indirect reuse by calling the adequate reuse version of the called
procedure.

Note that in the previous definition, we do not expect that each version actu-
ally implements the direct reuses that were detected by the reuse analysis as the
real reuse can only be possible once the results of the analyses are truly used by a
Mercury compiler.

In the remainder of this chapter we describe our first prototype implementa-
tion for detecting direct and indirect reuse. The purpose of this prototype was to
evaluate the usefulness and feasibility of liveness analysis in order to motivate a
more complete integration of a real liveness and reuse system in the Melbourne
Mercury compiler.

9.2 Prototype Description

Our first prototype system was a system mainly written in Prolog. This system is
based on the “Abstract Machine for Abstract Interpretation”, in short AMAI (Jans-

194 CHAPTER 9. REUSE ANALYSIS

sens, Bruynooghe, and Dumortier 1995)—a generic tool for the abstract interpret-
ation of untyped logic programming languages without declarations. This engine
had to be extended in a number of ways:

• The AMAI is meant to deal with pure conjunctive goals. Disjunctions were
unknown. Although it is easy to replace explicit disjunctions in Mercury
source code by a call to a new predicate that is defined by a number of
clauses, each clause corresponding to one branch of the disjunction, we
chose to adapt the AMAI instead:

– Mercury makes extensive use of disjunctions (as all clauses defining a
predicate are always replaced by one single disjunctive goal), therefore
such transformation would change our source code too much;

– in this setting we are searching for matching deconstruction/construc-
tion pairs, i.e., reuse takes only place within the same procedure defin-
ition. By replacing disjunctions by predicate calls we loose a consider-
able number of reuse opportunities w.r.t. the original source code.

Note that we did not specifically extend the AMAI to be able to cope with
if-then-else constructs, as they can be transformed into disjunctions without
loss of precision in the obtained results.

• The AMAI is a tool for analysing untyped logic languages with neither mode
nor determinism information. We added some extensions to cope with this
extra information that is available in Mercury programs;

Input to the analysis engine is a set of Prolog-facts representing Mercury code
as defined in Chapter 4. We call these facts AMAI instructions. Initially, these
instructions had to be produced manually, yet soon we added a hook to the
Melbourne Mercury compiler3 that produced these facts from real Mercury pro-
grams automatically. This hook intercepts the normal compilation, and uses the
high level internal representation4 of the initial program to produce the required
Prolog-facts. These instructions also contain the necessary information about
types, modes and determinism. Hence we start with a situation where all re-
quired implicit information as described in Section 4.2 is present.

The output of the prototype system is basically a set of annotation tables. No
compiled code taking advantage of the discovered reuse opportunities is gener-
ated. For ease of inspection, we also generate an HTML-file (W3C) that gives a
view on each of the reuse versions of the encountered procedures, highlighting
all the reuse possibilities.

Figure 9.2 gives an overview of the structure of the prototype system.

3At that moment we used version 0.8 of that compiler.
4This high level internal representation is commonly called the “High Level Data Structure”, or

HLDS in short.

9.2. PROTOTYPE DESCRIPTION 195

information

Liveness

Original

Source Code

instructions

AMAI−

Compiled

Code
Mercury Compiler

hook

AMAI*

Figure 9.2: Structure of the prototype liveness analysis system developed for Mer-
cury.

In the remainder of this section we sketch some of the design decisions for
each of the annotations and analyses involved.

9.2.1 Forward Use, Backward Use

Forward use information is computed as described in Section 7.2. Backward use
information is derived using a specific backward use analysis as described in
section 7.4.

The programs are pre-annotated with forward use as well as backward use
before starting the liveness analysis.

9.2.2 Abstract Liveness Descriptions

In this prototype we use the abstract domain AL. Recall that elements in this
domain consist of tuples containing only two components: a structure sharing
component and a liveness component.

9.2.2.1 Structure Sharing

We represent structure sharing as unordered lists of unordered pairs of data struc-
tures. A data structure is represented as a variable adorned with a selector. A
selector is a list of unit selectors. A unit selector consists of a description of a
functor (i.e., its name and arity), and a natural number n selecting the nth child of
the subterm with that functor.

196 CHAPTER 9. REUSE ANALYSIS

9.2.2.2 Liveness Component

The liveness component is represented by an unordered list of data structures.
Each data structure is represented as in the structure sharing component.

9.2.3 Liveness Analysis

The analysis system follows the natural augmented semantics SemM+ . In Sec-
tion 8.5 we showed that a differential view on the structure sharing may improve
the precision of the obtained results, yet this was not implemented at that stage.

It implements SemM+ by a top-down analysis. The result of the analysis is
a table containing the call-exit descriptions of the encountered procedures, and
an annotation table annotating the individual program points with the liveness
descriptions per call description of a procedure. The analysis is polyvariant: for
each call description, a different series of program point annotations is obtained.
Per call description we associate a new version of the procedure considered.

The prototype does not deal with modules, hence considers programs to be
one single monolithic block.

9.2.4 Reuse Analysis

Using the annotations, we perform a bottom-up check of the reuse opportunities
for each call description for each procedure. This process checks for direct reuse
in the called procedures. Indirect reuse follows automatically if at some program
point the called procedure allows direct or indirect reuse. We only allow perfect
matching deconstruction-construction pairs. If a deconstruction has multiple re-
use candidates in the same execution path, then we select the construction literal
that follows the deconstruction the closest.

By the end of this analysis we obtain direct and indirect reuse annotations for
each of the versions derived by the liveness analysis.

9.3 Benchmark: labelopt

The prototype system was first tested on some of the classical benchmarks such as
list concatenation, naive reverse, or other typical list manipulations. Yet our main
benchmark was the study of real life code, i.e., one specific module of the Mel-
bourne Mercury compiler, known for its high memory requirements: labelopt .
The goal of this study was to discover how much structure reuse our prototype
would be able to detect for some of the common call descriptions of the main
procedures defined in that module.

We first detail the structure of this module. Section 9.3.2 gives a report on the
opportunities of reuse discovered by our prototype system.

9.3. BENCHMARK: LABELOPT 197

9.3.1 Code Structure and Potential Reuses

The analysed program, labelopt , is a module from the Mercury compiler. The
main procedure exported by this module is labelopt_main:

:− pred labe lopt_main (l i s t (i n s t r u c t i o n) , bool ,
l i s t (i n s t r u c t i o n) , bool) .

:− mode labe lopt_main (in , in , out , out) i s det .

The purpose of this procedure is to transform a list of program instructions
into a new list of optimised instructions. The module uses procedures from two
other modules, opt_util and list 5. In a first test, we limit our analysis by
substituting the few predicates from opt_util by dummy predicates, such that
the liveness results for the main procedures within labelopt are not altered.
The definitions of the procedures in list are kept, as these present a number of
interesting opportunities for reuse.

Figures 9.3 and 9.4 show the (simplified) call graph of the main procedure
labelopt_main, leaving out dummy calls. Procedures whose definitions contain
matching deconstruction/construction pairs are marked with D/C. Recursive calls
are indicated by loops in the call graph. The D/C annotations do not necessarily
mean that structure reuse is definitely possible, they only indicate that the specific
predicate may have some potential for direct reuse. A brief description follows.

• labelopt_main: This procedure transforms a list of instructions (the input)
into a new list of instructions (the output). There are no matching de-
construction/construction pairs. Therefore possibilities of reuse need to be
found down in the call graph.

• build_useset: Here a new set of labels is produced, starting from a list of in-
structions and an initially empty set of labels. Again, there are no matching
deconstruction/construction pairs in the procedure definition.

• instr \ _list : In this procedure, a list of instructions is decomposed into its ele-
ments. A new list is generated either by explicitly taking over the elements
of the input list, or by calling eliminate on that element, and incorporating
the resulting list into the new list. The procedure is recursive, and contains
matching deconstruction/construction pairs. Hence, it has opportunities
for direct reuse.

• eliminate: Basically a variable of type pair, representing pairs of elements,
is deconstructed and a new pair is created. The output of the procedure is
a list containing that new pair. The procedure contains a matching decon-
struction/construction pair, hence this procedure may be a candidate for
direct reuse.

5In fact it uses also the set -module, but given the fact that a set is represented internally as a list,
all procedures manipulating sets are simply calling list-procedures.

198 CHAPTER 9. REUSE ANALYSIS

D/C D/C

D/C

labelopt_main

build_useset

insert_list

instr_list

eliminate append

(next figure)

Figure 9.3: Call graph of labelopt_main. D/C indicates the presence of matching
deconstruction/construction pairs. A loop represents recursive calls.

• list manipulation predicates: The remaining procedures are procedures that
manipulate lists. There meaning should be to some extent obvious: append
is the classical list-concatenation operation, insert_list inserts a list of ele-
ments into an existing set (which is represented as an ordered list). Pro-
cedure sort_and_remove_dups sorts a lists, and removes any duplicates. This
is done by using merge_sort to order the list, and remove_adjacent_dups to
remove the duplicates that are now always adjacent elements. Procedure
merge_sort is written in terms of length — a procedure that returns the length
of a list, split_list — a procedure to split a list in two, and merge — a pro-
cedure to merge two lists back together. Finally, merge_and_remove_dups
merges two ordered lists, and removes the duplicates. Some of these pro-
cedures contain matching deconstruction/construction pairs, hence are can-
didates for direct reuse. Given the fact that most of these procedures are
also recursive, the direct reuses should also achieve indirect reuses in these
recursive calls.

Judging on the presence of matching deconstruction/construction pairs, the
following procedures show potential for direct reuse: instr_list , eliminate of the
specific labelopt procedures and from the list manipulating procedures: append,
merge_sort, split_list , merge, remove_adjacent_dups and merge_and_remove_dups.
Figures 9.5 and 9.6 present the relevant pieces of the definitions of these proced-
ures.

9.3. BENCHMARK: LABELOPT 199

D/C

D/CD/C

D/C D/C

insert_list

sort_and_remove_dups merge_and_remove_dups

length

merge_sort remove_adjacent_dups

split_list merge

Figure 9.4: Call graph of insert_list /3. All predicates belong to the list-module.
D/C indicates the presence of matching deconstruction/construction pairs. A
loop represents recursive calls.

9.3.2 Identified reuses

Our analysis engine detects reuse of the top level data structures of the relevant
variables in the procedures:

• instr_list ,

• eliminate,

• append,

• remove_adjacent_dups,

• and split_list .

Within each of these procedures a variable L of type list(T), is deconstructed in a
liveness environment that does not comprise Lε. For all these procedures direct
reuse is detected, but also the recursive calls allow reuse of the top level data
structure of the deconstructed lists. Thus, the complete input list can be reused if
the source code is compiled to optimised code.

200 CHAPTER 9. REUSE ANALYSIS

:− pred i n s t r _ l i s t (l i s t (i n s t r u c t i o n) ,
l i s t (i n s t r u c t i o n)) .

:− mode i n s t r _ l i s t (in , out) i s det .
i n s t r _ l i s t ([] , []) .
i n s t r _ l i s t (L1 , L2):−

(
L1 == [] , L2 := []

;
L1 => [I0 | MoreL] ,
I0 => Uinstr − _Comment ,
i f (. . .) % p e r f o r m some t e s t s
then (R <= [I0])
e lse (

e l i m i n a t e (I0 , R) ,
o p t _ u t i l _ p r e d i c a t e (Uinstr , . . .)

) ,
i n s t r _ l i s t (MoreL , MoreR) ,
append (R , MoreR , L2)

) .

:− pred e l i m i n a t e (i n s t r u c t i o n ,
l i s t (i n s t r u c t i o n)) .

:− mode e l i m i n a t e (in , out) i s det .
e l i m i n a t e (I , L i s t) : −

I => In0 − C0 ,
i f (. . .) % p e r f o r m some t e s t s
then (L i s t <= [])
e lse (

In <= . . . , % a c o n s t a n t
NewI <= In − C0 ,
L i s t <= [NewI]

) .

Figure 9.5: Relevant code of labelopt -predicates.

9.3.3 Undetected Possibilities of Direct Reuse

Although our analysis does detect many direct reuses, it does not detect them
all. In the procedures where possible reuses remain undetected we see that the
reason for these misses often lies in the fact that one single deconstruction is used
to serve different purposes: it is a test to see whether a variable is bound to the
desired outermost functor, it is used to select different arguments at the same
time, although not all of them are always needed, etc. We discuss this using
merge_sort and merge, c.f. Figure 9.6, two procedures in which this phenomenon
occurs.

• merge_sort: The input list L1 is live in the program point of the relevant de-
construction literal as it is still needed in the second branch of the switch
following that literal; however, if we check the liveness situation at the pro-
gram point of the construction literal L2 <= [E], we see that L1ε is not live.
So in a sense, we lost an opportunity for reuse as our reuse detection scheme
does not perform the check at the construction. This problem can be solved
by repeating the deconstruction. Indeed, a closer look at the procedure re-
veals that the literal L1 => [E|R] has a double purpose: select the tail of
the list needed for performing the switch; and select the first element in the
same occasion which is only needed in the first branch of the switch. By
decoupling the two goals of the deconstruction and therefore repeating the
deconstruction just before literal L2 <= [E] we could have automatically
detected direct reuse of the involved top level data structure.

• merge: In merge and the very similar merge_and_remove_dups, no direct re-
use is detected. We restrict the discussion to merge. The call description
for merge(A,B,C) guarantees that there is no structure sharing between the
input lists, and that neither the lists A nor B are initially live (i.e., needed in
the callers’ context). Closer inspection of the code reveals that depending

9.3. BENCHMARK: LABELOPT 201

:− pred append (l i s t (T) , l i s t (T) , l i s t (T)) .
:− mode append (in , in , out) i s det .
append (X , Y , Z):−

(
X == [] , Z := Y

;
X => [X1|Xs] ,
append (Xs , Y , Zs) ,
Z <= [X1|Zs]

) .

:− pred merge_sort (l i s t (T) , l i s t (T)) .
:− mode merge_sort (in , out) i s det .
merge_sort (L1 , L2):−

(
L1 == [] , L2 <= []

;
L1 => [E | R] ,
(% s w i t c h on R

R == []
L2 <= [E]

;
R => [_|_] ,
length (L1 , Length) ,
HL i s Length / / 2 ,
(

s p l i t _ l i s t (HL, L1 , F , B) ,
merge_sort (F , SF) ,
merge_sort (B , SB) ,
merge (SF , SB , L2)

;
. . . % e r r o r

)
)

) .

:− pred s p l i t _ l i s t (in t , l i s t (T) ,
l i s t (T) , l i s t (T)) .

:− mode s p l i t _ l i s t (in , in , out , out)
i s semidet .

s p l i t _ l i s t (N, L i s t , S t a r t , End) : −
i f (N == 0)
then (

S t a r t <= [] ,
End := L i s t

) e lse (
N1 i s N − 1 ,
L i s t => [Head | L i s t 1] ,
s p l i t _ l i s t (N1 , L is t1 , S t a r t 1 , End) ,
S t a r t <= [Head | S t a r t 1]

) .

:− pred merge (l i s t (T) , l i s t (T) , l i s t (T)) .
:− mode merge (in , in , out) i s det .
merge (A, B , C) : −

i f (A => [X|Xs])
then (

i f (B => [Y|Ys])
then (

i f (compare (< , X , Y))
then (

Z := X ,
l i s t _merge (Xs , B , Zs)

) e lse (
Z := Y ,
l i s t _merge (A, Ys , Zs)

) ,
C <= [Z|Zs]

) e lse (C := A)
) e lse (C := B) .

:− pred remove_adjacent_dups (l i s t (T) ,
T , l i s t (T)) .

:− mode remove_adjacent_dups (in , in , out)
i s det .

remove_adjacent_dups (L1 , X , L2):−
(% s w i t c h on L1

L1 == [] , L2 <= [X]
;

L1 => [X1 | R] ,
i f (X == X1)
then (

remove_adjacent_dups (R , X , L2)
) e lse (

remove adjacent_dups (R , X1 ,NR) ,
L2 <= [X | NR]

)
) .

:− pred merge_and_remove_dups (l i s t (T) ,
l i s t (T) , l i s t (T)) .

:− mode merge_and_remove_dups (in , in , out)
i s det .

merge_and_remove_dups (A, B , C) : −
% c o d e ve ry s i m i l a r t o merge / 3
merge (A, B ,C) .

Figure 9.6: Relevant code of list(T)-manipulating predicates.

on the situation, either the top level data structure of Aε or the top level
data structure of Bε can safely be reused for the construction of list C. The
reason why this remains undetected is that Aε is live at the deconstruction
of A because depending on the value of B, A may be assigned to C. We have
a similar situation for B. A closer inspection of the code again reveals that
the deconstructions serve multiple purposes: check whether the lists have
any elements at all, select the first elements (needed for comparison), and
select the tails (needed for the recursive calls). By decoupling these differ-
ent uses and again repeating the deconstructions, direct reuse could have
been detected. The resulting code would be as in Figure 9.7.

The above examples are clearly examples in which direct reuse is not detec-
ted using the strategy we use in our analysis. We have two options. Either we

202 CHAPTER 9. REUSE ANALYSIS

:− pred merge (l i s t (T) , l i s t (T) , l i s t (T)) .
:− mode merge (in , in , out) i s det .
merge (A , B , C) :−

i f (A => [X | _])
then (

i f (B => [Y | _])
then (

i f (compare (< , X , Y))
then (

A => [_ | Xs] , % repeated !
Z := X,
l i s t_merge (Xs , B , Zs)

) else (
B => [_ | Ys] , % repeated !
Z := Y,
l i s t_merge (A , Ys , Zs)

) ,
C <= [Z | Zs]

) else (C := A)
) else (C := B) .

Figure 9.7: Code for merge optimised for structure reuse.

try to adopt our strategy, which may clearly make the analysis more complex as
it will have to cover more cases of direct reuse possibilities. Or, and this is our
preferred option, we make sure that the output of our analysis is verbose enough
so as to give enough hints to the interested programmer why some pieces of pro-
gram code do not yield the intended optimisation. In the latter case, input of
the programmer may be valuable in the sense that the programmer, eager to ob-
tain optimised code w.r.t. memory usage, could annotate her/his program with
pragmas making clear that she/he thinks that some reuse could be possible at the
annotated program points.

Note that even by separating the global structure sharing from the local struc-
ture, hence computing liveness as described by Equation 8.6 (Page 185) would
not have helped to detect these cases of direct reuse.

9.4 Prototype Evaluation

Table 9.2 presents the analysis results of the procedures as they appear in our
experiment. The full code listing is given in Appendix A.

Each procedure is listed with a call description and information about the

9.4. PROTOTYPE EVALUATION 203

Predicate Calldescr. Reuse
L0

labelopt_main(H1, H2, H3, H4) {H3
ε, H4

ε} i
build_useset(H1, H2) {H1

ε, H2
ε} i

build_useset_2(H1, H2, H3) {H1
ε, H3

ε} i
instr_list(H1, H2, H3, H4, H5) {H4

ε, H5
ε} d + i

eliminate(H1, H2, H3, H4) {H2
ε, H3

ε, H4
ε} d

eliminate(H1, H2, H3, H4) {H(−,1)
1 , H3

ε, H4
ε} d

set_init(H1) {H1
ε} no

set_insert_list(H1, H2, H3) {H3
ε} i

set_member(H1, H2) {H1
ε, H2

ε} no
sort_and_remove_dups(H1, H2) {H2

ε} i
merge_and_remove_dups(H1, H2, H3) {H3

ε} no∗

member(H1, H2) {H1
ε, H2

ε} no
append(H1, H2, H3) {H3

ε} d + i
merge(H1, H2, H3) {H3

ε} no∗

merge_sort(H1, H2) {H2
ε} no∗

length(H1, H2) {H1
ε, H2

ε} no
length_2(H1, H2, H3) {H1

ε, H3
ε} no

split_list(H1, H2, H3, H4) {H3
ε, H4

ε} d
remove_adjacent_dups(H1, H2) {H2

ε} i
remove_adjacent_dups_2(H1, H2, H3) {H3

ε} d

Table 9.2: Overview of the analysed predicates in module labelopt . All call
descriptions have an empty sharing component. d = direct reuse, i = indirect
reuse, d + i = combined reuse, no = no reuse possible, no∗ = possibly missed
reuse.

reuse possibilities of the procedure called under that call situation. The reuse
information states whether the procedure has possibilities for direct reuse (d),
indirect reuse (i), or both direct and indirect reuse (d + i). If the procedure has
no reuse at all, then we label it with “no”. And finally, if the procedure contains
matching deconstruction/construction pairs, or a call to a procedure for which a
call description exists under which reuse is possible, yet no reuse is allowed in
that procedure for that specific call, then we label the procedure call with no∗.

A call description in AL contains a sharing component and a liveness com-
ponent. In these examples, the sharing component happens to be always the
empty set, hence we omit it in the table below and represent call descriptions by
their liveness component only.

204 CHAPTER 9. REUSE ANALYSIS

Our experiments were done on an UltraSPARC-IIi (333Mhz) with 256MB RAM,
using SunOS Release 5.7, under a usual (small) workload. The Prolog-engine
used was Master Prolog, release 4.1 ERP. On this platform the analysis of proced-
ure labelopt_main in our module labelopt (already converted into AMAI instruc-
tions), took in average 2.84 seconds.

In a second experiment we explicitly included all predicates of the imported
module opt_util instead of using dummy predicates. The resulting module
herewith contained about 100 predicates (which is a rare situation for normal real-
life projects using modules). The analysis of procedure labelopt_main under these
conditions took more than 20 minutes. One reason for this high analysis time is
to be found in the proliferation of the versions of the predicates (e.g. the ana-
lysis detects 7 different call descriptions for append/3, which means that append/3
is analysed 7 times — in three of the cases reuse is detected. This proliferation
can be reduced by using call independent analysis results instead of having to
reanalyse each procedure with its new call description. A second reason is re-
lated to the number of functors defining one single type. In our experiment, the
concerned predicates mainly manipulate lists of instructions. The type instruction
defines 26 different functors. When starting to select substructures below those
functors, an explosive growth of the number of structure sharing possibilities oc-
curs. This phenomenon is discussed in Section 11.3 where a widening operation
is introduced to deal with such explosive structure sharing behaviour.

9.5 Conclusion

In this chapter we defined some new terminology to be able to discuss the re-
uses that can be derived starting from liveness information. We also described
our very first and therefore basic prototype implementation of liveness analysis.
This analysis yields very positive results for a real life module taken from the
Melbourne Mercury compiler: the analysis has an acceptable performance, and
detects a great number of possible reuses. The main drawback of the analysis
is that it only handles code as one single monolithic block. Therefore the most
needed extension at this stage to the liveness analysis and therefore its theory is
to be able to cope with modules. To overcome this limitation, it becomes essential
to develop a call independent approach.

The description of this prototype, as well as the evaluation of the results ob-
tained with it are published in (Mazur, Janssens, and Bruynooghe 1999a).

Chapter 10

Module-enabled Structure
Reuse Analysis

In the previous chapter we presented our first prototype implementation for de-
riving data structure reuse annotations of the form direct reuse and indirect reuse.
The analysis performed well and yielded satisfying results, yet shows one main
disadvantage: it can only handle programs as one single monolithic block.

In this chapter we present the underlying theory of how to enable liveness
and reuse analysis to correctly deal with modules, yet preserving the potential of
reuse available in a program.

We adapted our initial prototype and report on the obtained results in this
chapter. The description of the actual integration of the analysis into the Mel-
bourne Mercury compiler is postponed to Chapter 12 as we need some additional
technical optimisations for better performance (Chapter 11).

10.1 Introduction

In Chapter 9 we separated deriving liveness descriptions from deriving the actual
reuse opportunities. Thus, to enable the use of modules, we need to modularise
both derivation systems.

Although liveness descriptions inherently have a goal-dependent nature due
to the global structure sharing and global liveness information needed to cor-
rectly compute the live data structures at a specific program point within a pro-
cedure, we know that the structure sharing on which it depends can be derived in
a goal-independent way. (Section 6.3.4, Theorem 6.1). We also know that the live-
ness derivation process is mainly structure sharing driven as the liveness com-
ponent of the analysis domains (whether concrete or abstract) is not actually in-

205

206 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

volved in the fixpoint computation. This means that for the analysis of a given
procedure with a given call description, it suffices to know the local structure
sharing sets of each of the called procedures from within that procedure in order
to derive correct liveness descriptions in that procedure. Thus we can expect that
the modularisation of the liveness process can easily be achieved by replacing the
differential view on the liveness derivation process by a goal-independent based
view.

The modularisation of the reuse analysis part is more troublesome. In the
Melbourne Mercury Compiler, all modules are analysed separately, and usually
in a bottom up way. This means that if a module depends on another module (by
the use of procedures defined in the latter), then the latter module is compiled
before the former. In the context of our reuse analysis, this means that we need to
compile procedures of which we don’t know how they will be used.

We formulate both modularisation processes using the following example:
consider a module m1 and a module m2. Module m1 defines a procedure p1 and
module m2 defines a procedure p2. The procedure definition of p1 contains a call
to procedure p2:

% module m1
% : − pred p1 (. . .) .
% : − mode p1 (. . .) .
p1 (. . .) :−

. . . ,
(i) p2 (. . .) , . . . ,
(j) X => f (. . .) , . . . ,
(k) Y <= f (. . .) ,

% module m2
% : − pred p2 (. . .) .
% : − mode p2 (. . .) .
p2 (. . .) : −

1. p1 contains a matching deconstruction/construction pair. We want to verify
whether or not direct reuse is possible given a specific liveness call descrip-
tion. In this case verification is reduced to computing the liveness descrip-
tion at the deconstruction literal of the matching pair, and verifying whether
the top level data structure of the deconstructed variable is definitely dead
or not. In order to compute that liveness component we need: forward use
— a simple syntactical property, backward use — can also be reduced to a
simple syntactical property, and structure sharing information. To be able
to correctly determine the structure sharing information, we also need the
structure sharing that can possibly be created by the call to p2. This means
that to determine the liveness descriptions in p1 we only need the correct
structure sharing information of p2. This information can be provided by

10.1. INTRODUCTION 207

a goal-independent analysis of the procedures defined in m2. It suffices to
record the results of such an analysis in a special optimisation interface file
such that the information can be used for the compilation of modules de-
pending on m2, in our case module m1. This problem is therefore straight-
forward. We will only briefly sketch its formal fundamentals.

2. The second issue is not so straightforward. Suppose p2 might have some
potential for reuses if called in the appropriate way, then how do we detect
this without knowing how p2 might be called from other modules? How
do we decide to generate a specialised version for p2? And finally, even if
we generate an optimised version, how do we know when it is safe to call
that version without compromising the safe execution of the program?

The first issue can simply be solved by recognising which information about
a module is necessary in order to obtain correct liveness descriptions for the calls
to procedures defined in module depending on it. In this case this simply con-
sists of structure sharing information. The second issue is about deciding how
to optimise procedures without knowing how these procedures are called, and
what information to keep about these optimised procedures to guarantee their
safe usage.

In the following sections we assume that the modules are not mutually recurs-
ive in the sense that procedures defined in a module m1 can only call procedures
defined in a module m2 if m2 does not contain any procedures that call a proced-
ure defined in m1. The reason for this restriction is that situations of mutually
recursive modules are known to be harder to handle, especially in the context
where normally each module is only compiled once. As a matter of fact, in or-
der to achieve the same degree of precision for programs with mutually depen-
dent modules w.r.t. programs in which the modules form a loop-free dependency
tree, the fixpoint computation of the analysis processes must be defined over the
boundaries of the modules, hence each module may have to be analysed several
times. Writing programs with mutual dependent modules is usually seen as a
bad programming habit. We therefore assume that in our theoretical setting mod-
ules are not mutually recursive. In practice, such programs could either undergo
a special program transformation step that reorganises the modules accordingly,
or, the compilation system could be adapted in such a way that program analyses
have to reach a fixpoint over the boundaries of single modules (Bueno, García de
la Banda, Hermenegildo, Marriott, Puebla, and Stuckey 2001; Puebla, Correas,
Hermenegildo, Bueno, García de la Banda, Marriott, and Stuckey 2004). See also
Section 11.2, more specifically, page 251.

208 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

10.2 Modular Liveness Analysis

The issue of deriving liveness descriptions in the presence of modules can be
solved by separating the liveness information from the structure sharing inform-
ation, and deriving the latter by a goal-independent analysis. The main reason
why we can separate liveness information from the structure sharing derivation
process is the fact that liveness information does not participate in any fixpoint
computation. No analysis as such is needed once all underlying information such
as forward use, backward use and structure sharing information is known. For-
ward and backward use are both local properties, so in order to perform a (goal-
dependent) liveness analysis of a procedure defined in a given module, it suffices
to know the structure sharing that might be built by each of the called proced-
ures. If these procedures are defined in separate modules, then these modules
need to have been analysed w.r.t. structure sharing prior to the liveness analysis
of the procedure of interest.

Formally, we replace the (augmented) differential abstract liveness derivation,
represented by SemMδ+(AL), by an augmented goal-independent based one, i.e.,
SemM•+(AL). We know that the pure differential semantics SemMδ is equival-
ent to the goal-independent based one, i.e., SemM• (Theorem 5.6), therefore, if we
show that the slight adaptations augmenting both semantics preserves this prop-
erty, then using SemM•+(AL) instead of SemMδ+(AL) guarantees the correctness
of the abstract instantiation.

In Chapter 5 we presented the goal-independent based semantics of a pro-
gram as a semantics consisting of two parts: a pure goal-independent semantics,
and a goal-dependent semantics based on that goal-independent semantics. When
instantiating this semantics, both parts are instantiated by the same domain. When
using the (augmented) goal-independent based semantics for the abstract live-
ness descriptions domain, it does not make much sense to instantiate the goal-
independent part with that same domain. Indeed, we know that liveness inform-
ation is a simple annotation depending on different underlying information, but
it does not, in any sense, depend on the liveness information of the exit descrip-
tions of analysed procedures. Therefore we can drop the liveness component
from the domain when instantiating the goal-independent part of the semantics.
Obviously, without liveness information, that goal-independent part need not to
be augmented.

We obtain the following setting: we define the augmented goal-dependent
liveness semantics SemM•+(AL) based on the goal-independent structure shar-
ing semantics SemM?(℘(SDVI)). The former uses the specific liveness related
auxiliary operations, i.e., initAL, combAL, addAL and combupdateAL (See Defini-
tion 8.21), while the latter uses the structure sharing related auxiliary operations,
i.e., inita, comba and adda (See Definition 6.32).

The complete definition of SemM•+ , immediately instantiated with the do-

10.2. MODULAR LIVENESS ANALYSIS 209

main AL, is depicted in Figure 10.1. We discuss some of the particularities of this
definition.

• We already instantiated these semantics with the auxiliary operations for
abstract liveness descriptions.

• We assume that e?, the goal-independent rule base meaning w.r.t. structure
sharing, also contains the local structure sharing components of the pro-
cedures that are defined in other modules than the module that is actually
analysed. Formally, this information is implicitly included in the definition
of the goal-independent part of the semantics (SemM?(℘(SDVI))). In prac-
tice, for each module this information will normally be recorded in so called
interface files. These files are then consulted at the start of the compilation
or analysis of modules depending on them.

• We assume that for these semantics procedures imported from other mod-
ules are available as procedures with an empty body. This view enables us
to keep the same semantic rule for procedure calls, independent of whether
these are calls to procedures defined in the same module or procedures
defined elsewhere;

• In the rule defining the semantics of programs, we explicitly expand the
goal-independent rule base meaning from pure structure sharing to liveness
descriptions. This avoids the need for redefining the auxiliary operations
using information from that rule base meaning, and allows us to use the
usual auxiliary functions defined for the abstract liveness description do-
main AL. For this purpose we overload the definition of augmenta defined
by Equation (8.4) on page 180 and write augmenta ∗ (RM?[[r]]) where we use
augmenta as a shorthand notation for augmenting each of the entries in that
rulebase meaning to elements of AL, hence obtaining a rulebase meaning
in terms of abstract liveness descriptions, instead of structure sharing alone.
This allows us to write the semantics of a Mercury program as depicted in
Figure 10.1: based on the augmented goal-independent rule-base meaning
of the program, the goal-dependent semantics of that program is given by
the semantics of the query in that program, using initAL as the initial call
description of that query.

It can easily be shown that SemMδ+(AL) is equivalent to SemM•+(AL). In-
deed, SemM• has been augmented in exactly the same was as SemMδ was aug-
mented to obtain SemMδ+ . Moreover, the goal-independent based part could
have been instantiated with AL instead of with structure sharing alone, there-
fore definitely guaranteeing equivalence, yet we argued that threading liveness
information in the goal-independent context is simply unnecessary, and therefore
deriving structure sharing information alone in that setting suffices.

210 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

PM•+ [[r; q]] = let ι = initAL in
let e? = augmenta(RM?[[r]]) in

GM•+ [[q]](RM•+ [[r]]e?)ι ι
RM•+ [[r]]e? = fix(FM•+ [[r]]e?)
FM•+ [[p1 . . . pi . . . pnp]]e

?(e, A)pi(Y)S
= PrM•+ [[pi]]e?(e, A)pi(Y)S

PrM•+ [[h← g]]e?(e, A)aS = let Sg = ρa→h ((S)|a) in
let (S1, A1) = GM•+ [[g]](e, A)Sginith←g in

(e?a, A1)
GM•+ [[g1, g2]](e, A)SgSl = let (Sl1 , A1) = GM•+ [[g1]](e, A)SgSl in

GM•+ [[g2]](e, A1)SgSl1
GM•+ [[g1; g2]](e, A)SgSl = let (Sl1 , A1) = GM•+ [[g1]](e, A)SgSl in

let (Sl2 , A2) = GM•+ [[g2]](e, A)SgSl in
(Sl1 t Sl2 , merge(A1, A2))

GM•+ [[if g1 then g2 else g3]](e, A)SgSl
= let (Sl1 , A1) = GM•+ [[g1]](e, A)SgSl in

let (Sl2 , A2) = GM•+ [[g2]](e, A1)SgSl1 in
let (Sl3 , A3) = GM•+ [[g3]](e, A)SgSl in

(Sl2 t Sl3 , merge(A2, A3))
GM•+ [[not g]](e, A)SgSl = let (Sl1 , A1) = GM•+ [[g]](e, A)SgSl in

(Sl , A1)
GM•+ [[l]](e, A)SgSl = let S ′g = combupdateAL(pp(l), Sg, Sl) in

(LM•+ [[l]] e S ′gSl ,
A[(pp(l), Sg), S ′g])

LM•+ [[unif]] e S ′gSl = addAL(unif, Sl)
LM•+ [[p(X)]] e S ′gSl = combAL(Sl , e(p(X), S ′g))

Figure 10.1: Augmented goal-independent based semantics SemM•+ . Here e?

represents the goal-independent rule-base meaning in terms of the structure shar-
ing information, yet each single structure sharing element is augmented to a tuple
fitting the definition of a liveness description.

10.3. MODULAR REUSE ANALYSIS 211

In Section 10.5.3 we detail some of the implementation issues.

Note that in this setting we tacitly assume that backward use is not a prob-
lem in the modularisation process. Indeed, whether in the simplified definition
as well as in the analysis-based one, backward use remains a goal-independent
property, and therefore easily adaptable to a module-based setting. In the case of
the analysis-based definition, we can make use of the optimisation interface files
to record the backward use information for each (exported) procedure.

10.3 Modular Reuse Analysis

In the Melbourne Mercury compiler, each module of a program is compiled sep-
arately. There are several problems for reuse analysis involved with this scheme:

1. When compiling a given module, how do we detect opportunities for reuse
without knowing the exact liveness call descriptions?

2. Suppose we do know how to detect such potential opportunities, then we
need to know which reuse versions are worthwhile to be generated without
risking code explosion.

3. And finally, suppose we have generated different versions for the different
combinations of reuse opportunities of the procedures defined in a module,
how do we check when it is safe to call such an optimised version of that
procedure?

10.3.1 Detection of Reuse Opportunities

A useful property of reuse is that the number of reuse opportunities in a proced-
ure decreases monotonically with increasing liveness call descriptions, i.e., with
increasing initial liveness and increasing structure sharing. Hence, performing a
call dependent analysis of a procedure p defined in the interface of a module m
starting with a call description with an empty initial liveness set and an empty
structure sharing set guarantees that the analysis results in a description of all
the direct reuses possible within that procedure1. If the call graph of p contains
only calls to procedures defined in the same module m, then all indirect reuses
can also be spotted. If p calls a number of procedures defined elsewhere, then we
first need a tactic to verify the reuses in those procedures. This aspect is handled
in Section 10.3.3.

This view calls for a goal-independent liveness analysis where indeed initial
calls are set to be calls with call description 〈{ }, { }〉 (this corresponds to the
definition of initAL in Definition 8.19). In the following sections, we call this de-
scription the empty call description of a procedure.

1Of course, within the limits of the precision of the analysis.

212 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

10.3.2 Generating Reuse Versions

If we want to strictly follow the compilation rules of the Melbourne Mercury
compiler, meaning that all modules are compiled separately and are compiled
only once, then we have no clue of how procedures will be called w.r.t. liveness
information. In such circumstances we can only use heuristics to decide what
versions are worthwhile to generate. These heuristics can be:

• do not generate any reuse version. In such case there will be no reuse of course,
which is not the purpose of our analysis;

• generate all possible combinations of direct reuses and indirect reuses. If a pro-
cedure has n deconstructions making direct reuse possible, and m calls to
procedures with some reuse, then in theory, we can produce at least 2n+m

different reuse versions for that procedure, even more if we produce differ-
ent versions for each of the versions of the called procedures. For n and m
big, such strategy yields to code explosion, an unwanted effect.

• generate a limited number of versions. And here, the simplest approach is to
generate at most two versions per procedure: one version that contains no
reuse at all (or as we will later see, only “unconditional” reuses), and one
version that allows the most reuses of all. In a later section we come back to
this approach, and discuss some variants of it.

In our first prototype and first implementation into the Melbourne Mercury
compiler we opted for generating at most two versions.

10.3.3 Safe Calls to Reuse Versions

Consider again the deterministic procedure of append from Example 4.4, of which
the definition is repeated below:

% : − pred append (l i s t (T) , l i s t (T) , l i s t (T)) .
% : − mode append (in , in , out) i s det .
append (X, Y, Z):−

(
(1) X == [] ,
(2) Z := Y

;
(3) X => [Xe | Xs] ,
(4) append (Xs ,Y, Zs) ,
(5) Z <= [Xe | Zs]

) .

Suppose we analyse append w.r.t. the empty call description. At the decon-
struction X => [Xe|Xs], the current liveness component is the set {Yε, Xeε, Xsε},

10.3. MODULAR REUSE ANALYSIS 213

hence Xε is available for reuse. Together with the construction unification at pro-
gram point (5), the deconstruction forms a perfect matching deconstruction/con-
struction pair, thus we have possible direct reuse. The recursive call is called with
the (projected and renamed) call description 〈{ }, {Zε}〉 (there is indeed no shar-
ing for the input variables Xs and Y, and only Zs —thus Z after renaming—is
live outside the call). And also for this call we can verify that the deconstructed
list-cells of the first list are available for reuse.

Thus, we discover that append has direct reuse and indirect reuse, and we
generate two versions for that procedure: a version without reuse, and a version
that completely reuses the top level list cells of the first list for creating the new
list Z.

Now we can argue: given a procedure p with a procedure call to append in it,
with say a call description AL, can we generate a version for p with a call to the
reuse version of append? Is it a safe reuse? For all calls to p? How do we verify
this?

In a first approach, one might use the empty call description as a measure:
for every call description AL that is subsumed by the call description with which
the procedure was analysed, in this case the empty call description, the reuse
results can be trusted. Although this is a very easy and certainly safe test, it is too
strict and only allows a limited number of calls to reuse versions of the analysed
procedures. Indeed, in the case of append, we can verify that even if the elements
of the first list are live in the calling environment (hence the call description is
not subsumed by the empty call description), then the reuse version is still safe
to call. Similarly if the second list is live, then reuse remains safe. Yet again the
call description is not subsumed by the empty call description with which the
reuses in append can be discovered. More generally, in the case of append we can
intuitively see that reuse in append is always safe as long as the backbone of the
first list is not live in the calling environment. It is this kind of results that we
would like to obtain in our analysis.

The general problem to be addressed is: which results of the goal-independent
liveness analysis need to be stored and how do we use these results to check that
a particular call meets the requirements to call the reuse version resulting from
these call dependent analyses? For this purpose we introduce the notions of reuse
information and conditions for reuse. We introduce these notions in the context of
direct reuses (Section 10.3.4), and then demonstrate how they propagate through
indirect reuses (Section 10.3.5).

As the following sections only deal with abstract values, we drop the conven-
tion of over-lining the involved components. Over-lining will be used for other
purposes.

214 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

10.3.4 Reuse Information: Direct Reuse

We investigate the situation of a call to a procedure with possible direct reuse.
Let q be a procedure defined in a module m1:

% : − pred q (. . .) .
% : − mode q (. . .) .
q (Q1 , . . . ,Qn) : − . . . , (i) X => f (. . .) ,

We assume that a goal-independent structure sharing analysis was performed.
Let Al,i be the local structure sharing at program point (i) in procedure q/n.
Let Ui be the union of the data structures in forward use at program point (i)
and the data structures in backward use at (i), i.e., Ui = dataa(forward(i)) tad
dataa(backward(i)). LetH = {Q1, . . . , Qn} be the set of head variables of q/n.

We assume that q/n has an opportunity for direct reuse. This means that dur-
ing the goal-dependent analysis of q/n w.r.t. the empty call description 〈{ }, { }〉,
the top level data structure of X was discovered to become available for reuse.
Given the choice of our version-generation strategy, we compile q/n into a ver-
sion without reuse, and a version realising the detected reuse possibility.

Now assume a call to q/n from another procedure, say p/m, defined in a mod-
ule m2. During the reuse analysis of p/m in m2 we want to know whether re-
placing the call to q/n by a call to the reuse version of q/n is safe, yet without
redoing the full analysis of q/n. Suppose that q/n is called with call description
AL = 〈A0, L0〉, then the question is: can Xε still be reused?

Let us do the analysis of q/n with call description AL, then the current live-
ness component of the liveness description at program point (i) is given by Equa-
tion (8.6), i.e.:

Li = livea(i, A0, Al,i , L0)
= extenda(L0, Al,i) tad extenda(Ui , comba(A0, Al,i))

(10.1)

If we want to check whether Xε becomes available for reuse at (i) for that partic-
ular call, then we need to verify that Xε 6<ad Li.

Hence, to verify that reuse is still safe, we need to compute Li. To do that
computation, we only need the following information at program point (i):

1. the data structures in forward and backward use at program point (i), Ui;

2. the local component for structure sharing, Al,i,

3. and of course the data structure that should become available for reuse, Xε.

We call this trio the reuse information for verifying a case of direct reuse, and de-
note it by the tuple

〈〈
{Xε}, Ui , Al,i

〉〉
. Verifying reuse for a specific call description

AL = 〈A0, L0〉 comes down to verifying the expression:

Xε 6<ad extenda(L0, Al,i) tad extenda(Ui , comba(A0, Al,i)) (10.2)

10.3. MODULAR REUSE ANALYSIS 215

We call Equation (10.2) the reuse condition for reusing Xε.
If D represents a set of data structures, all pointing to the same heap cells to

be reused2, then we generalise these notions as follows:

Definition 10.1 (Reuse Information, Reuse Condition) Let q/n be a procedure with
possible reuse at program point (i), then Ri = 〈〈Di , Ui , Al,i〉〉 with Di the set of abstract
data structures referring to the reusable heap cells3, Ui the data structures in forward and
backward use at (i), and Al,i the local component of structure sharing, is called the reuse
information concerning the reuse of the heap cells referred to by Di.

Let AL = 〈A0, L0〉 be a call description for q/n, then verifying reuse for AL is
described by:

∀Xs <ad D : Xs 6<ad extenda(L0, Al,i) tad extenda(Ui , comba(A0, Al,i)) (10.3)

called the reuse condition for reusing the structure pointed at by the set of data struc-
tures D. If the data structure set in AL meets the reuse condition expressed by Equa-
tion (10.3) w.r.t. the reuse information Ri, then this is denoted by

AL]Ri

If a procedure contains a number of matching deconstruction/construction
pairs, and each of these pairs allows direct reuse for the default call description,
then each of the involved deconstruction unifications produces its own reuse in-
formation tuple. According to our version generation strategy we produce a
version realising all the detected reuses. To verify the safeness of using such a
version, all the reuse information tuples need to be verified. Thus, suppose a
procedure has n opportunities for reuse, with reuse information tuples R1, . . . Rn
(note that here the subscripts refer to the number of the tuple in the sequence and
not the program point to which it belongs), then calling the reuse version for a
call with call description AL is safe iff AL]Ri for all 1 ≤ i ≤ n.

In a first approach, it therefore suffices to store the reuse information tuples
for each procedure in an appropriate interface file for the module in which the
procedures are defined, and each time reuse needs to be verified, we recompute
Equation (10.2) for each specific liveness call description AL and each reuse in-
formation. This approach is feasible if the sets of the variables in forward use,
backward use, but mainly the set of structure sharing would be limited in size.
In a realistic setting, the latter set can count up to 500 or even more pairs of shar-
ing data structures due to a large number of variables but also to large deep type
graphs (See Section 11.3). The extenda operation is also a complex operation, so
not only do these large sets mean large interface files, and larger memory require-
ments for the compiler, but also larger computation times have to be faced. Given

2Such a set of data structures is obtained due to structure sharing, and always represents one and
the same term as kept on the heap.

3At this moment D is always a singleton set, yet this will change in later sections.

216 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

the overall complexity of the analyses, especially the computation times need to
be acceptable.

We therefore need to compact the reuse information. The intuition is as fol-
lows. Each of the components in a call description 〈A0, L0〉 only relates to head
variables of the concerned procedure. Therefore, they can only affect the liveness
of other head variables. Hence, if we manage to translate the reuse information
in such a way that also only head variables are concerned, then we have a pure
head variable related property. As the set of variables is limited to the head vari-
ables, one can expect that the reuse information will be more compact. And this
is the property we want to achieve. On the following pages we will show that
translating the reuse information by extending it w.r.t. the local structure sharing
and then projecting the result on the head variables of the concerned procedure
guarantees correct results w.r.t. the reuses that are safely allowed. The intended
translation of a reuse information tuple of the direct reuse of a data structure Xε,〈〈
{Xε}, Ui , Al,i

〉〉
, looks as follows:

{Xε} ⇒
(
extenda({Xε}, Al,i)

)∣∣
H

Ui ⇒ (extenda(Ui , Al,i))|H
Al,i ⇒ (Al,i)|H

Before demonstrating that we can safely translate the reuse information in this
way to the head variables, we show a number of properties of the local structure
sharing information Al,i w.r.t. a structure sharing call description A0, and their
combination.

Lemma 10.1 Let Al,i be the local component for structure sharing at a program point
(i) of a procedure q and A0 the structure sharing call description of that procedure4. Let
H denote the head variables of the procedure to which the structure sharing informa-
tion relates, and let Hin be the subset of these head variables containing only the input
variables of the procedure,i.e.,Hin = in(q). We have the following properties:

1. Vars(A0) ⊆ Hin

2. For all abstract structure sharing pairs (α −β):

Vars((α −β)) ⊆ Hin and (α −β) ≤a comba(A0, Al,i)
m

(α −β) ≤a A0

Indeed, when a procedure is called, structure sharing can only exist between in-
put arguments of the procedure. The second property states that a procedure can

4We assume that both values are seen in the context of the differential semantics SemMδ℘(SDVI)
or related ones.

10.3. MODULAR REUSE ANALYSIS 217

not add structure sharing relations between variables that are already instanti-
ated when the procedure is called.

We also need to go into the details of the alternating closure operation. We
introduce a new operation altclosi that returns the edges of paths of length i, and
altclos>i for paths of length > i.

Definition 10.2 (altclosi, altclos>i) Given the sets of unordered pairs A and B, then
altclosi(A, B), where i > 0 returns the set of unordered pairs for which there exists a
path of length i alternating between pairs of A and B. altclos>i(A, B) returns the set of
pairs for which there exists a path of length greater than i alternating between elements
from A and B. Formally:

altclosi(A, B) =

(a0, ai)

∣∣∣∣∣∣∣∣∣∣
(a0, a1) · (a1, a2) · . . . · (ai−1, ai)

over A and B,
such that ∀(a j−1, a j), 1 ≤ j < i :{

(a j−1, a j) ∈ X ⇒ (a j, a j+1) ∈ Y
(a j−1, a j) ∈ Y ⇒ (a j, a j+1) ∈ X

altclos>i(A, B) =

⋃
j>i altclos j(A, B)

Note that altclos1(A, B) = A ∪ B.
We add a directional definition of the paths formed in an alternating closure

operation.

Definition 10.3 (Directional altclosi→, and altclosi←) The right-directional altern-
ating closure of paths of length i over the sets of pairs A and B is defined as the tuples that
are obtained by forming paths of length i of elements alternating between elements from A
and B, such that each path starts by a vertex in A. This set is denoted by altclosi→(A, B).
We define the left-directional alternating closure in a similar way, yet here all paths
start in the second set. We denote it by altclosi←(A, B).

We can show that altclosi(A, B) = altclosi→(A, B) ∪ altclosi←(A, B), and that if i
is an even natural number, then altclosi→(A, B) = altclosi←(A, B) for all sets of
pairs A and B.

We redefine altclos(A, B) as follows:

altclos(A, B) = altclos1(A, B) ∪ altclos2(A, B) ∪ . . . (10.4)

We now show an important property of the combination operation for abstract
structure sharing sets.

Lemma 10.2 Consider a procedure q (with head variables H, and input Hin) with
structure sharing call description A0 and local structure sharing description at pro-
gram point i given by Al,i, again assuming the differential semantics as our context.
Let TA0 = termshift(A0) and TAl.i = termshift(Al,i), then

(altclos(TA0, TAl,i))|H = altclos(TA0, (TAl,i)|H) (10.5)

218 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

Proof Using Equation (10.4), we have

altclos(TA0, TAl,i) =
⋃
j≥1

altclos j(TA0, TAl,i)

We show that Equation (10.5) holds for each altclos j(TA0, TAl,i), j ≥ 1:

• j = 1: (altclos1(TA0, TAl,i))|H = (TA0 ∪ TAl,i)|H = (TA0)|H ∪ (TAl,i)|H =
TA0 ∪ (TAl,i)|H = altclos1(TA0, (TAl,i)|H).

• j = 2:

(altclos2(TA0, TAl,i))|H = (altclos2→(TA0, TAl,i))|H
= ({(α −γ) | (α −β) ∈ TA0 ∧ (β−γ) ∈ TAl,i})|H
= {(α −γ) | (α −β) ∈ (TA0)|H ∧ (β−γ) ∈ (TAl,i)|H}
= {(α −γ) | (α −β) ∈ TA0 ∧ (β−γ) ∈ (TAl,i)|H}
= altclos2(TA0, (TAl,i)|H)

• j = 3: altclos3(TA0, TAl,i) = altclos3→(TA0, TAl,i)∪ altclos3←(TA0, TAl,i).
Elements in altclos3→(TA0, TAl,i) are formed by constructing paths
(α −β) · (β−γ) · (γ − δ) where (α −β) , (γ − δ) ∈ TA0 and (β−γ) ∈
TAl,i. Knowing that Vars(TA0) ⊆ Hin, implies that Vars((β−γ)) ⊆
Hin, yet we know that this is not possible given the fact that a proced-
ure can not add structure sharing between input variables (Lemma 10.1).
Hence altclos3→(TA0, TAl,i) = { }. Therefore:

(altclos3(TA0, TAl,i))|H = (altclos3←(TA0, TAl,i))|H
= {(α − δ) | (α −β) , (γ − δ) ∈ (TAl,i)|H ∧ (β−γ) ∈ (TA0)|H}
= {(α − δ) | (α −β) , (γ − δ) ∈ (TAl,i)|H ∧ (β−γ) ∈ TA0}
= altclos3(TA0, (TAl,i)|H)

• j > 3: In each path of length > 3 alternating between elements
from TA0 and TAl,i we always encounter the sub path of length three
(α −β) · (β−γ) · (γ − δ) where (α −β) , (γ − δ) ∈ TA0 and (β−γ) ∈
TAl,i. Such paths would imply that Vars((β−γ)) ⊆ Hin which is im-
possible. Hence altclos>3(TA0, TAl,i) = { }.

This case study proves that projecting the local structure sharing set onto
the head variables before combining it with the call description yields the
same result as performing the combination first, and only then do the pro-
jection. Thus: (comba(A0, Al,i))|H = comba(A0, (Al,i)|H).

2

As a side-effect of proving the previous lemma we have the following corol-
lary:

10.3. MODULAR REUSE ANALYSIS 219

Corollary 10.1 altclos3→(TA0, TAl,i) = { }, and altclos>3(TA0, TAl,i) = { }, thus

altclos(TA0, TAl,i) = altclos1(TA0, TAl,i)
∪altclos2(TA0, TAl,i)
∪altclos3←(TA0, TAl,i)

Using the previous lemma’s we move on to our main theorem that allows us
to compact the information needed for verifying reuse information that is only
related to the head variables of the procedures. This means a significant reduction
in information to be stored and computation time to be spent.

Definition 10.4 (Compacted Reuse Information) Let Ri = 〈〈Di , Ui , Al,i〉〉 be the re-
use information at a program point i in a procedure q/n with head variablesH, then

compact(Ri ,H) = 〈〈compact(Di ,H), compact(Ui ,H), compact(Al,i ,H)〉〉
=

〈〈
Di , Ui , Al,i

〉〉
where

Di = (extenda(Di , Al,i))|H
Ui = (extenda(Ui , Al,i))|H
Al,i = (Al,i)|H

The result of compact(Ri ,H) is called the compacted reuse information of Ri w.r.t. the
head variablesH.

The compacted reuse information of a tuple R is usually denoted as R, simil-
arly for each of its components. We sometimes apply the compaction operation
on individual components of a reuse information tuple, assuming that the local
structure sharing component with which the extension operation is performed is
clear from the context. Therefore, if R = 〈〈D, U, A〉〉, we sometimes simply write
compact(D,H), compact(U,H), and compact(A,H).

Theorem 10.1 Consider a procedure q/n withH the set of head variables of q/n, and Ri
the reuse information at a program point (i). Let AL0,δ be the empty call description for
q, and let AL be some other valid call description for q. If AL0,δ meets the reuse condition
w.r.t. Ri, and AL meets the reuse condition w.r.t. Ri = compact(Ri ,H), the compacted
reuse information, then AL also meets the reuse condition w.r.t. Ri, hence reuse for AL is
safe. Formally: (

AL0,δ]Ri ∧ AL]Ri
)
⇒ AL]Ri (10.6)

Proof Let Ri = 〈〈Di , Ui , Al,i〉〉, and Ri =
〈〈

Di , Ui , Al,i
〉〉

. Let AL0,δ = 〈{ }, { }〉—
the empty call description, and AL = 〈A0, L0〉. Then AL0,δ]Ri is equival-
ent5 to

∀α <ad Di : α 6<ad extenda(Ui , Al,i) (10.7)

5Indeed, extenda({ }, Al,i) tad extenda(Ui , comba({ }, Al,i)) = extenda(Ui , Al,i).

220 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

and AL]Ri is the same as

∀β <ad Di : β 6<ad extenda(L0, Al,i) tad extenda(Ui , comba(A0, Al,i))
(10.8)

Finally, verifying the reuse condition AL]Ri means verifying the equation

∀γ <ad Di : γ 6<ad extenda(L0, Al,i) tad extenda(Ui , comba(A0, Al,i))
(10.9)

Let α <ad Di, we prove the theorem by showing that the assumption

α <ad extenda(L0, Al,i) tad extenda(Ui , comba(A0, Al,i)) (10.10)

violates one of the conditions AL0,δ]Ri, and AL]Ri, hence Equations (10.7)
and (10.8). We perform a case study.

Let TA0 = termshift(A0) and TAl,i = termshift(Al,i).

The assumption expressed by Equation 10.10 is true if eitherα is subsumed
by extenda(L0, Al,i) or by extenda(Ui , comb(A0, Al,i)).

1. α <ad extenda(L0, Al,i):

1.1. α <ad L0. As Var(α) ∈ H, α <ad Di, hence α is subsumed by
extenda(L0, Al,i), which contradicts Equation (10.8).

1.2. ∃β <ad L0 : (α −β) ≤a Al.i. As Vars(L0) ⊆ H, then Var(β) ∈ H,
thus β <ad Di. Given β <ad L0, then also β <ad extenda(L0, A), ∀A,
thus also β <ad extenda(L0, Al,i). This means that β is subsumed
by the expression on the right-hand side of Equation (10.8), hence
contradicts that equation.

2. α <ad extenda(Ui , comb(A0, Al,i)).

2.1. α <ad Ui. This of course contradicts Equation (10.7).
2.2. ∃β <ad Ui : (α −β) ≤a comb(A0, Al,i). For this situation we

perform a case study on whether β or α are data structures of a
head variable or not.

2.2.1. Var(β) ∈ H, Var(α) ∈ H.
Var(α) ∈ H implies that α <ad Di. Var(β) ∈ H means that
β <ad Ui. Knowing that both α and β relate to head vari-
ables also means that (α −β) ≤a (comb(A0, Al,i))|H hence
(α −β) ≤a comb(A0, (Al,i)|H) (Lemma 10.2) where (Al,i)|H
is simply the compacted local structure sharing, i.e., Al,i. Com-
bining all these properties we obtain that α <ad Di and α <ad
extenda(Ui , comba(A0, Al,i)), which contradicts Equation (10.8).

10.3. MODULAR REUSE ANALYSIS 221

2.2.2. Var(β) ∈ H, Var(α) 6∈ H.
Either (α −β) is formed by paths of length 1, or by paths of
length j > 1.
• (α −β) ∈ altclos1(TA0, TAl,i). As Vars(TA0) ⊆ H while

Var(α) 6∈ H, then (α −β) ∈ TAl,i, i.e., (α −β) ≤a Al,i.
With β ∈ Ui this contradicts Equation (10.7).
• (α −β) ∈ altclos j(TA0, TAl,i), j > 1. Then ∃γ : (α −γ) ∈

altclos1(TA0, TAl,i). As Var(α) 6∈ H, (α −γ) ∈ TAl,i, and
thus (γ −β) ∈ altclos(j−1)→(TA0, TAl,i) which means that
Var(γ) ∈ H. As (α −γ) ∈ TAl,i, then γ ∈ Di. With both
Var(γ) ∈ H and Var(β) ∈ H we can repeat the reasoning
of Item 2.2.1., hence obtaining a contradiction with Equa-
tion (10.8).

2.2.3. Var(β) 6∈ H, Vars(α) ∈ H.
We repeat almost the same reasoning as for Item 2.2.2.: (α −β)
is either in altclos1(TA0, TAl,i), hence is formed by paths of
length 1, or in (α −β) ∈ altclos j(TA0, TAl,i), j > 1, which
means that the paths are of length j > 1.
• (α −β) ∈ altclos1(TA0, TAl,i). As Var(β) 6∈ H: (α −β) ∈

TAl,i. With β <ad Ui, we obtain a contradiction for Equa-
tion 10.7.
• (α −β) ∈ altclos j(TA0, TAl,i), j > 1. Then ∃γ : (β−γ) ∈

altclos1(TA0, TAl,i). As Var(β) 6∈ H, then (β−γ) ∈ TAl,i,
hence (β−γ) ≤a Al,i. Knowing this, we obtain (γ −α) ∈
altclos(j−1)→(TA0, TAl,i), which means that Var(γ) ∈ H.
With β <ad Ui, β and γ sharing a common structure, and
Var(γ) ∈ H, this implies that γ <ad Ui. With Var(α) ∈
H and Var(γ) ∈ H, we can do a similar reasoning as in
Item 2.2.1., yet where γ ∈ Ui , Var(γ) ∈ H and Var(α) ∈ H,
hence obtaining a contradiction with Equation (10.8).

2.2.4. Var(β) 6∈ H, Var(α) 6∈ H.
Again, we have that (α −β) is either formed by paths of length
1, i.e., (α −β) ∈ altclos1(TA0, TAl,i) or it is formed by paths of
length larger than 1, i.e., (α −β) ∈ altclos j(TA0, TAl,i), j > 1.
• (α −β) ∈ altclos1(TA0, TAl,i). As neither α nor β relate to

head variables, we have (α −β) ∈ TAl,i. With β ∈ Ui this
contradicts Equation (10.7).
• (α −β) ∈ altclos j(TA0, TAl,i), j > 1. This means that there

exists a γ : (α −γ) ∈ altclos1(TA0, TAl,i). Knowing that
Var(α) 6∈ H, then (α −γ) ∈ TAl,i, and thus (γ −β) ∈
altclos(j−1)→(TA0, TAl,i). This means that there must ex-

222 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

ist a γ′ such that (γ −γ′) ∈ altclos1→(TA0, TAl,i) = TA0.
With Vars(TA0) ⊆ H we have Var(γ) ∈ H. Hence, with
β <ad Ui and (γ −β) ∈ altclos(j−1)→(TA0, TAl,i), we ob-
tain that γ <ad Ui. We can again apply a similar reason-
ing as in Item 2.2.3, and show that this situation contradicts
Equation (10.8).

The case studies can be repeated for all data structures subsumed by Di,
hence proving the theorem.

2

In the case of a possibility of direct reuse, the above theorem states that if
the goal-independent analysis detects that a data structure α can be reused at a
program point (i) knowing that Ui is the set of data structures that is certainly
live, and Al,i is the set of pairs of data structures known to be sharing memory,
then verifying the reuse for a call description in general using Ri = 〈〈{α}, Ui , Al,i〉〉
can be replaced by verifying reuse w.r.t. the compacted reuse information, i.e.,
Ri = compact(Ri ,H). Therefore, instead of storing Ri in an optimisation interface
file, it suffices to store Ri. As Vars(Ri) ⊆ H, whereH is the set of head variables of
the procedure in which the deconstruction unification for the direct reuse occurs,
we have a form of guarantee that Ri will in general be more compact to represent,
and more efficient to compute with than Ri.

We illustrate the above ideas with the example of append/3, the concatenation
of lists.

Example 10.1 Based on the code of append given at page 212 we obtain at program point
(3) that U3 = {Xeε, Xsε, Yε} are the data structures in use at that program point, yet
there are no local structure sharing pairs — hence Al,3 = { }, and Xε is the candidate
data structure for being reused — thus D3 = {Xε}. The reuse information for that
program point is therefore:

R3 = 〈〈D3, U3, Al,3〉〉 =
〈〈
{Xε}, {Xeε, Xsε, Yε}, { }

〉〉
The compacted reuse information is

R3 =
〈〈

D3, U3, Al,3
〉〉

=
〈〈

compact(D3, {X, Y, Z}), compact(U3, {X, Y, Z}),
compact(Al,3, {X, Y, Z})

〉〉
=

〈〈
{Xε}, {Yε}, { }

〉〉
We study a number of different call descriptions:

1. AL = 〈{ }, { }〉. This is the empty call description, hence reuse will of course be
safe.

10.3. MODULAR REUSE ANALYSIS 223

2. 〈A0, L0〉 = 〈{
(

X([|],1) − X([|],1)
)
}, {Zε}〉. This means that only the elements of

X can be shared, and except for Zε there are no other live data structures. In this
situation

extenda(L0, Al,3) tad extenda(U3, comba(A0, Al,3))
= extenda({Zε}, { })

tad extenda({Yε}, {
(

X([|],1) − X([|],1)
)
})

= {Yε, Zε}

With D3 = {Xε} and Xε 6<ad {Yε, Zε}, reuse is safe. Hence, even if the elements
of the list that is going to be reused are shared (or live, one can repeat the exercise),
reuse is still confirmed by checking the (compacted) reuse information.

3. 〈A0, L0〉 = 〈{
(
Xε −Yε

)
}, {Zε}〉. In this case,

extenda(L0, Al,3) tad extenda(U3, comba(A0, Al,3))
= extenda({Zε}, { }) tad extenda({Yε}, {

(
Xε −Yε

)
})

= {Xε, Yε, Zε}

In this case Xε <ad D3, yet Xε <ad {Xε, Yε, Zε}, hence reuse is not allowed
because indeed, due to the fact that X and Y are shared in memory, and Y is live,
the list-cells of X may not be reused.

There is an interesting case when in the compacted reuse information the set
of data structures referring to the reusable heap cells is the empty set. This is
illustrated by the following example:

Example 10.2 Consider the following program:

% : − type th ingy −−−> t h i n g (i n t , i n t) .
% : − pred generate (th ingy) .
% : − mode generate (out) i s det .
generate (T) : − T = t h i n g (0 , 0) .

% : − pred compute (th ingy) .
% : − mode compute (out) i s det .
compute (T) :−

(1) generate (X) ,
(2) X => t h i n g (A,B) ,
(3) A1 = A + 1 ,
(4) B1 = B + 1 ,
(5) T <= t h i n g (A1 , B1) .

In compute/1, X is a local variable that is instantiated in generate/1. It is then decon-
structed, and not used elsewhere, hence it should be detected as a potential candidate for

224 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

reuse. In the presence of the construction of a new variable T we have a matching decon-
struction/construction pair, hence a possibility of direct reuse. The reuse information at
program point (2) is R2 =

〈〈
{Xε}, {Aε, Bε}, { }

〉〉
. The compacted form of this inform-

ation is R2 = compact(R2, {T}) = 〈〈{ }, { }, { }〉〉. The fact that the first component
is empty signals that the heap cells that can be reused in compute/1 have no connection
with the head variables, hence, the liveness nor the structure sharing information when
calling compute/1 can ever make these heap cells live. This means that the heap cells used
by Xε can always be reused, no matter what the call description of compute/1 is.

This phenomenon is also covered by Theorem 10.1, in the sense that if Di =
compact(Di ,H) = { } — where H represents the set of head variables as usual,
then there can not exist any β <ad Di such that β may not be subsumed by the
result of extending the live and in use data structures using the structure sharing
information. We formalise this in the following corollary.

Corollary 10.2 Let there be a possibility of reuse in a procedure q at program point (i).
Let Ri = 〈〈Di , Ui , Al,i〉〉 be the corresponding reuse information. The compacted reuse
information w.r.t. the set of head variablesH is

Ri = 〈〈compact(Di ,H), compact(Ui ,H), compact(Al,i ,H)〉〉

If compact(Di ,H) = { }, then for every call description AL of q, we have AL]Ri, hence
the reuse at program point (i) is always safe.

Reuse opportunities where the compacted reuse information has no refer-
ences to the reusable cells are called unconditional reuses. In general, we have:

Definition 10.5 (Unconditional Reuse) A reuse opportunity with reuse information
Ri is called an unconditional reuse if for all call descriptions AL, AL]Ri holds.

This is especially the case for all reuses with compacted reuse information
having their compacted set of reusable data structures reduced to the empty set.
Thus, with H the set of head variables of the procedure to which the reuse in-
formation tuple belongs, we have:

compact(Ri ,H) = 〈〈compact(Di ,H), compact(Ui ,H), compact(Al,i ,H)〉〉

where compact(Di ,H) = { }.
Reuses that are not unconditional are called conditional.
Unconditional reuses are always safe. This means that in our version genera-

tion strategy we can safely decide to create two versions of each procedure: one
version that contains only the unconditional reuses, if at all, and one version that
realises all of the detected reuses for the goal-independent analysis situation: the
conditional as well as the unconditional ones. If these two versions are identical,
of course only one version needs to be created.

10.3. MODULAR REUSE ANALYSIS 225

10.3.5 Reuse Information: Indirect Reuse

We now investigate what the reuse information consists of for cases of indirect
reuse.

Consider the following code fragment:

p (P1 , . . . ,Pm) : − . . . , (i) q (X1 , . . . ,Xn) ,
q (Q1, . . . ,Qn) : − . . . , (j) Y => f (. . .) ,

Let Rq be the compacted reuse information for the heap cells that may become
available for reuse at program point (j) in procedure q/n. Let ALp,δ be the empty
call description for p/m, and ALi,δ the resulting description at program point (i).
Upon projection and renaming, we can verify whether a call to the reuse version
of q/n is safe in the goal-independent setting. Suppose ρX→Q

(
(ALi,δ)|X

)
]Rq

which means that a call to the reuse version of q is safe for the empty call de-
scription of p/m, then we can generate a version for p/m that explicitly calls the
reuse version of q/n. Now we need to derive the reuse information for that indir-
ect reuse so that the safeness of calls to the reuse version of p/m can be verified.
The task of deriving the reuse information for indirect reuse is the subject of this
section.

The intuition is as follows. Independent of the actual call description of p/m,
we always have the local structure sharing set Al,i and a set of data structures
that is live at that program point, namely Ui, the set of data structures in forward
and backward use w.r.t. program point (i). On the other hand we know from
the reuse information Rq =

〈〈
Dq, Uq, Aq

〉〉
of q that the heap cells pointed at by

Dq may be reused if they remain dead taking into account the extra constraints
from the call description, and the fact that Uq and Aq are the live structures and
aliases present at the program point where the reuse is decided. We can bring
this information to the context of p by renaming all the involved variables (which
are limited to the head variables anyway), and taking into account the local new
constraints. Hence, we obtain the new reuse information:

Ri =
〈〈

ρQ→X
(

Dq
)

, ρQ→X
(
Uq

)
tad Ui , comba(Al,i , ρQ→X

(
Aq

)
)
〉〉

We will show that we can safely use Ri as the reuse information for verifying the
call to the reuse version of q. Note that just as for direct reuses, we can com-
pact this information to the head variables, in this case {P1, . . . , Pm}, hence only
recording Ri = compact(Ri , {P1, . . . , Pm}) in the interface file of the module in
which p/m is defined.

Before proving the above presented ideas, we introduce two lemma’s that
are of use in that proof. The first lemma states that extending a given set sub-
sequently by two different structure sharing sets can be approximated by extend-
ing that set with the combination of these two sharing sets. The second lemma
shows the associativity property of comba.

226 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

Lemma 10.3 For every set of abstract data structures L, and for every sets of abstract
sharing data structures A1 and A2 we have:

extenda(extenda(L, A1), A2) va extenda(L, comba(A1, A2))

Proof The set of abstract data structures extenda(L, A1) is formed by the ele-
ments of L, and the edges that can be reached by constructing paths of
length 1 from an element from L using paths subsumed by A1. This means
that elements of extenda(extenda(L, A1), A2) are elements of extenda(L, A1),
and the elements that can be reached by constructing paths of length 1 from
elements of that set, using paths subsumed by A2, which is the same as say-
ing that this set consists of elements from L, elements that are reached by
constructing paths of length 1 using vertices from A1 or A2, and elements
that are reached by constructing paths of length 2, starting from elements
of L, with a first vertex from A1 and a second vertex from A2. In terms of
the notion of alternating closure, we have:

extenda(extenda(L, A1), A2)
= extenda(L, A1 ta A2 ta altclos2→(A1, A2))

Knowing that altclos(A, B) can be rewritten to

altclos(A, B) = altclos1(A, B) ∪ altclos2(A, B) ∪ . . .
= A ∪ B ∪ altclos2(A, B) ∪ . . .

we can decompose comba(A1, A2) to

comba(A1, A2) = termshift(A1) ∪ termshift(A2)
∪altclos2(termshift(A1) ∪ termshift(A2)) ∪ . . .

This means that A1 ta A2 ta altclos2→(A1, A2) va comba(A1, A2), hence
proving the lemma.

2

We now generalise the above presented ideas in the following theorem:

Theorem 10.2 (Indirect Reuse Information) Consider the following setting:

p (P1 , . . . ,Pm) : − . . . , (i) q (X1 , . . . ,Xn) ,
q (Q1, . . . ,Qn) : − . . . , (j) . . . ,

Let Rq =
〈〈

Dq, Uq, Aq
〉〉

be the (compacted) reuse information concerning a potential
reuse at program point (j) in the definition of procedure q/n. Let Ui and Al,i be the set
of data structures in forward/backward use, and the local set of structure sharing pairs
respectively. Let Ri = 〈〈D, U, Al〉〉, where D = ρQ→X

(
Dq

)
, U = ρQ→X

(
Uq

)
tad Ui,

and Al = comba(Al,i , ρQ→X
(

Aq
)
).

10.3. MODULAR REUSE ANALYSIS 227

Let AL be a call description for p/m, and ALi the corresponding description at pro-
gram point i, then:

AL] Ri ⇒ ρX→Q
(
(ALi)|X

)
] Rq

Proof Consider a call description AL = 〈A0, L0〉 and let Al,i be the local struc-
ture sharing component at program point (i) in the procedure definition
of p/m. Then ALi, the description obtained at program point (i) is given
by ALi = 〈Ai , Li〉 where Ai = comba(A0, Al,i) and Li = extenda(L0, Al,i) ∪
extenda(Ui , Ai), i.e., Li = extenda(L0, Al,i) ∪ extenda(Ui , comba(A0, Al,i).

We expand the proposition AL]Ri to its full length, namely that:

∀α <ad ρQ→X
(

Dq
)

:
α 6<ad extenda(L0, comba(Al,i , ρQ→X

(
Aq

)
))tad

extenda(ρQ→X
(
Uq

)
tad Ui , comba(A0, comba(Al,i , ρQ→X

(
Aq

)
)))

which is equivalent to:

∀α <ad ρQ→X
(

Dq
)

:
α 6<ad extenda(L0, comba(Al,i , ρQ→X

(
Aq

)
)) (a)

∧ α 6<ad extenda(ρQ→X
(
Uq

)
, comba(A0, comba(Al,i , ρQ→X

(
Aq

)
))) (b)

∧ α 6<ad extenda(Ui , comba(A0, comba(Al,i , ρQ→X
(

Aq
)
))) (c)

Similarly ρX→Q
(
(ALi)|X

)
]Rq which is equivalent to (ALi)|X]ρQ→X

(
Rq

)
can be expanded to:

∀α <ad ρQ→X
(

Dq
)

:
α 6<ad

extenda((extenda(L0, Al,i) tad extenda(Ui , comba(A0, Al,i)))|X ,
ρQ→X

(
Aq

)
) (1)

tadextenda(ρQ→X
(
Uq

)
, comba(comba(A0, Al,i), ρQ→X

(
Aq

)
)) (2)

This can be rewritten in the same way as done for AL]Ri, yielding:

∀α <ad ρQ→X
(

Dq
)

:
α 6<ad extenda((extenda(L0, Al,i))|X , ρQ→X

(
Aq

)
) (A)

∧ α 6<ad extenda((extenda(Ui , comba(A0, Al,i)))|X , ρQ→X
(

Aq
)
) (B)

∧ α 6<ad extenda(ρQ→X
(
Uq

)
, comba(comba(A0, Al,i), ρQ→X

(
Aq

)
)) (C)

Terms (A) and (B) stem from term (1) in the previous expression by dis-
tributing extenda over the two sets of data structures.

Using Lemma 10.3 we can show that the expression in (A) is subsumed by
the expression in (a). A combination of Lemma 10.3 and the fact that comba

228 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

is associative (c.f. Page 134) allows us to conclude that (B) is approximated
by (c), and due to the associative nature of comba we have that the expres-
sion in (C) is subsumed by (b). Hence, if AL]Ri then ρX→Q

(
(ALi)|X

)
]Rq.

2

Example 10.3 For the code of append given at page 212 we obtained the compacted reuse
information for the deconstruction at program point (3)

R3 = compact(R3, {X, Y, Z}) =
〈〈
{Xε}, {Yε}, { }

〉〉
(Example 10.1). Note that R3 corresponds to the reuse information Rq as used in the
previous theorem.

For the empty call description, the liveness description at program point (4), the
recursive call, is:

AL4 = 〈{
(

X([|],1) − Xeε
)

,
(
Xε − Xsε

)
}, {Xeε, X([|],1), Zsε}〉

Projecting AL4 on the actual variables of the recursive call to append and renaming the
result to the formal head variables we obtain the call description

AL = ρ
(

(AL4)|{Xs,Y,Zs}

)
= ρ

(
〈{ }, {Zsε}〉

)
= 〈{ }, {Zε}〉

where ρ is the renaming function mapping the actual variables {Xs, Y, Zs} onto the
formal head variables {X, Y, Z}. Clearly AL] R3, which means that under the empty
call description, the recursive call to append also allows the reuse of the list backbone of
the first input list. This indirect reuse introduces its own reuse information: the reusable
heap cells are the renaming of the reusable heap cells in R3, the in use information is
the in use information of R3 updated with the in use information at program point (4)
(where U4 = {Xeε, Zsε}), and finally, the structure sharing part is the combination of
the structure sharing recorded in R3 and the structure sharing available at (4). Thus,

R4 =
〈〈
{Xsε}, {Yε, Xeε, Zsε}, {

(
X([|],1) − Xeε

)
,
(
Xε − Xsε

)
}
〉〉

Just as for the direct reuse R3, we can translate the reuse information R4 to the head
variables of append by compacting it. We obtain:

R4 = compact(R4, {X, Y, Z}) ==
〈〈
{Xε}, {Yε}, { }

〉〉
Here R4 = R3 which means that if a call description AL satisfies R3 — the first list cell
of the first input list can be reused, then it clearly also satisfies R4. Hence, all list cells of
the first list can be reused.

The above example illustrates the need for a fixpoint computation in case of
recursive procedure definitions. Indeed, if in the above example R4 would not

10.4. PUTTING IT ALL TOGETHER 229

have been equal to R3, then a new iteration would have been needed to verify
whether the projected and renamed liveness description AL4 also verifies the re-
use information R4. If so, then that information would have to be updated with
the local information at (4) and compacted again. This process needs to be re-
peated until a fixpoint is reached.

10.4 Putting it all together

We have shown that for deriving liveness information for the program points
within a procedure it suffices to know the liveness call description and the local
structure sharing information built by each of the called procedures. When deriv-
ing reuse information, we have decided to detect all possibilities of reuse within
a procedure by assuming that the liveness call description is the empty call de-
scription. Hence, when putting these two considerations together, we obtain
a goal-independent analysis deriving sets of reuse information based on goal-
independent liveness information of the program.

To formalise these processes we need to formalise the set of reuse information
tuples as a lattice domain.

Definition 10.6 (Reuse Information DomainRI) The domain of reuse information
tuples consists of ℘(

〈〈
℘(DVI), ℘(DVI), ℘(SDVI)

〉〉
), which we abbreviate toRI .

Each individual reuse information tuple R describes a set of call descriptions
A = {AL1, AL2, . . . , ALn} for which the relation ALi] R, 1 ≤ i ≤ n holds. We
can show that this relation is monotonic in its first argument. This means that
∀AL1, AL2 ∈ AL and AL1 val AL2, if AL2] R, then also AL1] R. The relation is
also additive: if AL1] R and AL2] R, then (AL1 tal AL2)] R. As the domain of
abstract liveness descriptions is a complete lattice this implies that the least upper
bound of all liveness descriptions satisfying a particular reuse information tuple,
exists and also satisfies that same tuple. Thus, let AL = tal{AL′ | AL′] R}, for
R ∈ RI , then AL] R. This least upper bound is unique, which means that each
reuse information tuple can be uniquely mapped onto one single call description
describing all the calls for which the reuse described by the tuple is safe. We call
this abstract liveness call description the associated call description of a reuse tuple.

Definition 10.7 (Associated call description ALR) Let R ∈ RI be a reuse inform-
ation tuple, then the associated call description of R, denoted by ALR is the least
upper bound of all the call descriptions that satisfy the reuse tuple. Formally: ALR =
tal{AL | AL]R}.

Given this one-to-one possibility of mapping reuse information tuples onto
abstract liveness descriptions, the ordering in RI becomes equivalent to the or-
dering inAL. Therefore, expressions such as AL] R and AL val ALR are equival-

230 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

ent. We lift the applicability of the]-operation, and redefine it as an order-relation
inRI .

Definition 10.8 (Ordering of Reuse Information Tuples) Let R1, R2 be two indi-
vidual reuse information tuples, then R1 is subsumed by R2, denoted by R2]R1, iff
ALR2]R1, which is equivalent to ALR2 val ALR1 , where ALR1 and ALR2 are the asso-
ciated call descriptions to R1, resp. R2.

In practice, the above definition will not really be usable as it theoretically
requires the associated call descriptions of the reuse information tuples, which
are not trivial to determine.

A more practical order relation is inspired by the following observation:

Corollary 10.3 Let R1 = 〈〈D1, U1, A1〉〉 and R2 = 〈〈D2, U2, A2〉〉 be two reuse inform-
ation tuples. Then

(D1 = { } or

 D1 vad D2
U1 vad U2
A1 va A2

) ⇒ R2]R1

Note that the case of D1 = { } reflects unconditional reuse, hence is subsumed
by any other reuse information tuple.

We use the following ordering between reuse information tuples:

Definition 10.9 Let R1 = 〈〈D1, U1, A1〉〉 and R2 = 〈〈D2, U2, A2〉〉 be two reuse in-
formation tuples, then R1 is subsumed by R2, denoted by R1 �r R2, iff D1 = { } or
(D1 vad D2 ∧ U1 vad U2 ∧ A1 va A2.

Obviously, two reuse information tuples are considered to be equivalent if
they are mutually subsumed. Hence, let R1, R2 ∈ RI , then R1 ≡ R2 iff R1 �r R2
and R2 �r R1.

The domain of sets of reuse information tuples is then ordered by the set-
inclusion operation, modulo equivalence of the reuse information tuples.

Definition 10.10 (Ordering inRI) Let R be a reuse information tuple, and RI ∈ RI ,
then R is subsumed by RI, which is denoted by R ≤r RI, iff ∃R′ ∈ RI, such that R′ ≡ R.

If RI1, RI2 ∈ RI , then RI1 is subsumed by RI2 iff ∀R ∈ RI1 : R ≤r RI2. This is
denoted by R1 vr R2.

And finally, the least upper bound of two sets of reuse information tuples is simply
defined as their union: RI1 tr RI2 = RI1 ∪ RI2, where ∪ is the set-union operation.

This domain is a lattice with bottom element the empty set, and top element
the set of all possible combinations of reuse information tuples over the given set
of variables.

10.4. PUTTING IT ALL TOGETHER 231

In the previous sections we presented how reuse information can be gathered
using goal-independent liveness information of the procedures. We have seen
that this information does not require an explicit analysis to be set up as liveness
information at a given program point can always be computed using forward
use information, backward use information, and the local component for struc-
ture sharing information. This means that by assuming these basic types of in-
formation available, we can immediately express the liveness descriptions, hence
derive the reuse information tuples.

We therefore assume that forward use, backward use and structure sharing
as well are ready available in the program. Forward use can be queried us-
ing the operation forward, backward use is given with the operation backward.
Similarly, we introduce the implicit operation sharing that, given a specific pro-
gram point, returns the local structure sharing component for that program point.

Formally, if R℘(SDVI)
M?p is the semantic function of a rulebase in the context of the

pre-annotating goal-independent semantics SemM?p instantiated for the domain
℘(SDVI), with the auxiliary operations given in Definition 6.32, then sharing :
pp→ ℘(SDVI) is defined as:

sharing(i) = let A = R℘(SDVI)
M?p [[r]] in

A(i)

Note that gathering this goal-independent rule-base meaning in the presence of
modules requires that the structure sharing of procedure defined in other mod-
ules than the one actually analysed be recorded in an adequate interface file as
was described in Section 10.2.

We can now define the actual derivation of reuse information.

Definition 10.11 (Reuse information derivation) The derivation of reuse informa-
tion is defined as the goal-independent semantic functions SemM• instantiated with the
domain RI and where initr is defined as initr = { }, adding the result of a unification is
defined as

addr((X := Y), RI) = RI
addr((X <= f (Y)), RI) = RI
addr((X == Y), RI) = RI
addr((X => f (Y), RI) =

let i = pp(X => f (Y)) in
let Al,i = sharing(i) in
let Ui = dataa(forward(i) ∪ backward(i)) in
let Ri =

〈〈
{Xε}, Ui , Al,i

〉〉
in

let ALδ = 〈{ }, { }〉 in
if ALδ] Ri then {compact(Ri ,H)} tr RI else RI

232 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

where H represent the head variables of the procedure to which the literal belongs. Com-
bining the results of a procedure call with the current reuse information is given by:

combr(p(X), RIo, RIn) =
let i = pp(p(X)) in
let Al,i = sharing(i) in
let Ui = dataa(forward(i) ∪ backward(i)) in

let RI′n =

〈〈D, U′, A′〉〉

∣∣∣∣∣∣
〈〈D, U, A〉〉 ∈ RIn,
U′ = U tad Ui ,
A′ = comba(Al,i , A)

 in

let ALδ = 〈{ }, { }〉 in
if ∀R′ ∈ RI′n : ALδ]R′

then RIo tr {compact(R′,H)|R′ ∈ RI′n}
else RIo

where againH represents the set of head variables of the procedure to which the procedure
call belongs.

Note that in the previous definition we have slightly adapted the signature of
the combination function in the sense that we have added the extra argument of
the actual called procedure. This is only needed to know the program point of
that literal. Observe that the definitions of addr and combr are very similar.

10.5 Prototype Implementation

We adapted the prototype described in Chapter 9 to allow the use of modules
in a program. This prototype was developed with elder insights in mind, and
therefore presents some differences with the above presented theory. We first
present these differences, then detail some of the implementation issues, and fi-
nally present and discuss the benchmarks run with that prototype.

10.5.1 Liveness Definition

In Section 8.5 we have shown how we can increase the precision of the set of
live data structures by separating the liveness of the call description from the
new live structures in a procedure, in the definition of live and therefore also in
livea. We call live and livea as defined by Equation (8.1), resp. Equation (8.3), the
old liveness definition, while Equation (8.5) and Equation (8.6) define the new
liveness functions.

The increase in precision of the new livea definition w.r.t. the old definition
is especially apparent in the goal-dependent semantics where due to the non-
idempotence of the old livea, the liveness of the call description would be exten-
ded twice w.r.t. the structure sharing of that call description. Yet, in the context

10.5. PROTOTYPE IMPLEMENTATION 233

of a goal-independent analysis of liveness information, this issue becomes less
important. Indeed, we can show that the abstract liveness information derived
using the goal-independent liveness descriptions is inherently more precise than
when derived in a pure goal-dependent derivation.

In this prototype, we still used the old liveness definitions, and although this
approach is know to be less precise, we have not investigated the loss of precision
further.

10.5.2 Default Liveness Analysis

In the process of modularising the reuse analysis, we have decided that only two
versions of each procedure will at most be created: one version that implements
all possible discovered reuse, and one version that only implements the uncon-
ditional reuses, if at all. All the possible reuses are discovered by assuming an
empty liveness call description.

However, this approach may find too many opportunities of reuse as it may
be unlikely that an actual call will ever have its liveness component empty. At
least the output variables of the procedure are in most cases live in the calling en-
vironment of the procedure. Therefore, in order to detect the possibilities of reuse
within a procedure p we assume that its output variables are live. We call this the
default liveness information of p. Therefore, instead of deriving reuse informa-
tion tuples based on a goal-independent liveness analysis, we have implemented
our prototype so that reuse information is derived based on the default liveness
descriptions of the procedures considered.

Formally this requires a slight adaptation of the auxiliary operations addr and
combr, and also an adaptation of the underlying semantics in the sense that the
output variables of the analysed procedure must be threaded through the se-
mantic functions. As an effect, addr and combr both have an extra argument.
That extra argument can either be the analysed procedure itself, or only its out-
put arguments. For clarity of the formalisation, we assume the latter, and obtain
the following new definitions:

addr(Hout, X => f (Y), RI) =
let i = pp(X => f (Y)) in
let Al,i = sharing(i) in
let Ui = dataa(forward(i) ∪ backward(i)) in
let Ri =

〈〈
{Xε}, Ui , Al,i

〉〉
in

let ALδ = 〈{ }, dataa(Hout)〉 in
if ALδ] Ri then {compact(Ri ,H)} tr RI else RI

234 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

and
combr(Hout, p(X), RIo, RIn) =
let i = pp(p(X)) in
let Al,i = sharing(i) in
let Ui = dataa(forward(i) ∪ backward(i)) in

let RI′n =

〈〈D, U′, A′〉〉

∣∣∣∣∣∣
〈〈D, U, A〉〉 ∈ RIn,
U′ = U tad Ui ,
A′ = comba(Al,i , A)

 in

let ALδ = 〈{ }, dataa(Hout)〉 in
if ∀R′ ∈ RI′n : ALδ]R′

then RIo tr {compact(R′,H)|R′ ∈ RI′n}
else RIo

where H represents the set of head variables of the procedure to which the lit-
eral in question belongs, and Hout represents the set of output variables of that
procedure.

10.5.3 Implementation Details

The prototype essentially follows the same structure as presented in Chapter 9
where the reuse analysis phase is explicitly preceded by the liveness derivation
phase w.r.t. the default liveness descriptions of the individual procedures. The
prototype is also embedded in the AMAI-framework, and therefore, the analysis
of one individual module follows the same scheme as for the non-modular ana-
lysis (Figure 9.2). The main difference between both systems is that here the ana-
lysis of a module also results in the generation of an interface file. These interface
files are then used during the analysis of modules that depend on the modules
from which they stem.

The analysis of one module consists of annotating the code with forward and
(analysis-based) backward use information, and deriving the rule base meaning
of its procedures in the context of a goal-independent structure sharing analysis.
The results of these annotations and the structure sharing analysis are used for
the derivation of the liveness information. Finally, the liveness results together
with the structure sharing information, are used for detecting direct reuses and
propagating them as indirect reuses. At the end of the analysis we obtain proced-
ures that are fully annotated with reuse information. The generated interface file
contains the local structure sharing information for each of the exported proced-
ures, as well as the (compacted) reuse information tuples for the procedures that
potentially allow some form of structure reuse. Figure 10.2 sketches the phases of
the analysis starting from AMAI instructions that are generated from the original
Mercury file, and ending with annotated code formatted as HTML-code. The ar-
rows connecting each of the analysis steps represent the flow of information (e.g.,
liveness annotation requires forward use, backward use, as well as structure shar-

10.5. PROTOTYPE IMPLEMENTATION 235

ing information). Dashed lines are used to represent the interaction with optim-
isation interface files, i.e., the dependence of information stored in the interface
files of other modules, and the optimisation interface file that is generated for the
analysed module as a side-product of that analysis.

In this prototype, no actual versions of the procedures are generated as the
results of the analysis are not fed back into the Mercury compiler.

10.5.4 Benchmarks and Results

The first type of benchmarks is a selection of library modules as they come with
the Mercury distribution6. These modules are constantly used within any kind of
application (including real-world applications) and the exploitation of the reuse
opportunities will have a large impact in general. The library modules have many
interdependencies and can not be analysed without a module based approach.
We make a distinction between basic library modules, and the other library mod-
ules. Basic library modules are modules that only depend on themselves, and do
not import any other modules.

A second kind of benchmarks are modules from real-world applications ran-
ging from small stand-alone programs to some modules of the Melbourne Mer-
cury compiler implementation.

The following modules were analysed:

• basic library modules for tree and list manipulation (assoc_list , bintree ,
bool , bt_array , list , set_ordlist , tree234);

• library modules that import procedures from the basic ones (bag , bintree_set ,
eqvclass , graph , group , map, multi_map , queue , set , set_unordlist);

• a module of the industrial users of Mercury in the ESPRIT project ARGo
(argo_cnters) and

• and finally, some modules from the Mercury compiler (labelopt , llds ,
opt_util).

In Table 10.1 the library modules are in the upper part and the other modules in
the lower part. Our focus goes mainly to exported procedures, as these are the
only procedure visible outside of the modules, and for which analysis informa-
tion is explicitly recorded in interface files.

The legend to Table 10.1 is as follows:

• Time The time in seconds of all the analyses performed on a module, in-
cluding structure sharing, liveness analysis as well as the detection and
propagation of reuse opportunities.

6The experiments date from January 2000 where we worked with the most recent release of the
day of version 0.9.1 of the Melbourne Mercury Compiler.

236 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

• Pr The number of procedures in the module.
• Xp The number of exported procedures.
• CR The number of exported procedures for which conditional reuse is de-

tected.
• UR The number of exported procedures for which unconditional reuse is

detected. (The two types of reuse can occur in the same procedure.)
• NR The number of exported procedures without reuse.
• Cnd The average number of reuse information tuples for exported proced-

ures with conditional reuse. Note that in this implementation the sets of
reuse tuples may contain duplicates. The reduced sets are not available
here.
• DC The number of matching deconstruction/construction pairs in the ana-

lysed module.
• %DR The percentage of matching deconstruction/construction pairs res-

ulting in direct reuse.
• Lc The number of calls to procedures internal at the module.
• %LR The percentage of internal procedure calls that calls a version with

reuse.
• Ec The number of calls to imported procedures.
• EcR The number of calls to imported procedures for which a reuse version

exists.
• %ER The percentage of the calls to imported procedures for which a reuse

version exists and which meets the reuse information tuples so that a call to
the reuse version is safe. (“-” if EcR=0).

Our experiments were done on the same platform as used for our first pro-
totype, i.e., using an UltraSPARC-IIi (333Mhz) with 256MB RAM, using SunOS
Release 5.7, under a usual (small) workload. The Prolog-engine used was Master
Prolog, release 4.1 ERP.

10.5. PROTOTYPE IMPLEMENTATION 237

module M

forward
use

structure

backward
use

sharing

liveness

direct reuse

indirect reuse
optimisation
interface file

source code (AMAI)
module M

module M

(backward use)

(structure
sharing)

(reuse
information)

other
interface

files

Annotated code

(HTML)

Figure 10.2: Sketch of the module-enabled prototype implementation. Parts re-
quiring a fixpoint analysis are labelled with a loop, parts not requiring a fixpoint
contain a straight downward arrow.

238 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

m
od

ul
e

Ti
m

e
Pr

X
p

C
R

U
R

N
R

C
nd

D
C

%
D

R
Lc

%
LR

Ec
Ec

R
%

ER
as

so
c_

lis
t

0.
27

7
6

5
0

1
2.

40
7

10
0

7
86

10
0

-
ba

g
2.

46
26

24
17

10
5

4.
95

4
10

0
29

90
70

25
10

0
bi

nt
re

e
1.

37
30

19
6

2
11

3.
00

17
10

0
56

43
33

0
-

bi
nt

re
e_

se
t

0.
16

23
21

11
6

9
1.

08
1

10
0

16
75

26
6

10
0

bo
ol

0.
01

5
5

2
0

3
2.

00
2

10
0

2
10

0
0

0
-

bt
_a

rr
ay

5.
97

37
17

6
4

9
1.

75
38

97
13

7
55

18
1

0
-

eq
vc

la
ss

1.
55

21
12

4
4

4
1.

00
5

10
0

27
78

37
12

10
0

gr
ap

h
6.

96
26

14
6

6
6

0.
75

9
10

0
42

33
51

12
10

0
gr

ou
p

1.
95

20
11

2
4

7
0.

50
4

10
0

27
41

27
8

10
0

lis
t

1.
84

66
56

34
3

22
1.

76
46

91
11

1
64

38
2

10
0

m
ap

6.
69

42
38

16
4

18
3.

65
2

10
0

39
54

56
16

10
0

m
ul

ti
_m

ap
1.

95
36

33
11

6
16

2.
82

1
0

13
46

48
21

10
0

qu
eu

e
0.

18
12

11
5

1
6

2.
80

4
10

0
2

10
0

12
8

10
0

se
t

0.
08

27
27

6
0

21
1.

00
0

-
0

-
27

6
10

0
se

t_
or

dl
is

t
0.

52
31

29
6

0
23

1.
00

7
0

41
2

19
6

10
0

se
t_

un
or

dl
is

t
0.

34
30

27
13

3
14

1.
15

1
10

0
25

64
12

6
10

0
tr

ee
23

4
11

40
74

20
10

1
9

5.
55

28
3

88
44

3
71

13
6

0
-

ar
go

_c
nt

er
s

4.
79

18
1

0
1

0
0.

00
32

10
0

41
29

56
0

-
la

be
lo

pt
12

.0
0

6
2

2
1

0
2.

00
2

10
0

17
88

13
9

78
lld

s
0.

08
7

7
0

0
7

-
0

-
6

0
2

0
-

op
t_

ut
il

20
28

73
46

20
8

23
2.

04
48

83
28

4
28

70
24

10
0

Ta
bl

e
10

.1
:B

en
ch

m
ar

k
re

su
lt

s;
“-

”
m

ea
ns

no
ta

pp
lic

ab
le

.S
ee

pa
ge

23
5

fo
r

th
e

co
m

pl
et

e
le

ge
nd

.

10.5. PROTOTYPE IMPLEMENTATION 239

10.5.4.1 Discussion

• In most cases the analysis time is of the same order as the compilation time
of the module. In a few cases it is rather large (tree234 and opt_util).
We do not consider these times as unbearable, especially for library mod-
ules as these often have to be compiled only once. This prototype leaves
room for much improvement. Chapter 11 presents some improvements
when presenting the practical aspects of integrating the reuse analysis into
an existing Mercury compiler.

• The reuse analysis in this prototype is not fine-tuned enough to report reuse
analysis times. In most cases the time needed for it is comparable to the time
for the liveness analysis. We believe it should only be a small fraction of the
total analysis time, especially in cases where the time needed for executing
the liveness analysis is large.

• Reuse versions are created for a large fraction of exported predicates. Even
unconditional reuse is quite frequent. This is an indication that our analysis
is able to find an interesting amount of reuse.

• The average number of reuse information tuples is in general small. How-
ever for bag and tree234 the average is about 5 reuse information tuples.
In tree234 there is a procedure with 12 reuse information tuples. Al-
though some of these reuse tuples may appear to be equivalent, even upon
simplification, it seems not feasible to create a specialised version for each
of the combinations of reuse tuples. Chapter 13 proposes a system to evalu-
ate the reuse opportunities of each procedure before actually producing the
specialised versions for that procedure.

• Quite a large fraction of matching deconstruction/construction pairs result
in direct reuse. If no direct reuse is detected, it is either because no reuse is
possible or because the analysis is too imprecise. To find out what the real
cause is of a missed reuse is a cumbersome task that needs to be done by
hand and is therefore not feasible on a large scale.

• Versions of local procedures with reuse are quite frequently called.

• Although the total number of calls to imported procedures (Ec) looks high
with regard to the number of calls to such procedures for which a reuse
version exists (EcR), most of the calls happen to be I/O related, or integer-
operations, hence are calls to procedures where reuse is not possible any-
way.

240 CHAPTER 10. MODULE-ENABLED STRUCTURE REUSE ANALYSIS

10.5.4.2 Effect on the performance of Mercury programs

The results of this prototype are not fed back into the compiler, and therefore
the effects on the performance of Mercury programs could at that stage only be
guessed or had to be forced by manual intervention. Chapter 12 discusses the
incorporation of the reuse analysis into the Mercury compiler. We discuss the
performance effects there.

10.6 Conclusion

The contribution of this chapter is to develop a modular reuse analysis that can
become part of a complete compile-time garbage collection system suited to com-
pile and optimise individual modules w.r.t. the memory usage of their proced-
ures. While this process was fairly straightforward for the liveness analysis —
liveness analysis is fitted for goal independent based analysis—, it was a non-
trivial task for reuse analysis. The major contributions are the introduction of so
called reuse information and two theorems that allow to reason about this reuse
information: how it is created, how it can be used to verify reuse, how it can be
compacted, and how it can be propagated through procedure calls. As a result
of the analysis of a module, the structure sharing and reuse information of the
exported procedures are stored in an interface file. This information can be used
to correctly analyse other modules that depend on it.

We adapted our prototype implementation of Chapter 9 and used it for a num-
ber of significant benchmarks: important library modules of the Melbourne Mer-
cury compiler, a stand-alone program and some modules of the Melbourne Mer-
cury compiler implementation. Although the results are not used to compile the
modules into code that actually performs the reuses, we observed that the num-
ber of opportunities of reuse are significant, while the reuse information tuples
restricting the use of these reuses are limited. This promises a fair potential of
reuse.

The first steps of the theory in this chapter were presented in (Mazur, Jans-
sens, and Bruynooghe 1999b) and (Mazur, Janssens, and Bruynooghe 1999c). This
theory was perfected in (Mazur, Janssens, and Bruynooghe 2000) where also the
results of the adapted prototype were discussed.

Chapter 11

Practical Aspects for a Working
Compile-Time Garbage
Collection System for Mercury

In previous chapters we have mainly dealt with the program analysis part of a
compile-time garbage collecting (CTGC) system assuming that finding matching
deconstruction/construction unifications is straightforward. But of course, the
task of determining these assignments is an optimisation problem of its own.

Other practical problems that need to be tackled in order to obtain a working
compile-time garbage collection system range from increasing the speed and pre-
cision of the underlying analyses to obtaining a better reuse behaviour by lifting
the locality principle for data structure reuses.

We handle each of these practical aspects in the present chapter. The descrip-
tion of the implementation of the resulting CTGC system is postponed to the
following chapter where also the benchmark results obtained with this imple-
mentation are discussed.

11.1 Reuse decisions

In the previous sections we did not go into the details of detecting matching de-
construction/construction pairs, but of course the strategy for detecting these
pairs can have an influence on the reuse results of the CTGC system.

The following example illustrates how different matching deconstruction/-
construction pairs can be identified, each yielding different memory reuse beha-
viour.

241

242 CHAPTER 11. PRACTICAL ASPECTS

:− type f i e l d 1 −−−> f i e l d 1 (i n t , i n t , i n t) .
:− type f i e l d 2 −−−> empty ; f i e l d 2 (i n t , i n t) .
:− type l i s t (T) −−−> [] ; [T | l i s t (T)] .
:− pred conver t2 (l i s t (f i e l d 1) , l i s t (f i e l d 2)) .
:− mode conver t2 (in , out) i s semidet .

conver t2 (L is t0 , L i s t):−
(% swi tch on L i s t 0

L i s t 0 => [] , L i s t <= []
;

(d1) L i s t 0 => [F ie ld1 | Rest0] ,
(d2) F ie ld1 => f i e l d 1 (A , B , _C) ,
(c1) F ie ld2 <= f i e l d 2 (A , B) ,
conver t2 (Rest0 , Rest) ,
(c2) L i s t <= [F ie ld2 | Rest]

) .

Figure 11.1: Converting lists. An example of multiple choices for matching de-
construction/construction pairs. Only the program points of interest are expli-
citly annotated: (d1), (d2), (c1) and (c2). See Example 11.1.

Example 11.1 Figure 11.1 shows the code for converting a list of items of type field1
into a list of items of type field2. The goal-independent (or default) liveness analysis of
that procedure identifies the deconstructed data structures at d1 and d2 as available for
reuse. The procedure also contains two constructions in which the memory from the dead
cells could be reused. We can establish two different reuse schemes according to which
data structures are reused by which new terms: the dead cells from d1 are reused by
construction c1, and the cells from d2 are reused in c2, or the other way around. Or if
reuse is restricted to data structures of the same arity, then only the deconstructed data
structure from d1 can be reused. In that case, we have the choice of reusing it for c1 or
c2. Each of these combinations yields an acceptable reuse scheme, yet, which one is the
most interesting? One can for example argue that reusing the list-cell for constructing
the new list-cell can be more interesting than reusing it for a field-cell as such a reuse
does not need to update the constructor-field. Another argument can favour the reuse of
the field1 term for the field2 term, as here, none of the arguments of the functor need to
be updated. In fact, such a reuse requires precisely one pointer change (letting variable
Field2 point to the memory that was pointed at by variable Field1), and one functor-
change. But this reuse has one drawback, namely that one of the arguments of field1 is
left unused, possibly leading to a form of memory leakage.

The general assignment problem can be characterised by the following ele-
ments (Debray 1993):

11.1. REUSE DECISIONS 243

1. a set of producers (deconstructions) that produces the memory that can be
reused;

2. a set of consumers (constructions) that consume memory;
3. a constraint that either allows a producer to be consumed by a set of con-

sumers, or limits the reuse to a one-one mapping;
4. a gain that is associated with each producer-consumer (or set of consumers)

pair and that reflects the gain of reusing the producer instead of construct-
ing the data structure from new memory;

Using this information, the reuse decision problem can be seen as finding a map-
ping from producers to consumers (or sets of consumers) with maximal gain. The
gain can either reflect the gain in execution time, or the gain in memory saving,
or a combination of both, depending on the desired effect of the optimisation.

This general reuse problem is NP-complete, yet by restricting the reuse of
a producer by at most one consumer the problem becomes polynomial. This
restricted problem is called the simple reuse problem (Debray 1993) for which it
has been shown that it can be reformulated as an instance of the maximum weight
matching problem for a weighted bipartite graph. In the context of Mercury we
slightly lift the constraint of only allowing one consumer for each producer in the
sense that if multiple consumers are assigned to the same producer, then these
consumers must be mutually exclusive, i.e., they must be on different execution
paths. A typical example is the occurrence of adequate consumers in each of
the branches of a disjunction. When executed, at most one of these branches is
followed, therefore, only one of the consumers will actually consume the memory
freed by the producer. Note that the reuse problem remains simple, as it suffices
to interpret a disjunction as one single consumer to obtain the initial simple reuse
problem.

The simple reuse problem corresponds to our initial formulation of assign-
ing the reuses where only matching deconstruction/construction pairs are con-
sidered.

11.1.1 Simplified Approach

In a first approach we address the problem of determining the producer-consumer
pairs by simplifying the general matching problem to two orthogonal decisions:
imposing constraints on the allowed reuses and using simple strategies to select
amongst different possible candidates for reuse. We discuss each of these issues.

Constraints on allowed reuses. Constraints allow one to express common char-
acteristics between the dead data structures and the new to be constructed data
structures. They also reflect the restrictions that can be imposed by the back-end
(c.f. Section 3.8.1) to which a Mercury program is compiled. For example, reusing
a data structure corresponding to a term of arity 15 for a data structure of a term

244 CHAPTER 11. PRACTICAL ASPECTS

of arity 2 might not be desirable if the garbage collector is not able to recover the
13 remaining memory-words. Or if changing the type of a data cell is impossible1,
then we can only allow reuses for matching constructors.

We have implemented the following constraints:

• Almost matching arities. This constraint expresses the intuition that it can be
worthwhile to reuse a dead data structure, even if not all memory-words
are reused. This is indeed interesting if it can be guaranteed that the super-
fluous words will be collected by the run-time garbage collector within a
reasonable delay.

In Example 11.1, allowing a difference of size one allows (c1) and (c2) to
reuse the memory available from either (d1) or (d2).

• Matching arities. If the run-time system is not powerful enough to be used
for the setting of almost matching arities, then a more restrictive constraint
can be used: only allow reuse between data structures that have the same
arity.

This means that in our example only (d1) can be reused (by either (c1) or
(c2).

• Label-preserving. Using the Java or .NET back-end, it is not possible to
change the type of run-time objects, therefore reuse is only allowed if the
dead and new data structures have the same constructor. This type of re-
striction is commonly called label-preserving (Debray 1993; Gudjonsson and
Winsborough 1993).

In Example 11.1, we obtain that the data structure freed at (d1) can only be
reused in the construction at (c2).

Selection strategies. When a dead data structure can be reused by different con-
struction unifications, or when a construction unification has different dead struc-
tures at its disposition, a choice has to be made. In Example 11.1 (c1) can either
reuse the cell available from (d1) or (d2). Some choices yield better results than
others. In order to keep it simple in this approach, we limit our selection criteria
to one of the following:

• Lifo. Traverse the body of the procedure and assign the reuses using a last-
in-first-out selection strategy. This means that when a choice is left for a
given construction, choose the data structure that became available for re-
use most recently. The intuition is that after deconstructing a variable, it is
likely that a new similar structure will be constructed in the same context.

1This is the case when using .NET as the back-end for Mercury.

11.1. REUSE DECISIONS 245

In Example 11.1, if (c1) is allowed to reuse the data structure freed at (d1) or
(d2), then according to this strategy, data structure Field1ε will be reused for
constructing data structure Field2ε, and List0ε for Listε. For this particular
example this corresponds to the best choice one can make w.r.t. the number
of heap cells that need to be updated. Indeed, the reuse of Field1ε corres-
ponds to a simple tag change on the pointer as a all the positions of the new
data structure have the same value as the corresponding positions of the
reused cell.

• Random. The intuition behind the lifo-strategy is not always true. Consider
the following disjunction:

X => f (. . .) ,
(. . . Y <= f (. . .)
; . . .) ,
Z <= f (. . .)

Here the data structure Xε can be reused either for constructing Yε or for
constructing Zε. As the first branch of the disjunction that the construction
unification for Y is part of is not guaranteed to be executed for each pro-
gram call, it is more interesting to allow Xε to be reused for constructing Zε

instead of constructing Yε.

Therefore we add a simple selection strategy that randomly selects the dead
data structures amongst all the available candidates.

11.1.2 Constructing Graphs

Although the results obtained with the simplified orthogonal choices presented
above are already interesting, we also provide a graph based approach. In this
approach, the possibilities for reuse are presented as a weighted graph as sugges-
ted by Debray (1993), while the search for an optimal solution is replaced by a
heuristic approach.

The goal is to assign consumers to producers in a so called reuse mapping.
For this purpose we generate a table where each entry consists of a data structure
available for reuse, a value and a list of constructions that can possibly reuse that
data structure. The idea is that the value reflects the gain that the reuse may
bring. The data structure with highest value is selected and removed from the
table. Its corresponding information is recorded in the final reuse mapping, and
the involved constructions are annotated with the information that they will be
reusing the data structure in question. This process is repeated until no reusable
data structures are left.

The value of a data structure that becomes available for reuse at a given de-
construction unification is computed by taking into account the call graph of the

246 CHAPTER 11. PRACTICAL ASPECTS

procedure, simplified such that only construction unifications, conjunctions and
disjunctions are reflected. The root of the graph is a deconstruction unification,
the leaves are construction unifications. The branches are either conjunctions or
disjunctions. The value of each of the nodes of the graph, including the root node,
is computed using the following rules:

• If the node is the root of a conjunction, then the value of that node is the
maximum of the values of the nodes depicting the branches of the conjunc-
tion. Intuitively, the idea is that if a data structure is followed by a conjunc-
tion of two constructions that can potentially reuse the dead heap cells, then
it is better to choose the construction with highest value.

• If the node is at the source of a disjunction, then the value of that node is
taken to be the average of the values of the nodes of the branches of that dis-
junction. This reflects the intuition that if the deconstruction of a data struc-
ture is followed by a disjunction with two branches in which reuse is only
allowed within one of its branches, then the global effect is that the struc-
ture reuse can only be realised in a fraction of the calls to this disjunction.
Assuming that each branch within a disjunction has the same probability
of being selected, the gain of allowing reuse in one of the branches must be
computed as the average of the gains of the branches in that disjunct.

• If the node is a construction unification then the value reflects the gain of re-
using the dead data structure at the root of the graph w.r.t. allocating fresh
memory for that construction. We assume that only construction unifica-
tions are considered that can potentially reuse the dead data structure2. If
the functors differ, then we need to take into account the extra cost of updat-
ing the functor. If the arities differ, then we add a penalty cost that reflects
the gain one would have had if the unusable heap cells would have been
reused too. If some of the fields of the dead data structure do not need an
update, then this is added as extra gain.

Hence, to evaluate the gain, which we denote by v, we need the following
information:

– if the constructed structure and the dead structure have the same con-
structor then the parameter c takes the boolean value true, else it takes
the value false.

– the arity of the constructed structure, ac.

– the arity of the deconstructed structure, ad. Note that a new structure
can only reuse an old structure if ac ≤ ad.

2This means that if the back-end does not allow to reuse data structures with differing functors,
then constructions violating that rule are immediately discarded from the graph.

11.1. REUSE DECISIONS 247

– the number of fields that needs to be updated if the construction reuses
the available dead structure, u.

Then the gain can be computed using the following formula:

v = cost for creating new cell − cost for updating dead cell
= ((α + γ) · ac + β)− (γ · u + (c?0; β) +α · (ad − ac))

(11.1)

where α represents the cost of allocating fresh heap cells, γ is the cost of up-
dating heap cells, and β is the cost of updating the constructor information
of the data structure. We use the notation c?0; β to express the conditional
expression “if c is true, then use the value 0, or else take β”. The last term,
i.e., α · (ad − ac), in the equation reflects a penalty for not reusing each of
the heap cells of the dead structure assuming that the cost of producing the
garbage cells is the same as the cost of creating new heap cells.

The actual values of these cost parameters are determined ad hoc. In the
implementation we used the values

α = 5
β = 1
γ = 1

reflecting the number of instructions to allocate new memory, initialise the
functor information and update the heap cells respectively.

We illustrate the process with some examples.

Example 11.2 Using the type-declarations of Example 11.1, we write the following pro-
cedure:

% : − pred t rans form (f i e l d 1 , f i e l d 1 , f i e l d 2) .
% : − mode t rans form (in , out , out) i s det .
t rans form (Input , Out1 , Out2) :−

(d1) I npu t => f i e l d 1 (A, B,C) ,
(

A == 0
−>

(c1) Out2 <= f i e l d 2 (B,C)
;

(c2) Out2 <= empty
) ,
(c3) Out1 <= f i e l d 1 (C, B,A) .

Intuitively, it is more interesting to reuse the deconstructed field1 term for the new
field1 term, instead of reusing it for either of the two other constructions. Using the lifo
approach and allowing differing arities, the reuse mapping would assign (c1) for reusing

248 CHAPTER 11. PRACTICAL ASPECTS

the dead cells of (d1). Using the graph based approach, the value of the deconstruction
is 17, and the most interesting reuse opportunity is determined to be (c3). The graph
that is conceptually built is shown in Figure 11.2. Note that the if-then-else construct is
represented as a disjunction of the conjunction of the test and the then-branch, and the
else-branch.

A == 0

Out2 <= field2(B,C)

Out2 <= empty

Out1 <= field1(C,B,A)

(0)

(5)

(5)

(−15)

(−5)

(17)

(17)

Figure 11.2: Gain Graph for the reuse of the structure field1(A, B, C) in Ex-
ample 11.2. Conjunctions are differentiated from disjunctions by the use of extra
arcs joining the branches. The values of the nodes are computed using Equa-
tion (11.1) with α = 5, β = 1 and γ = 1. The branch yielding the maximal gain is
shown in bold.

Example 11.3 Using the type declaration

:− type t −−−> f (i n t , i n t) ; g (i n t , i n t) .

we write the following procedure:

% : − pred t rans form (t , t , t) .
% : − mode t rans form (in , in , out) i s semidet .
t rans form (T0 , T1 , T):−

T0 => f (A , _B) ,
T1 => g (C , _D)
T <= f (A , C) . % reuse T0

The gain graphs for T0 and T1 are graphs that contain only one edge, namely to the
construction unification T <= f (A,C). For T0 the gain is valued to be 12 = (6 · 2) + 1−
(1 · 1 + 0 + 5 · 0), while the gain for T1 is 10 = (6 · 2) + 1− (1 · 2 + 1 + 5 · 0). Hence,
the deconstructed data structure T0ε is more interesting for the construction of T then
the data structure T1ε.

11.1. REUSE DECISIONS 249

When two dead data structures turn up having the same assigned value, then
this means that both data structures yield the same supposed gain, hence the
algorithm could choose any of these structures.

Example 11.4 Using the type declaration of Example 11.3, we define the procedure:

% : − pred t rans form (t , t , t , t) .
% : − mode t rans form (in , in , out , out) i s semidet .
t rans form (In1 , In2 , Out1 , Out2) :−

In1 => f (A ,B) ,
Out1 <= f (B ,A) ,
In2 => f (C,D) ,
Out2 <= f (D,C) .

Taking into account that the code is not reordered, and that the left-to-right execution
scheme is held, Out1 can reuse In1, and Out2 can either reuse In1 or In2. For both data
structures our algorithm will derive the same value. If we make a bad choice, and let In1
be reused by Out2 then no reuse is possible for Out1.

In the above example, clearly, Out2 should reuse In2 while Out1 should reuse
In1. To deal with such cases in our algorithm we add a notion of degree. The
degree of a deconstructed cell is the number of separate constructions by which
it could be reused. We then change our algorithm in such a way that instead of
picking the data structure with maximal value v, we choose the data structure
with maximal value-degree ratio, i.e., for which the result v/d is maximal, where
d is the degree of the structure. The intuition is that if two data structures have the
same value, then the one with the smallest number of opportunities to be reused
should be assigned first. In the previous example, the degree for In1 is two, while
the degree for In2 is only one. Hence, In2 will be selected first, and is assigned to
being reused by Out2. In a second iteration, In1 can be assigned to being reused
by Out1.

Note that establishing graphs for assigning construction unifications to dead
data structures is a selection strategy just like the lifo and random criteria are selec-
tion strategies (Section 11.1.1). This means that constraints on the allowed reuses
can also be relevant in this context. For example, if the arities of the involved
data structures must be the same, then the constructions of data structures with
different arities are simply not even considered in the graph, similarly for other
constraints.

11.1.3 Related Work

Most of the research in the area of compile-time garbage collection has focused
on the liveness analysis aspects involved with it. To the best of our knowledge,

250 CHAPTER 11. PRACTICAL ASPECTS

basically only two authors have recognised the problem of finding the best as-
signments for the dead data structures, hence tackle the actual optimisation of
the generated code.

In (Debray 1993) the authors define the reuse optimisation problem, prove
that it is NP-complete and produce a nearly optimal strategy for solving the gen-
eral reuse problem. They also tackle the simple reuse problem where a producer
can only be reused by at most one consumer, and prove that it is an instantiation
of the maximum weight matching problem for a weighted bipartite graph. The
weights can be adjusted for minimising memory usage or execution time. We
used this graphing approach in our implementation, yet without actually solving
the maximum weight matching problem, being satisfied with the nearly optimal
solution rendered by our algorithm.

In (Gudjonsson and Winsborough 1993) the focus of the memory reuse aspect
is mainly on the execution time to be minimised. The idea is to try to discover al-
most every heap cell not requiring an update, going even beyond the boundaries
of single procedures. This may indeed be important in Prolog, where the determ-
inism of procedures is not necessarily known at analysis time, and where given
the underlying data-flow analysis, each cell update requires extra care in the case
the value has to be reset upon backtracking. In Mercury, where determinism is
known at compile-time, and where the analysis explicitly takes into account back-
tracking, this is not a major issue. Therefore, it is not our immediate intention to
try to avoid every possible cell update.

11.2 Enhancing the Structure Sharing Precision

In general, during the analysis of a typical program, it may be possible to en-
counter procedure calls for which the analysis will not be able to derive the struc-
ture sharing they build up. This is the case for procedures defined in terms of
foreign code (c, C++, Java), higher-order calls and type-classes, but it can also
be due to calls to imported procedures from modules that have not yet been ana-
lysed and for which no interface files have been generated yet (mutual dependent
modules).

In the absence of any further information, we must approximate this un-
known structure sharing by the top element from the abstract structure sharing
domain, i.e., the presence of all possible structure sharing between the variables
involved. We abbreviate this abstract element to top. This is a perfectly correct
and safe approximation as it expresses the total lack of knowledge about the pos-
sible existing structure sharing at some program point in the program. Unfor-
tunately, once the analysis encounters a top approximation, all subsequent de-
scriptions will also result in top as all operations combining structure sharing sets
produce top once one of the arguments is top.

To obtain a usable CTGC system we need techniques to limit the creation and

11.3. WIDENING STRUCTURE SHARING 251

propagation of top in the structure sharing analysis parts. In our implementa-
tion we use the following three techniques: using heuristics, adding a pragma
to be able to manually annotate the critical code, and iterate the compilation for
mutually dependent modules. We discuss each of these techniques.

Using heuristics. Based on the type- and mode- declaration of a procedure, one
can derive whether it can create shared data structures or not, without looking
at the procedure’s body. This is the case when a procedure uses unique objects
(declared di or uo), or only has unique output variables, or when the non-unique
output arguments are of a type for which sharing is not possible (integers, enums,
chars, etc.). In all these cases, it is safe to conclude that the procedure does not
create additional structure sharing. Note that a procedure call can create new
structure sharing between input variables as they must be ground at the moment
when the procedure is called.

Manual structure sharing annotation for foreign code. Important parts of the
Mercury Standard Library consist of procedures that are defined in terms of for-
eign code. With the intention to be used mainly in this standard library, we have
extended the Mercury language such that foreign code can be manually annot-
ated with structure sharing-information.

Manual iteration for mutual dependent modules. At the time of implementing
the CTGC system into the Melbourne Mercury compiler, this compiler was not
yet able to cope with mutual dependent modules3. Consider a module A in which
some procedures are expressed in terms of procedures declared in a module B,
and vice versa. The normal compilation scheme is to compile one of the files, and
then the other one. In the presence of an optimising compiler this is not enough.
At the moment the first module is compiled, nothing is known from the second
one, yielding bad precision for the first one. This bad precision propagates further
to the second file as the second file relies on the first one.

As a work around we provide a way to manually control the incremental com-
pilation of a program in which mutually dependent modules occur.

11.3 Making Analysis Faster: Widening the Structure
Sharing

While it is interesting to have more precise structure sharing information than
simply top, having more aliases also slows down the system. Now one can argue

3In the meantime this has changed, and a more advanced compilation scheme has been implemen-
ted into the MMC, roughly following the ideas presented in (Bueno, García de la Banda, Hermene-
gildo, Marriott, Puebla, and Stuckey 2001). Our CTGC system has not yet been adapted accordingly.

252 CHAPTER 11. PRACTICAL ASPECTS

that speed is not a major requirement of a CTGC system as it is primarily intended
to be used only at the final compilation phase of a program, but even for our
benchmarks we were not ready to wait hours for a module to compile. Therefore,
in order to produce a usable CTGC system we add a widening operator (Cousot
and Cousot 1992c) that acts upon the aliases produced. This widening operator
can be enabled on a per-module base. The user can also specify the threshold at
which widening should be performed: e.g. only widen if the size of the structure
sharing set exceeds 1000.

Recall that during structure sharing analysis, a data structure is represented
by its full path down the term it is part of. Such a path is a concatenation of
selectors that selects the functor and the exact argument position in the functor.
Structure sharing is then expressed as a pair of data structures.

For the structure sharing, we introduce a so called type widening. The key idea
is to replace a path of individual selectors by one single selector that represents
the type of the type node that is selected by that path of selectors4. The following
example illustrates the intuition behind this form of widening.

Example 11.5 Consider the type definition

:− type t r ee (T) −−−>
empty ;
two (T , t ree , t r ee) ;
th ree (T , T , t ree , t ree , t r ee) .

and the conjunction of construction unifications:

L <= [1 , 2 , 3] ,
A <= two (L , empty , empty) ,
B <= two (L , A,A) ,
C <= th ree (L , L , A, B,A)

At the end of these four unifications, we obtain the structure sharing set as depicted
in Figure 11.3. While all the structure sharing relating subtrees of A, B and C are simply
reduced to structure sharing pairs between Aε, Bε and Cε, on the other hand, all the
structure sharing involving the sharing of the common element L are kept explicit5. This
has the end effect that 28 of the 33 sharing pairs are related to that common element.

Now imagine that C, the variable having the most internal structure sharing pairs,
would be involved with subsequent unifications, then the number of structure sharing
relations can become really big. The widening we consider is to replace each sequence of

4Applying type widening at each step of the analysis ultimately leads to a so called type based
analysis approach, c.f. Section 12.7.

5Note that the sharing pairs 28-33 may seem unusual as C is not bound to a term with outermost
functor two/3. Recall that in the abstract representation of data structures we use the equivalence
classes of selectors instead of selectors. This means that for elements of type tree(T), the selectors
(two, 2), (two, 3), (three, 3), (three, 4), (three, 5) are all equivalent to the empty selector ε, therefore, a
selector such as (three, 3) · (two, 1) can be simplified to (two, 1).

11.3. WIDENING STRUCTURE SHARING 253

1.
(

A(two,1) − Lε
)

2.
(

Bε − Aε
)

3.
(

Bε − Bε
)

4.
(

B(two,1) − Lε
)

5.
(

B(two,1) − A(two,1)
)

6.
(

B(two,1) − B(two,1)
)

7.
(
Cε − Aε

)
8.

(
Cε − Bε

)
9.

(
Cε − Cε

)
10.

(
C(three,1) − Lε

)
11.

(
C(three,1) − A(two,1)

)
12.

(
C(three,1) − B(two,1)

)
13.

(
C(three,1) − C(three,2)

)
14.

(
C(three,1) − C(three,3)·(two,1)

)
15.

(
C(three,1) − C(three,5)·(two,1)

)
16.

(
C(three,1) − C(three,4)·(two,1)

)
17.

(
C(three,1) − C(three,4)·(two,2)·(two,1)

)

18.
(

C(three,1) − C(three,4)·(two,3)·(two,1)
)

19.
(

C(three,2) − Lε
)

20.
(

C(three,2) − A(two,1)
)

21.
(

C(three,2) − B(two,1)
)

22.
(

C(three,2) − C(three,2)
)

23.
(

C(three,2) − C(three,3)·(two,1)
)

24.
(

C(three,2) − C(three,5)·(two,1)
)

25.
(

C(three,2) − C(three,4)·(two,1)
)

26.
(

C(three,2) − C(three,4)·(two,2)·(two,1)
)

27.
(

C(three,2) − C(three,4)·(two,3)·(two,1)
)

28.
(

C(two,1) − Lε
)

29.
(

C(two,1) − A(two,1)
)

30.
(

C(two,1) − B(two,1)
)

31.
(

C(two,1) − C(three,1)
)

32.
(

C(two,1) − C(three,2)
)

33.
(

C(two,1) − C(two,1)
)

Figure 11.3: Complete list of the abstract structure sharing pairs obtained for the
code of Example 11.5.

selectors by a selector reflecting the type of the involved type nodes. This would mean that
all the selectors related to the sharing of L are then reduced to one single selector, namely
a selector representing the type of L, i.e., in this case the polymorphic type variable T.

11.3.1 T-selectors

We extend the set of selectors in Selector to include types. Let TSelector denote
the set of all sequences over (Σ× N) ∪ T (ΣT ,VT). Elements from TSelector are
called t-selectors. To make a distinction between normal selectors, type selectors
are written in bold face and superscripted with the symbol], e.g. s], sX

],
T-selectors can be concatenated as usual (s1

], s2
] ∈ TSelector : s1

] • s2
]), and ε]

is the empty t-selector and neutral element for the concatenation. The intuition
behind the use of t-selectors is that instead of selecting a type node using an exact
path to that type node, t-selectors select their type nodes by the types of these
type nodes.

Example 11.6 Consider the type list(T) defined in the usual way, then the t-selector T]

selects all the type nodes of type T from the type tree of list(T). The t-selector ([|], 2)] ·T]

254 CHAPTER 11. PRACTICAL ASPECTS

selects all the type nodes of type T from the first sublist of the type list(T).

In fact, each t-selector in TSelector represents a set of selectors in Selector.
This relation is formalised by defining a mapping relation between TSelector and
℘(Selector). We first define the notion of a normal selector being covered by a t-
selector.

Definition 11.1 (Covering) Let s] = s1
] · s2

] · . . . · sn
] ∈ TSelector, and s ∈ Selector

be a t-selector and selector resp. for a type t, then s is covered by s] in the context of that
type t, denoted by s Ct s] iff s is a valid selector for t and one of the following situations
holds:

• if s] = ε] then s = ε;

• if s1
] ∈ T (ΣT ,VT), then s Ct s] iff ∃sa, sb ∈ Selector such that s = sa • sb,

tsa = s1
] and sb Cs1] s2

] · . . . · sn
];

• if s1
] ∈ Σ × N, then s Ct s] iff ∃s′ ∈ Selector where s = s1

] • s′ and s′ Cts1

s2
] · . . . sn

].

When the context of the type is clear, we abbreviate s Ct s] to s C s].

Example 11.7 In the context of the type list(T) we have for example

([|], 1) C T]

([|], 2) · ([|], 1) C T]

ε C list(T)]

ε C ε]

([|], 2) · ([|], 2) C list(T)]

but also
([|], 2) · ([|], 2) C ([|], 2)] · list(T)]

([|], 2) C ([|], 2)] · list(T)]

The latter can be verified by observing that ([|], 2) could be rewritten as ([|], 2) · ε · ε,
whereas ([|], 2)] · list(T)] may be seen as ([|], 2)] · list(T)] ·ε].

Definition 11.2 (Mapping of a t-selector) Consider s] = s1
] · s2

] · . . . · sn
] ∈ TSelector

and S ∈ ℘(Selector) in the context of a type t, then s] is mapped to the set of selectors
S in the context of t, denoted by s] !t S, iff ∀s ∈ S : s Ct s] and ∀s ∈ Selector : s Ct

s] ⇒ s ∈ S. In such cases we also say that S is a mapping of s] for type t.

Again, if the context is clear, then the subscript designating the type is omit-
ted.

In the case of recursive types the mapping of a t-selector can be an infinite set.
This is illustrated by the following example:

11.3. WIDENING STRUCTURE SHARING 255

Example 11.8 The mapping of the t-selector list(T)] in the context of the type list(T)
is the (infinite) set of selectors that select a type node of type list(T):

{ε, ([|], 2), ([|], 2) · ([|], 2), ([|], 2) · ([|], 2) · ([|], 2), . . .}

We introduce the notion of a valid t-selector for a type:

Definition 11.3 (Valid t-selector) A t-selector s] is a valid t-selector for a type t iff its
mapping S is not the empty set. Thus: s] !t S⇒ S 6= { }.

Indeed, the mapping of a t-selector can only contain valid selectors in the
context of a specific type, hence, if the mapping is empty, then the t-selector is
considered to be invalid for that type.

Corollary 11.1 If S is a mapping of a t-selector s] for a type t, then S is a subset of the
type tree of that type: s] !t S⇒ S ⊆ T T t.

Of course, t-selectors can also be applied to terms in which case a set of sub-
terms is selected instead of one single subterm. We can again use the notion of a
valid t-selector for a term τ in the sense that each selector in the mapping of that
t-selector must be a valid selector for τ .

11.3.2 Equivalence classes for t-selectors

Just as the number of valid selectors for a given type can be infinite for recursive
types, also the number of valid t-selectors can be infinite. For the latter selectors
to be usable in the context of an abstract analysis domain, we need a finite repres-
entation. We do this in the same way as we did for normal selectors (page 111),
namely by introducing an equivalence relation between t-selectors, dividing the
space of valid t-selectors of a type into equivalence classes according to the equi-
valence relation, and using one representative t-selector for each of the equival-
ence classes instead. Again, using the restriction that Mercury types are types for
which the type nodes of these types are a finite set, we can guarantee that this
equivalence relation partitions the t-selectors in a finite number of equivalence
classes.

Definition 11.4 (T-selector equivalence) The equivalence relation for t-selectors is
similar to the equivalence of normal selectors. Formally, let s1

], s2
] ∈ TSelector ap-

plicable to a type t, then s1
] is equivalent to s2

], denoted by s1
] ≡ s2

], iff, ts1
]

= ts2
]

and ∃s] ∈ TSelector : s1
] • s] = s2

] or s2
] • s] = s1

]

We use the same notation to denote the equivalence class or minimal element
of that class of a t-selector as the notation we introduced for normal selectors. Let

256 CHAPTER 11. PRACTICAL ASPECTS

s] be a valid t-selector for a type t, then the equivalence class is written as [s]]t
and the minimal element of that equivalence class is written as s]

t. Formally:

[s]]t = {s′] | s′] ≡ s]}
s]

t = s′] ∈ [s]]t such that ∀s′′] ∈ [s]]t : s′′] = s′] • e], for some e] ∈ TSelector.

If the type context is clear, we drop the explicit subscript in the above notation.

Example 11.9 For the type list(T) the t-selectors ε], list(T)], list(T)] · list(T)] are all
equivalent. The minimal element of the equivalence class to which these types belong is
ε].

We define the notions of covering and mapping:

Definition 11.5 Let s] ∈ TSelector and s ∈ Selector, then s is covered by s], denoted
with the same symbol s C s], iff ∃s′] ∈ [s]] such that s C s′]. The mapping of a
minimal element of a t-selector is a set S ∈ ℘(Selector), denoted by s] ! S, where
S =

⋃{S′ | s′] ∈ [s]], s′] ! S′}, i.e., S is the union of all the mappings of the selectors
belonging to the same type-class as s].

Applying a minimal element s] to a type t (or term τ) now selects all the
type-nodes (respectively subterms) designated by selectors covered by any of the
elements from the equivalence class [s]]. T-selectors, or their minimal elements,
can also be applied to variables in which case their meaning consists of the set of
subterms of the terms to which these variables are pointing.

11.3.3 Data Structures, Sharing Sets and their Operations

We redefine data structures and structure sharing sets in the sense that every oc-
currence of a normal selector or an equivalence class over Selector is now replaced
by a t-selector, resp. equivalence class over TSelector. The key difference is that the
set of heap cells that these data structures (and structure sharing pairs) designate
will be larger.

Example 11.10 Consider a variable X with the type tree(T) defined in Example 11.5,
then X(two,1) specifically selects the first argument of the terms with outermost functor

two bound to that variable, while XT]
selects all the subterms with type T of the terms

bound to X.

This change implies some modifications on the operations defined on these
entities, especially the definition of termshift. The purpose of the termshift opera-
tion in the context of concrete and abstract data structures is to obtain the full set

11.3. WIDENING STRUCTURE SHARING 257

of data structures of all the subterms of these concrete or abstract data structures.
Similarly, for concrete or abstract sharing pairs, the goal of termshift is to make
all the structure sharing that they imply on the subterms of these terms expli-
cit. This enabled us to order data structures and structure sharing pairs written
in terms of the normal selectors simply by the set-inclusion operation w.r.t. the
termshift operation. Thus, when data structures are expressed in terms of select-
ors from Selector, then all the data structures that they designate can be selected
by concatenating the appropriate selector to the concerned selectors.

For data structures expressed in terms of t-selectors, the termshift operation
becomes more complicated: to obtain all the data structures that are designated
by one single data structure written in terms of a t-selector, we need to compute
the mapping of the involved t-selector, and then compute the normal termshift
on the result. The result of a termshift of data structures written in terms of t-
selectors is a set of data structures over the usual domain of selectors, namely
Selector. To distinguish the termshift over Selector from the termshift-operation
over TSelector, we write the latter as termshift].

Definition 11.6 (Termshift for Concrete Data Structures) Consider the set of con-
crete data structures 〈e, D〉 ∈ 〈Eqn+, ℘(DVI)〉, then:

termshift](〈e, D〉)

=
⋃ {

termshift(〈e, {Xs}〉)
∣∣∣∣ XsX

] ∈ D, sX
] !

type(XsX
])

SX , s ∈ SX

}
For abstract data structures we have:

Definition 11.7 (Termshift for Abstract Data Structures) Let AD ∈ ℘(DVI), then

termshift](AD) =
⋃
{termshift(Xs) |XsX] ∈ AD, sX

] !
type(XsX

])
SX , s ∈ SX}

In fact, each of the above definitions computes the mapping for each of the
involved t-selectors, and performs the usual termshift on the selected data struc-
tures.

The definitions for termshifting concrete/abstract structure sharing pairs is
similar to the above definitions.

The ordering of data structures and structure sharing pairs must also be re-
vised. For simple data structures and structure sharing pairs it sufficed to com-
pare one single data structure or structure sharing pair with a set of data struc-
tures or sharing pairs using the set-inclusion operation w.r.t. the termshifted set
of data structures or sharing pairs. As a data structure or structure sharing pair
defined in terms of t-selectors represents a set of such entities, a data structure or
structure sharing pair is subsumed if and only if the termshift of that data struc-
ture or structure sharing pair is a subset of the termshift of the set of entities with

258 CHAPTER 11. PRACTICAL ASPECTS

1.
(

AT
]

− Lε]

)
← 1

2.
(

Bε] − Aε]
)
← 2, 5

3.
(

Bε] − Bε]
)

← 3, 6

4.
(

BT
]

− Lε]

)
← 4

5.
(

Cε] − Aε]
)
← 7, 11, 20, 29

6.
(

Cε] − Bε]
)

← 8, 12, 21, 30

7.
(

Cε] − Cε]
)
← 9, 13− 18, 22− 27, 31− 33

8.
(

CT
]

− Lε]

)
← 10, 19, 28

Figure 11.4: Abstract structure sharing pairs from Example 11.5 after type widen-
ing (c.f. Example 11.11). The last column lists the original sharing pairs of Fig-
ure 11.3 from which each of the entries stems.

which it is compared. We use the same notation for ordering data structures,
resp. structure sharing pairs expressed in terms of t-selectors as data structures,
resp. structure sharing pairs expressed in terms of normal selectors.

Finally, as the definition of the ordering is slightly altered, the explicit variants
of extend (Lemma 8.1) and extenda (Definition 8.11) do not hold anymore. This has
no implications on the liveness-related theorems.

11.3.4 Widening

The widening we implement in the CTGC system for Mercury works as follows:
if the size of the structure sharing set exceeds a certain threshold, then every se-
quence of selectors (or t-selectors) is replaced by the type of the type node that
that sequence selects. This operation not only reduces the complexity of the in-
volved selectors, but in most cases also reduces the number of structure sharing
pairs.

Example 11.11 When widening is applied to the structure sharing information in Ex-
ample 11.5, then the set of abstract structure sharing pairs is reduced to the eight pairs de-
picted in Figure 11.4. Note that the widening of the structure pair pair

(
B(two,1) − A(two,1)

)
results in the pair

(
BT

]

− AT
]
)

which is subsumed by the pair
(

Bε] − Aε]
)

.

The structure sharing analysis then continues with the widened set of struc-
ture sharing pairs until the size of the set of structure sharing pairs again exceeds
the predetermined threshold in which case the widening is repeated.

11.4. NON-LOCAL REUSE: CELL CACHE 259

Finding a good threshold is more of a heuristic matter.

11.3.5 Implementation Issues

Although the operations manipulating t-selectors are more complicated then the
ones for manipulating normal selectors, the impact on the analysis time remains
limited. In general, most of the time the analysis deals with normal selectors.
Widening is only applied in extreme cases, and then the number of structure shar-
ing pairs is reduced drastically. This will be shown in the results of our bench-
marks. For our benchmarks we found that a threshold of 500 structure sharing
pairs already drastically reduces the analysis time, yet without losing too much
of the precision, hence with little impact on the detected structure reuse oppor-
tunities.

11.4 Non-local Reuse: Cell Cache

Currently we assumed that every dead data structures may only be reused locally,
i.e., within the same procedure in which it is last accessed. This means that we
can not detect reuse opportunities where a data structure becomes available for
reuse within a procedure p, yet is reused within a procedure q, hence missing
quite interesting possibilities of reuse.

Example 11.12 Consider the following sketch of procedure definitions:

p (. . .) : − . . . , X => f (Y , Z) , . . .
q (. . .) : − . . . , T <= f (A , B) , . . .
r (. . .) : − . . . , p (. . .) , q (. . .) , . . .

If Xε becomes available for reuse in p yet p has no possibilities of reusing that data struc-
ture, then we would like to be able to reuse Xε in another procedure, in this case, ideally
in q.

We see three ways to achieve non-local reuses as well. The first and the most
difficult is to extend the reuse analysis to explicitly handle non-local reuse. The
analysis would have to propagate possible dead data structures and thus become
quite complex. It would also require intensive changes in the internal calling
convention of procedures within the compiler6 as the address of the heap cells to
be reused would have to be passed between procedures. The second approach
is to combine reuse analysis with inlining in such a way that the place where a
data structure become dead and the construction unification in which it can be
reused end up in the same procedure. The third approach, which is the one we
implement, is to cache dead data structures. Whenever a data structure, called

6The Melbourne Mercury Compiler in our case.

260 CHAPTER 11. PRACTICAL ASPECTS

cell in this context, becomes available for reuse unconditionally (thus does not
depend on the exact call description of the procedure) and can not be reused
locally, we mark it as cacheable. The decisions of when these cacheable cells are
reused are then taken at run-time. Indeed, the idea is that at run-time the address
of the cell as well as its size are recorded in a cache, also called a free list, a practice
that is common in the world of run-time garbage collectors (Wilson 1992). Before
each memory allocation the run-time system first checks the cell cache to see if
a cell of the correct size is available. If this is the case, it uses that cell instead of
allocating a new cell. This operation increases the time taken to allocate a memory
cell in the case of the cell cache being empty, and therefore should only be a win if
the cell cache occupancy rate is high. Nevertheless, it can avoid new allocations
so the overall cost of the run-time garbage collection system should go down due
to smaller heap sizes and less frequent need for garbage collection.

11.5 Conclusion

This chapter describes some practical aspects needed for a complete working
compile-time garbage collection system. These aspects include the intelligent
choice of matching constructions for dead data structures, optimisation of the
propagation and representation of the structure sharing, as well as adding a cell
cache as a way to try to reuse even those data structures for which no local reuse
can be found.

Chapter 12

Benchmarks

In this chapter we detail the implementation of the CTGC system integrated into
the Melbourne Mercury compiler and report on the obtained results for a number
of small to medium-sized benchmarks.

As we will see, the result is a competitive compile-time garbage collection
system, for which some of the benchmarks yield a reduction in memory usage of
up to 50%.

12.1 Implementation Details

The structure of the Melbourne Mercury compiler was sketched in Section 3.8.1.
Roughly speaking, the different compiler passes are organised into three levels:
the high level analyses and transformations based on a high level representa-
tion of the source code, called the High Level Data Structure, in short HLDS; the
low level program code manipulations using the Low Level Data Structure rep-
resentation of the transformed source code; and finally, the actual code genera-
tion. The CTGC system is added to the compiler as one of the last high level
analyses handling the HLDS representation of the source code. This is needed
to guarantee that all semantic checks such as mode-correctness, type-safety and
determinism-information are performed. It also allows us to feed back the ana-
lysis results obtained from the CTGC system into the HLDS representation using
low-level information regarding the structure reuse that is detected. Moreover,
none of the subsequent compiler passes may alter the order of the literals within
the procedure definitions, which is the case by letting the CTGC system be the
last HLDS-manipulating compiler pass.

The implemented CTGC system follows the same structure as the prototype
system depicted in Figure 10.2, except that the output is no longer simple annot-
ated source code merely to be used by a human reader, but a carefully annotated

261

262 CHAPTER 12. BENCHMARKS

HLDS representation that serves as input for the actual code generation pass of
the compiler.

We briefly sketch some of the implementation issues for each of the analysis-
steps within the CTGC system.

• In use information: Backward use and forward use are pure syntactic prop-
erties. These properties are both derived in a separate pass, recorded in the
HLDS and therefore serving as pre-annotations to the remaining analysis
passes.

Unlike in our prototype implementation, where backward use information
is gathered using an actual analysis, we implement backward use using the
simplified approach. As a default we use Instantiation 2 (Section 7.3.2). In
Section 12.6 we study the effect of choosing the less precise approach using
Instantiation 1.

• Structure sharing: We implement the structure sharing analysis following
the goal-independent based semantics, using a bottom-up strategy. This
goal-independent approach enables the correct analysis of Mercury pro-
grams organised into separate modules. Widening can be enabled on a
per module basis. The result of the analysis is a collection of exit local de-
scriptions of each of the involved procedures. We have chosen not to pre-
annotate the individual program points of interest, as the structure sharing
descriptions tend to be big. This means that whenever structure sharing is
needed within a specific procedure, a new derivation has to be performed.
Given the exit descriptions that are recorded, this does not require a fixpoint
process. With this approach, we have traded space for time.

In our previous prototypes we implemented structure sharing sets using
ordered lists making the access and search of particular data structures a
complex operation. We alleviated that problem by using a tree based struc-
ture1.

• Liveness annotation: The role of the liveness annotation pass is reduced to
identifying the deconstruction unifications allowing direct reuse and com-
puting the corresponding (compacted) reuse information tuples. As other
unifications are not of interest, they are ignored by the liveness annotation
pass. We prefer to compute the required information on demand, hence we
postpone the computation of liveness information for procedure calls to the
actual moment where that information is needed, i.e., during the derivation

1The keys of the tree are the variables of interest, the elements are again trees, this time trees of term
selectors, making the access to what a specific data structure is shared with more efficient. The leaves
of the latter trees consist of plain lists of data structures. The structure presents some redundancy, as
every structure sharing pair can both be accessed by its first data structure as well as by its second
data structure.

12.1. IMPLEMENTATION DETAILS 263

of indirect reuses. Recall that liveness information depends on structure
sharing. We chose not to pre-annotate the code. Therefore we need to par-
tially re-derive structure sharing. Recall that in the presence of the local exit
descriptions, this process does not require a fixpoint computation.

Liveness is merely an annotation pass and not an analysis pass. The indi-
vidual procedures of a module can be handled in any order.

Liveness sets are also represented in a tree based way instead of the ordered
lists as we did in our earlier prototypes.

• Reuse analysis: Reuse analysis consists of two parts, namely detecting direct
reuses — deciding where to reuse the detected dead data structures, and
deriving indirect reuses — propagating the reuse information tuples up the
call graph.

– Direct reuse: We implement each of the different constraint and se-
lection strategies for assigning construction unifications to dead data
structures as developed in Section 11.1.

– Indirect reuse: Indirect reuses are verified and propagated with the as-
sumption that for every procedure at most two versions are created,
and that a call to a reuse version is allowed if and only if all the reuse
information tuples for that particular call are satisfied.
In order to verify the reuse information of a called procedure, know-
ledge about structure sharing and liveness is needed. This means that
structure sharing is needed along the way. In general propagating in-
direct reuses requires program analysis with fixpoint computation. We
implement this analysis as a bottom-up process.

• Interface files: As a side-effect of the structure sharing and reuse analysis of
a given module we create an interface file for each of the analysed mod-
ules. The interface file of a module records the exit local structure sharing
descriptions of the exported procedures of that module as well as the rel-
evant information concerning the reuse opportunities within each of these
exported procedures. The latter consists of the reuse information tuples
needed for verifying the safeness of calling the reuse version, and the name
of that reuse version of that procedure (usually a variation on the original
procedure name). Whether or not cell caching is enabled is a purely internal
matter, and therefore not visible in the interface file.

• Version generation: Of those procedures for which conditional reuse has been
detected, a copy is made and the reuses are incorporated. If some cases of
unconditional reuses are detected for a procedure, then these reuses are also
enabled in the original version of that procedure. If no unconditional reuses
are found, then the original version of the procedure remains untouched.

264 CHAPTER 12. BENCHMARKS

• Code generation: The resulting annotated procedures are compiled into high-
level C-code (one of the back-ends of the MMC) taking into account the de-
tected forms of reuse. Local reuse is realised by adding the instructions that
explicitly update the adequate memory cells. In the presence of cell cach-
ing (see Section 11.4), a deconstruction of an unconditionally dying data
structure for which no matching construction unification is found is trans-
lated into an instruction placing the corresponding memory cells into the
cell cache. With cell caching enabled, each simple memory allocation is re-
placed by a sequence of operations that first verifies if an adequate memory
cell can be found in the cell cache.

12.2 Benchmarks Setting

We evaluate the effectiveness of our CTGC system by comparing memory us-
age and measuring compilation times. We use toy benchmarks and two real-life
programs: a deterministic ray tracing program and a finite domain solver imple-
mented through a number of non-deterministic procedures.

Section 12.3 and Section 12.4 report on results obtained with a CTGC system
integrated into version 0.9.1. of the MMC. The system is run on an Intel-Pentium III
(600MHz) with 256MB RAM, using Debian Linux 2.3.99, under a usual (small)
workload. The results in these sections are published in (Mazur, Ross, Janssens,
and Bruynooghe 2001).

Section 12.5 and Section 12.6 present new material obtained with a CTGC sys-
tem integrated into a more recent version of the MMC w.r.t. the previous experi-
ments. In these sections, the experiments are run on an Intel-Pentium 4 (2.50GHz)
with 512MB RAM, using Debian Linux 2.4.20, under a usual (small) workload.

All the reported memory information is obtained using the MMC memory pro-
filer. This profiler is part of the Melbourne Mercury compiler. The user program,
when compiled with the right option, is augmented to contain low-level instruc-
tions that monitor each memory allocation on the heap. After running such an
augmented program, the profiler counts the total number of memory words that
needed to be allocated during the execution of that program. This count is in-
dependent of the interventions of the run-time garbage collector. The allocations
can also be viewed for each procedure separately.

Time profiling can be done using a similar time profiler. Given the fact that
we are not interested in the time consumption of each procedure separately, we
perform our timings without this time profiler and simply time the execution
of the user program2. The timings reported in this chapter are averages of 10
execution runs each time.

2We use the user time as returned by the built-in operation time of the GNU Bourne-Again SHell,
known as bash.

12.3. TOY BENCHMARKS 265

No Reuse Reuse
module C M R C M m R

(sec) (Word) (sec) (sec) (Word) (%) (sec)
nrev 1.49 9M 1.51 11.79 6k -99.9 0.32
qsort 1.40 50M 36.63 11.29 20k -99.9 27.22
argo_cnters 4.53 3.00M 0.35 16.38 2.60M -13.3 0.32

Table 12.1: Toy benchmarks. C = compilation time. M = number of allocated
words. R = execution time. m = relative reduction in memory usage.

All the benchmarks are compiled using a plain non-optimised setting of the
Mercury Standard Library, unless stated otherwise. All the procedures defined
in this standard library are compiled without structure reuse as it allows us to
focus on the reuses occurring in the actual code of the benchmarks. Nevertheless,
for a correct and precise derivation of structure sharing information in our bench-
marks we do analyse the procedures of the Mercury Standard Library w.r.t. struc-
ture sharing. This results in a set of interface files that is used when analysing
the modules of the benchmarks themselves. On the platform based on the Intel
Pentium 4 processor as described above, the time needed for installing a version
of the compiler with a standard library with structure sharing enabled takes 20
minutes, compared to approximately 10 minutes for installing that same com-
piler in the same grades with a library without structure sharing information. As
these interface files need only be generated once3, this extra installation cost is
acceptable.

12.3 Toy benchmarks

We use the following toy programs: nrev, the naive reversal of a list of 3000 in-
tegers; qsort, sorting a list of 10000 integers using the quicksort algorithm; and
argo_cnters, a benchmark counting various properties of a data file. Note that the
program argo_cnters was also used in (Mazur, Janssens, and Bruynooghe 2000)
and reported on in Chapter 10. Each of these programs is defined in one single
module each.

Table 12.1 shows the compilation time, execution time and memory usage of
each of these programs when compiled without structure reuse and with struc-
ture reuse. The exact CTGC configuration, i.e., the combination of selection stra-
tegy and constraint, has no influence on the reported results.

For each of the benchmarks every possible reuse is detected, yielding the ex-
pected savings in memory usage as well as execution time:

3In fact, these interface files are derived from scratch for each new grade in which the library is
compiled. This is a cost that can easily be avoided.

266 CHAPTER 12. BENCHMARKS

• Within nrev the CTGC system is able to recover every list cell deconstructed.
• The partitioning procedure used in qsort does not need to allocate any new

memory as everything can be reused locally.
• For the argo_cnters benchmark, reuse is also performed successfully: the

data structure recording the properties of the file being updated in place.
The difference in timing for this benchmark is statistically insignificant as
most of the execution time is due to input/output operations.

12.4 Ray Tracer, Take I

Next to small benchmarks, we found it important to evaluate the system on a
real-life program. The main goal of this experiment is to study the effect of the
choice of the exact CTGC configuration, i.e., selection strategy and constraint, on
the amount of structure reuse obtained.

The first program we use is a ray tracer program developed for the ICFP’2000
programming contest (Morrisett and Reppy 2000) where it ended up fourth. This
program transforms a given scene description into a rendered image. It is a CPU-
and memory-intensive process, and therefore an ideal candidate for our CTGC
system to be tested on. A complete description of this program can be found
at (The Mercury Team 2000).

12.4.1 Description

The program consists of 20 modules (4000 lines of code, declarations included),
containing only deterministic predicates and functions. All modules can be com-
piled without widening, except for one: peephole. This module manipulates com-
plex terms and generates up to 11K aliases. Without type widening, the compila-
tion of peephole takes 160 minutes. With type widening (using a threshold of 500
structure sharing pairs), it only takes 40 seconds. The compilation of the whole
program with CTGC (and widening) takes 5 minutes, compared to 1 minute for
a normal compilation. As some of these modules are mutually dependent, the
technique of manually iterating the compilation is used to obtain better results.
For this benchmark, the compilation needs to be repeated three times to reach a
fixpoint (for a total time of 15 minutes). Each time every module is recompiled.
In a smart compilation environment, most of the recompilations can be avoided.

12.4.2 Results

Table 12.2 compares the use of memory and time resources of the ray tracer com-
piled without any form of CTGC with the resources needed for versions of the
ray tracer compiled with different CTGC configurations. The figures shown in
that table represent the total memory and time usage of rendering a set of 27

12.4. RAY TRACER, TAKE I 267

different scene descriptions (ranging from simple scenes to more complex ones)
with each of the ray tracer versions. The first row shows the figures obtained
for the ray tracer without any CTGC, rows 1 to 8 give the results for versions of
the ray tracer without cell caching, while rows 10 to 17 relate to versions of the
ray tracer with the option of cell caching enabled. In order to measure the effect
of structure reuse in the Mercury Standard Library procedures we compiled one
version of the ray tracer using a library with CTGC. The results of this ray tracer
are shown in row 9. Note that at the time these figures were compiled, the graph
based deconstruction-construction allocation had yet to be incorporated into the
CTGC system, therefore figures for that new allocation scheme are not available
here4.

12.4.3 Observations

We make the following observations:

• Using the matching arities (match) or label-preserving (same cons) constraints,
up to 24% memory can be saved globally. For some scene descriptions, this
can go up to 30%. There is also a noticeable speedup (14%).

• Using almost matching arities within a distance of one (within 1) or two
(within 2), much less memory is saved (only 10%) with hardly any speedup.
The bad memory usage is not surprising as none of the selection strategies
takes into account the correspondence of the arities between a new cell and
the available dead cells. This problem can definitely be alleviated using
the graph based approach, as will be confirmed later. The bad timings are
also explicable: with non-matching arities, reuse leaves space-leaks which
can not immediately be detected by the current run-time garbage collector,
hence the garbage collector will be called more often.

• We have also experimented with configurations using random as a selec-
tion rule. Combined with the selection constraints, results similar to their
lifo counterparts are obtained. The difference in amount of memory reused
manifests itself mostly in the presence of disjunctions within the definition
of the procedure. E.g. X => f (. . .), (. . .Y <=f(. . .) ; . . .), Z <=f(. . .). As the first
branch of the disjunction might not always be executed, it is more interest-
ing to allow Z to reuse X than Y.

• Row 9 shows the results of a ray tracer compiled using a version of the
Mercury Standard Library with CTGC. There is hardly any difference with
Row 1, where a library is used without structure reuse enabled. The limited
impact is simply due to the limited use of the library procedures by the ray
tracer program.

4Figures for this new strategy are given in the following two sections.

268 CHAPTER 12. BENCHMARKS

Configuration Memory Time
(kWord) (%) (sec) (%)

0 no CTGC 1024795.51 - 362.31 -
1 lifo match 776707.92 -24.21 311.85 -13.93
2 lifo same cons 791742.06 -22.74 313.57 -13.45
3 lifo within 1 916642.90 -10.55 361.84 -0.13
4 lifo within 2 917847.97 -10.44 359.90 -0.67
5 random match 780838.58 -23.81 310.75 -14.23
6 random same cons 795872.67 -22.34 312.70 -13.69
7 random within 1 920764.26 -10.15 359.14 -0.87
8 random within 2 921969.35 -10.03 355.08 -2.00
9 lifo match libs 775607.04 -24.32 320.32 -11.59
10 lifo match cc 513901.37 -49.85 301.66 -16.74
11 lifo same cons cc 542626.80 -47.05 304.20 -16.04
12 lifo within 1 cc 845603.55 -17.49 375.79 3.72
13 lifo within 2 cc 864722.90 -15.62 370.49 2.26
14 random match cc 518032.04 -49.45 299.45 -17.35
15 random same cons cc 546757.48 -46.65 302.79 -16.43
16 random within 1 cc 849724.90 -17.08 363.90 0.44
17 random within 2 cc 868844.29 -15.22 391.68 8.11

Table 12.2: ICFP ray tracer results using different CTGC configurations.

• The cc-entries of Table 12.2 (Rows 10-17) show the results of CTGC-confi-
gurations combined with the cell cache technique. Compared to the basic
CTGC-configurations, cell caching always increases memory savings, going
up to 49% (for some scenes even 70%). In the case of label-preserving or
matching arities constraints, we obtain a slightly worse execution time. On
the other hand, using almost matching arities combined with cell caching
increases the execution time.

12.4.4 Conclusion

For all of the CTGC configurations, a remarkable amount of memory reuse can be
achieved. The best results are obtained using the lifo selection strategy, in com-
bination with matching arities or label-preserving constraints. The liberal con-
straints within 1 and within 2 yield poor results. In the following section we will
see that these poor results can partially be alleviated when used in combination
with a better selection strategy.

Cell caching increases memory savings for all of the basic CTGC configura-
tions, yet may have a negative effect on the execution time of the optimised ray
tracer.

12.5. RAY TRACER, TAKE II 269

12.5 Ray Tracer, Take II

More recently we repeated the ray tracer experiments to study the new graph
based approach for selecting matching deconstruction/construction unifications.
Moreover, with faster hardware, we could also experiment more easily with type
widening and its effect on the obtained structure reuses.

12.5.1 Description

The main changes between this setting for the ICFP ray tracer, and the setting
used above are:

• Graph based allocation of deconstructed dead cells for new to be construc-
ted cells is now present in the CTGC system;

• Some annoying bugs are removed, especially one bug where the reuse in-
formation detected in else-branches of if-then-else goals was erroneously
discarded, hence reuse in the else-branches was never possible.

• The CTGC is embedded into a separate branch of the development tree
of the MMC. Once in a while this branch needs to be synchronised with
the main branch in order to profit from the changes and fixes of the main
compiler. While the CTGC used above was last synchronised with the main
branch in September 2001, the CTGC used here was upgraded in August
2002;

• And finally, the experiments are run on an Intel-Pentium 4 (2.50GHz) pro-
cessor with 512MB RAM, using Debian Linux 2.4.20.

Note that for completeness sake we also repeated the toy benchmarks for this
new platform. All yielded similar results as previously5 which is why we do not
report on these benchmarks again.

12.5.2 Results

Table 12.3 lists the memory usage of the different CTGC configurations with
which the ICFP ray tracer is compiled. The execution times are shown in Table 12.4.
Compared to Table 12.2 we now have additional entries which report on the
graph based selection strategy. No timings are shown.

Detailed memory usage as well as timings for each of the sceneries rendered
by the ray tracer are given in Appendix B.

5The argo_cnters benchmarks manifests a slow down when compiled with structure reuse enabled.
We refer the reader to Section 12.5.5 where a similar observation for the ray tracer is discussed.

270 CHAPTER 12. BENCHMARKS

Configuration Memory
(kWord) (%)

0 no CTGC 1024354.9 -
1 graph match 762167.72 -25.60
2 graph same cons 777192.11 -24.13
3 graph within 1 739539.99 -27.80
4 graph within 2 739539.99 -27.80
5 lifo match 765195.52 -25.30
6 lifo same cons 780219.92 -23.83
7 lifo within 1 757462.96 -26.05
8 lifo within 2 950359.45 -7.22
9 random match 769326.21 -24.90
10 random same cons 784350.61 -23.43
11 random within 1 761593.35 -25.65
12 random within 2 957421.59 -6.53
13 graph match cc 514845.18 -49.74
14 graph same cons cc 525640.75 -48.69
15 graph within 1 cc 683984.62 -33.23
16 graph within 2 cc 683984.62 -33.23
17 lifo match cc 517873.02 -49.44
18 lifo same cons cc 528668.61 -48.39
19 lifo within 1 cc 701895.34 -31.48
20 lifo within 2 cc 894791.85 -12.65
21 random match cc 522003.66 -49.04
22 random same cons cc 532799.23 -47.99
23 random within 1 cc 706025.77 -31.08
24 random within 2 cc 901854.01 -11.96

Table 12.3: Memory usage of the ICFP ray tracer configured with different CTGC
settings.

12.5. RAY TRACER, TAKE II 271

12.5.3 Basic Observations

Comparing the CTGC configuration of Table 12.3 with the corresponding config-
uration of Table 12.2, we see that the memory usage is slightly better than pre-
viously. This was expected as due to the bug-fix that now also enables reuse in
the else-branches of if-then-else constructs, more opportunities for reuse are de-
tected.

We observe that for the within 1 configurations, reuse is truly better, yet for
the within 2 constraint, we obtain much less reuse than in the old setting. This
can be explained by the larger set of dead cells that is now detected and the blind
allocation schemes that are used (lifo and random): indeed, the choice of the dead
cell for creating a new cell can sometimes be unfortunate as it imposes reuse con-
ditions that can not be met by all of the callers of the involved procedure, hence
limiting the overall reuse.

Table 12.3 allows us to compare the new graph based allocation scheme with
the basic schemes used before. As could be expected, the graph based configura-
tions (the graph entries in the table) yield better reuse results than the lifo and ran-
dom configurations. The superiority of the graph based approach can especially
be observed for the liberal reuse constraints within 1 and within 2 (compared to
these constraints in the lifo and random settings) where both give the same amount
of reuse.

12.5.4 Cell Caching

Just as in our elder setting, cell caching increases the overall memory reuse oppor-
tunities of the program (c.f. the cc entries of Table 12.3). The increase is especially
noteworthy for the CTGC configurations with the label preserving (same cons)
and matching arities constraints (match): without cell caching we obtain approx-
imately 25% of memory savings, while with cell caching, this saving can reach
almost 50%.

The effect of cell caching is much less spectacular for the more liberal selec-
tion constraints, i.e., within 1 and within 2. Recall that cell caching is only enabled
for cells that die unconditionally, hence, differences in number of derived reuse
conditions for the procedures in the different CTGC settings can not explain the
difference in reuse. Therefore, the only way we can explain the limited influence
of cell caching for the within 1 and within 2 configurations is that in these settings
more local reuses are detected, reuses that may also involve data structures that
die unconditionally. In other configurations these data structures will die un-
conditionally too, yet no matching construction will be found. With cell caching
enabled, this means that these data structures will be placed into the cell cache
and made available for global reuse. It suffices that the local reuses detected with
the within 1 and within 2 configurations cover less execution paths then the global
reuses of these same data structures in the other configurations, to explain the

272 CHAPTER 12. BENCHMARKS

lesser impact of cell caching on the global memory saving for the within 1 and
within 2 configurations. The current implementation of the CTGC system does
not allow a clear insight into this specific phenomenon, yet we believe that if it
would, it would only confirm the above expressed intuition.

Note that the same behaviour could already be observed in Table 12.2.

12.5.5 Time Profiling

We expected the same positive results for the time profiling as for the memory
profiling. Yet the opposite happens: while previously we had configurations
where the run-time could be reduced by almost 15%, here we have an increase
of almost that same amount, and hardly any configuration yielding any kind of
run-time decrease. The timings and also the number of run-time garbage collec-
tion interventions are shown in Table 12.4. A closer look into the timings (see
Appendix B for the complete details of the timings for each of the sceneries with
which the ray tracer was benchmarked) reveals that sometimes large memory
reuse comes along with large run-time reductions (e.g. scenery cylinder.gml
in the graph-match configuration uses 27% less memory than in the base case,
and takes almost 11% less time to render), yet even in the same configuration,
examples can be found where large memory reuse come with an increase in ex-
ecution time (scenery mtest7.gml in the graph-match configuration uses 23%
less memory, yet takes more than 12% of time to render). While these results left
us mystified in the first place, the only cause for that total change of behaviour
we could identify is the different run-time garbage collectors used in the both
CTGC systems. Indeed, between the elder version and the current version, the
mercury run-time system was upgraded to a new version of the Boehm garbage
collector6. We think that the effects of our local reuses probably counteract the
locality principles of the run-time garbage collector (RTGC). Indeed, the run-time
garbage collector is not aware of the explicit memory reuses introduced by our
CTGC system. This means that the set of heap cells considered live from the point
of view of the run-time garbage collector can be bigger than that set of heap cells
considered live without the allocations introduced by the CTGC system. With
this larger memory footprint, memory accesses become more expensive, and the
number of run-time garbage collection interventions increases. The last effect is
confirmed by the figures shown in Table 12.4.

This experiment makes clear how the CTGC can counteract the RTGC. It is
definitely worth a closer look to see how the CTGC and RTGC systems can be
tuned for a better cooperation.

6While the elder version uses gc6.0alpha6 , the upgraded version depends on gc6.1alpha5 .

12.5. RAY TRACER, TAKE II 273

Configuration Time GC
(sec) (%) (times) (%)

0 no CTGC 87.53 - 77924 -
1 graph match 87.97 0.50 89063 14.29
2 graph same cons 88.28 0.86 83824 7.57
3 graph within 1 86.09 -1.65 84102 7.93
4 graph within 2 86.10 -1.63 84102 7.93
5 lifo match 87.37 -0.18 82103 5.36
6 lifo same cons 87.17 -0.41 83624 7.31
7 lifo within 1 87.02 -0.58 81864 5.06
8 lifo within 2 93.24 6.52 91794 17.80
9 random match 87.61 0.09 82597 6.00
10 random same cons 86.87 -0.75 83855 7.61
11 random within 1 90.32 3.19 81804 4.98
12 random within 2 94.84 8.35 91842 17.86
13 graph match cc 93.93 7.31 77375 -0.70
14 graph same cons cc 94.42 7.87 75499 -3.11
15 graph within 1 cc 95.33 8.91 84166 8.01
16 graph within 2 cc 95.42 9.01 84166 8.01
17 lifo match cc 93.21 6.49 77346 -0.74
18 lifo same cons cc 95.15 8.71 75529 -3.07
19 lifo within 1 cc 96.17 9.87 84436 8.36
20 lifo within 2 cc 102.34 16.92 94180 20.86
21 random match cc 93.10 6.36 77545 -0.49
22 random same cons cc 94.95 8.48 75681 -2.88
23 random within 1 cc 95.46 9.06 81049 4.01
24 random within 2 cc 103.05 17.73 93162 19.55

Table 12.4: Time profiling of the ICFP ray tracer configured with different CTGC
settings. The last columns compare the number of run-time garbage collection
interventions during the execution of the ray tracer of the optimised ray tracer
w.r.t. the no reuse version.

274 CHAPTER 12. BENCHMARKS

12.5.6 Type Widening

In the early experiments with the ICFP ray tracer, compiling that ray tracer without
type widening was almost impossible, some of the modules requiring up to two
hours of compilation and analysis time. Taking into account that the occurrence
of programming errors in the CTGC system was still considerable at that stage,
and therefore, the compilation of the ray tracer had to be repeated very often,
type widening was a bare necessity.

With more modern hardware, the compilation and analysis time of those same
modules is now reduced to a couple of minutes: the full compilation of the ray
tracer, including the recompilation to take into account the mutual dependence of
the modules now takes 15 minutes without any widening, compared to 5 minutes
with widening. This new setting, together with a more stable CTGC system, en-
ables us to study the effect of type widening on the degree of reuse that can be
detected by the CTGC system. We can now compile the ray tracer with config-
urations where type widening is enabled at different thresholds, or even not at
all.

We compile the ray tracer using three different configurations: (1) a ray tracer
without any type widening, (2) a ray tracer in which only the bottleneck module
peephole is compiled with type widening (threshold 500) — this corresponds to
the default compilation setting used in the previous experiments — and (3) a ray
tracer in which every module is compiled with type widening using a threshold of
50 structure sharing pairs. Given the low threshold, the last configuration forces
type widening at each step in the analysis and can thus be seen as a fair simulation
of a pure type based approach. In such an approach all term and type selectors
are replaced by a description of the type that these selectors designate.

Astonishingly, type widening seems not to have any effect at all on the de-
tected opportunities for reuse as all three configurations yield exactly the same
final executable program, hence exactly the same reuses are detected. This is an
important observation in favour of the type based approaches as it shows that the
use of the complex term and type selectors can be replaced by the more modern
fully type based approaches while still guaranteeing precise analysis results.

See Section 12.7 for a further discussion on this issue.

12.5.7 Structure Reuse in the Mercury Standard Library

We also study a version of the ICFP ray tracer using a version of the Mercury
Standard Library in which structure reuse is enabled. Without giving the full de-
tails of the figures, the general tendency is that less memory can be reused com-
pared to the ray tracer configurations compiled with a library without structure
reuse.

A closer look into the code reveals that the conditional reuses appearing in
the library procedures propagate into new conditional reuses in the ray tracer

12.6. FINITE DOMAIN SOLVER 275

procedures. As a result these procedures become characterised with a set of reuse
conditions which become harder to meet by the callers of these procedures. Given
our policy of only producing two versions for each of the procedures — one with
full reuse, another with only unconditional reuse — calls to procedures with full
potential of reuses are now replaced by procedures with only the unconditional
reuses, hence, yielding an overall decrease in memory reuse opportunities.

This again illustrates that the policy of only creating two versions for each of
the procedures in which some reuse is detected can be too limiting for obtaining
good memory reuse behaviour.

Note that in the old ICFP ray tracer setting we did not observe a comparable
deterioration of the structure reuse results. The main reason is that in that old set-
ting, reuses in else-branches of the if-then-else goals were erroneously discarded,
hence less reuses were detected, yielding less reuse conditions.

12.5.8 Conclusion

In this new setting we have experimented with the graph based selection strategy.
This selection strategy outperforms any of the more naive strategies used earlier,
i.e., lifo and random. While liberalising the selection constraint allowing reuses
even when the arities differ in arity by one (widen 1) or by two (widen 2) has a
negative effect on memory reuse in the lifo and random settings, using the graph
based selection strategy, overall memory saving can be increased. Nevertheless,
the widen 1 and widen 2 constraints are not recommended in the presence of cell
caching.

Using this updated CTGC system that relies on a new run-time garbage col-
lector, we do not obtain the same gain in execution time as we did in our earlier
experiments. This reveals that a good cooperation between the CTGC system and
the RTGC system is essential to increase the effect of CTGC on execution times.

As a final conclusion from this experiment, we observe that for this particular
benchmark type widening has no effect on the amount of reuses detected by the
CTGC system.

12.6 Finite Domain Solver

Next to studying the CTGC system for fully deterministic Mercury code, we also
want to study its potential in a more non-deterministic setting. A good bench-
mark for this is the Finite Domain Solver ROPE (Vandecasteele 1999a), imple-
mented in Mercury, the resulting implementation being called MROPE II (Van-
decasteele, Demoen, and Janssens 2000; Vandecasteele 1999b).

The main goal of the experiment of compiling the MROPE II library and its
benchmarks using the CTGC system is to evaluate the effect of non-deterministic
code on the obtainable structure reuse. We also want to relate this effect to the

276 CHAPTER 12. BENCHMARKS

choice of one of the two proposed models for the simplified backward use deriv-
ations. The effect of choosing the right CTGC configuration is of less importance
here.

12.6.1 Description

MROPE II is written as a stand-alone library providing the necessary primitives
to express constraints, collect them in a constraint store, and finding solutions
for the obtained constraint systems. The Mercury code of the MROPE II library
presents the following characteristics:

lines of code 4000
modules 13
procedures 239
exported procedures 133
non-deterministic procedures 6
non-deterministic exported procedures 5

We slightly modify this library for the purpose of our analyses:

• The original library contains two modules that are not only mutually de-
pendent, but they also contain mutually recursive procedures each defined
in a different module. In such a setting, even the repetitive application
of the analysis will never yield good results for the structure sharing. As
such practices are considered as bad programming habits, we simply merge
these two modules.
• The library heavily relies on the Standard Mercury Library module bt_array

(defining a backtrackable array). While we still want to compile the bench-
mark with a Mercury Standard Library that is not optimised w.r.t. structure
reuse, we do recognise that not optimising this module severely limits the
effects of our CTGC system. We therefore explicitly include this library
module into the the MROPE II library in order to allow structure reuse to
be detected in that module too. This module has been taken into account in
the characteristics summarised above.
• The module non_logical_io contains procedures for performing I/O imple-

mented using side effects. As a result, these procedures can be used in
a non-deterministic context yet their use breaks the pure declarative nature
of the code and therefore limits the compiler in its possibilities of reordering
the code. The use of these procedures has no actual influence on the CTGC
system, except that, in order to obtain satisfying results w.r.t. precision, we
explicitly add annotations that declare that none of these procedures add
any extra structure sharing (c.f. Page 251).

The non-deterministic procedures defined in the MROPE II library are the
procedures searching for solutions of the constraint store.

12.6. FINITE DOMAIN SOLVER 277

loc #proc #nondet
queens 66 5 0
bridge 450 22 10
bridge1 450 23 11
suudoku 230 18 2
perfect 150 14 1
eq10 80 5 1

Table 12.5: Technical details of the benchmarks used for the MROPE II library
(loc = lines of code, #proc = number of procedures, #nondet = number of non-
deterministic procedures)

The benchmarks used for the MROPE II library include some typical CLP (Jaf-
far and Maher 1994; Stuckey and Marriott 1998) problems: queens — solving the
queens problem, bridge (Van Hentenryck 1989), bridge1 (a variation on bridge), and
suudoku – solving a Japanese puzzle. Other smaller benchmarks that we also used
as a benchmark are perfect (generating so called perfect squares), and eq10 (solving
a set of mathematical equations).

Each of these benchmarks is implemented as a separate module. The technical
details of these modules are listed in Table 12.5. Note that each of these modules
only exports one predicate/procedure, namely the main/2 procedure.

We compile the library and its benchmarks in one single CTGC configura-
tion: we use the graph based allocation scheme, restricting reuses to data struc-
tures having the same constructor. Initially we restricted the data structures to
be matching, yet it appears that too much reuse is detected to be useful due to
the limited number of versions that we generate per procedure, hence our more
strict constraint. Cell caching is enabled, although hardly any of the reuses in this
library can be accounted to global reuses. As always, we use a Mercury Standard
Library that is not optimised w.r.t. structure reuse.

12.6.2 Results

We compile the finite domain solver and its benchmarks with the two presented
simple instantiations of the backward use information. We obtain the memory
usage results shown in Table 12.6. The column labelled NoR details the memory
usage (in kilo-Words) of the benchmarks compiled without CTGC. The entries R1
and R2 refer to the absolute memory usage for the benchmarks compiled using
bu1, and bu2 resp. (c.f. Section 7.3.2). The relative memory improvement due
to CTGC with either of the backward use definitions, compared to no CTGC is
represented in the columns labelled r1, resp. r2. More specifically: r1 = (NoR−
R1)/NoR ∗ 100, and r2 = (NoR− R2)/NoR ∗ 100. The columns labelled cr1 and

278 CHAPTER 12. BENCHMARKS

NoR R1 R2 r1 cr1 r2 cr2
(kW) (kW) (kW) (%) (%) (%) (%)

bridge 12695.19 12694.19 12681.26 -0.01 -0.01 -0.11 -0.11
bridge1 48225.34 48225.27 48212.34 -0.00 -0.00 -0.03 -0.03
eq10 1042.67 951.65 951.45 -8.73 -16.77 -8.75 -16.81
perfect 2890.35 2889.20 2889.20 -0.04 -0.05 -0.04 -0.05
perfect* 2890.35 2889.20 1416.22 -0.04 -0.05 -51.00 -61.67
queens (8) 4169.48 4022.61 4022.41 -3.52 -4.00 -3.53 -4.01
suudoku 9810.00 9808.62 7775.51 -0.01 -0.01 -20.74 -21.85

Table 12.6: Memory usage of the MROPE II benchmarks where NoR = No Reuse,
in kilo-Word; R = Reuse, in kilo-Word; r = relative decrease in memory usage (i.e.,
(NoR− R)/NoR), in percent; cr = corrected relative decrease in memory usage, in
percent.

cr2 is a corrected relative memory improvement. Indeed, a closer look into the
workings of the finite domain solver reveals that before any constraint can be
added to the constraint store, this constraint store is initialised. This initialisation
consists of creating an array of size 100000. This represents a fixed cost of 500 kilo-
Words, which, for benchmarks of small or even medium size is not negligible.
The corrected entries therefore remove that fixed cost from the absolute memory
usage before computing the relative memory improvement. Thus, cr1 = (NoR−
R2)/(NoR− 500) ∗ 100, and cr2 = (NoR− R2)/(NoR− 500) ∗ 100.

12.6.3 Overall Reuse

Overall, we see that even in the presence of non-deterministic code, some form
of memory reuse is still possible. As could be expected, using the second instan-
tiation of the backward use definition yields better results. This can easily be
explained by the fact that less variables are considered to be in backward use,
and therefore, potentially, more data structures can be detected to be dead.

12.6.4 Clean CLP-formulation

Taking a closer look into the definition of the constraint problems, we see that
those constraint problems that clearly separate the phase of defining the con-
straints from the phase of actually solving these constraints yield better reuse
results than those problems in which that separation is less clear. The lack of
that separation is for example the case in the bridge problem and even worse, in
bridge1.

Two aspects are involved in this. First, deterministic code remains a more
suitable playground for structure reuse than non-deterministic code. As defining

12.6. FINITE DOMAIN SOLVER 279

constraints is a pure deterministic matter, it can be expected that optimising the
construction of these constraints is usually easier than the non-deterministic pro-
cess of solving them. The second aspect is related to the fact that both building
constraints, and solving constraints, are expressed with procedures manipulating
the so called constraint store. Each of these procedures takes as input one state of
that constraint store, and produce as output a new state of that store. Obviously,
the two states will be related by means of structure sharing. As long as the pro-
cedures are deterministic, destructive updates by means of structure reuse can be
allowed. Yet, at the first occurrence of a non-deterministic procedure handling
that store, all the subsequent procedures will not be allowed to reuse parts of that
store as we must guarantee that that first non-deterministic procedure call con-
tinues to have access to exactly the same input store on each of the possible back-
trackings within that procedure. The following sketch of code illustrates these
aspects:

Example 12.1 Let us assume that the MROPE II library defines the (abstract) types
constraint and store, and two procedures declared as follows:

:− pred addConst ra in t (co n s t ra i n t , s tore , s to re) .
:− mode addConst ra in t (in , in , out) i s det .
:− pred solve (s tore , s to re) .
:− mode solve (in , out) i s nondet .

Let us assume that the CTGC system has detected possibilities of reuse within each of
these procedures, and has therefore generated the adequate reuse versions.

Now consider the sketch of a first constraint problem, expressed through a procedure
called problemA:

problemA :−
. . . , % some d e t e r m i n i s t i c code . . .
addConst ra in t (C1, S1 , S2) ,
addConst ra in t (C2, S2 , S3) ,
addConst ra in t (C3, S3 , S4) ,
so lve (S4 , S5) ,
so lve (S5 , S6) ,
. . . ,

and a second constraint problem, defined using a procedure problemB:

problemB :−
. . . , % some d e t e r m i n i s t i c code . . .
addConst ra in t (C1, S1 , S2) ,
so lve (S2 , S3) ,
addConst ra in t (C2, S3 , S4) ,
so lve (S4 , S5) ,
addConst ra in t (C3, S5 , S6) ,
. . . ,

280 CHAPTER 12. BENCHMARKS

In problemA, the process remains deterministic up to the first call to solve. This means
that the three calls to addConstraint can probably be optimised and therefore replaced by
the adequate reuse versions. The first call to solve might also allow some form of reuse as
that call has the last and unique access to the store represented by variable S4. Yet given
the fact that S4 must be kept intact, and that S5 will probably have some sharing with S4,
the literal solve(S5,S6) will not be able to reuse any parts of S5. Hence, reuse in procedure
problemA is possible in the three calls to addConstraint and in the first non-deterministic
call, in this case, the first occurrence of solve.

If we repeat this reasoning for problemB, where non-deterministic calls are intermixed
with deterministic calls, we can see that structure reuse can only be allowed in the first
occurrence of addConstraint and in the first occurrence of solve. All subsequent literals
deal with a store that has some form of structure sharing with the store used by the first
call to solve, and therefore no structure reuse of the store is possible in these literals.

Another common practice in describing CLP-problems is to write the addition of con-
straints into a constraint store as a non-deterministic disjunction itself:

problemB :−
. . . , % some d e t e r m i n i s t i c code . . .
(addConst ra in t (C1, S1 , S2)
; addConst ra in t (C2, S1 , S2)
) ,
addConst ra in t (C2, S2 , S3) ,
so lve (S3 , S4) ,
. . . ,

This reflects the idea that one does not know which particular constraint yields the
desired end result. In that setting, the non-deterministic disjunction adds the input store
to the set of backward use variables, limiting the possibilities of further reuse within the
constraint store just like described for procedure problemB above.

Relating the previous example to the benchmarks of the MROPE II system,
we see that the CLP problems bridge and bridge1 follow the scheme of problemB in
our example, while most of the other benchmarks resemble more the problemA-
procedure.

For such examples we may expect a slightly better structure reuse behaviour
using an analysis based approach to backward use structures, yet even with this
increased precision, the effect of CTGC will be limited simply because the prob-
lems themselves do not leave much room for CTGC to take action. With programs
where the data structures handled by the non-deterministic procedures are less
connected via structure sharing the CTGC system can probably achieve much
better results.

12.6. FINITE DOMAIN SOLVER 281

12.6.5 Limiting the Reuse Opportunities

With benchmark perfect we again encounter the problem that the CTGC system
detects too many opportunities of reuse for some of the procedures, therefore
obtaining too harsh reuse conditions, hence limiting the overall memory reduc-
tion. In this case, it may be useful to allow the programmer to use a pragma
enabling her/him to tell the compiler that reuse should mainly be focused on the
constraint store which is the central data structure for constraint solving prob-
lems, and not be allowed for other structures that are used less consistently. In
the precise case of perfect, some procedures not only contain calls to some of the
well-optimiseable procedures of the MROPE II library, but also try to locally re-
use simple list(T) cells.

We manually change these procedures in such a way that reuse of these list-
cells can not be detected anymore. This results in a new version of the perfect
module, listed in Table 12.6 as perfect*. While without that modification, hardly
0.05% of the memory usage is saved, we now have a dramatic memory reduction
of up to 61%.

12.6.6 Deterministic Versus Non-deterministic code

We can observe that while structure reuse is to some extent also detected in non-
deterministic procedures, the main target for the CTGC system remains the de-
terministic part of a program. Therefore, for those problems in which the determ-
inistic part is more important than the actual search, large memory savings can
be expected and are indeed observed. On the other hand, for problems that are
dominated by the non deterministic search, the memory savings are much less.
This is the case for the queens benchmark. A closer look into the memory pro-
filing of that benchmark shows that the memory use of its deterministic part is
reduced by up to 88% when compiled with CTGC enabled, while only 0.06% can
be saved in the actual search. Solving the queens-problem with six queens will
therefore reveal a larger memory saving using CTGC then solving that problem
with eight queens.

12.6.7 Conclusion

The goal of studying the MROPE II library and its benchmarks in the context
of the CTGC system was to evaluate the effect of non-deterministic code on the
amount of structure reuse that can be obtained.

We observe that even in the presence of non-deterministic code, our CTGC
system is still able to detect local reuses. This means that the approximation of the
backward use information using Instantiation 2 (Section 7.3.2) can be considered
as sufficiently precise for this benchmark. Nevertheless, structure reuse is mainly
effective in deterministic procedures. If the non-deterministic searches become

282 CHAPTER 12. BENCHMARKS

relatively more important than the deterministic parts of the program, less overall
memory saving can be expected.

In some situations, the CTGC system detects too many reuse opportunities
for the optimised procedures to be usable. This phenomenon was also observed
in the previous experiments, yet here we were able to clearly identify the over-
optimised procedures. By rewriting them, thus forcing the system not to recog-
nise some of the reuses, the overall memory saving could be dramatically in-
creased.

12.7 Discussion and Further Improvements

The study of the benchmarks, whether small or medium-sized, has learnt us that
the memory usage of programs can be greatly reduced by means of program ana-
lysis enabling local structure reuse or cell caching. However, some open issues
remain. We discuss these problems, possibly presenting interesting alternatives
or guidelines for future work and future experiments.

Type Widening versus Type Based Analysis The experiments performed with
the more recent CTGC implementation made the study of the effect of type widen-
ing feasible on a larger scale. As it appears, the loss of precision due to type
widening is limited. This illustrates the potential for the so called type based
analyses where the use of the archaic and complex term and type selectors is
replaced by types (Bruynooghe, Codish, Gallagher, Genaim, and Vanhoof 2003;
Bruynooghe, Codish, Genaim, and Vanhoof 2002; Codish, Genaim, Bruynooghe,
Gallagher, and Vanhoof 2003; Lagoon, Mesnard, and Stuckey 2003; Lagoon and
Stuckey 2001), Clearly, type widening allows for faster analyses, hence, type
based analyses can in general be expected to be faster than term-selector based
analyses.

Still, further experiments would be helpful in really identifying the impact of
type based analyses, and the obtained precision.

On a more formal basis, the only adaptation required for adapting the cur-
rent CTGC system to using types is to adapt the definition of the abstract data
structure. The adaptation of all depending domains follows naturally.

Structure Sharing: Space versus Time In the theoretical foundation of the im-
plemented CTGC system we describe that liveness information is derived dir-
ectly from the structure sharing annotations that we assume to be derived prior
to the liveness analysis pass. However, in the current CTGC implementation, we
have traded space for time, and re-derive structure sharing at the moment live-
ness information is computed, using only the goal-independent exit-descriptions
of the analysed procedures.

12.7. DISCUSSION AND FURTHER IMPROVEMENTS 283

Given the fact that computing local structure sharing information can be a
complex operation (given the complexity of the alternating closure operation), it
can be interesting to study the behaviour of the CTGC system in case the local
structure sharing is recorded as program point annotations. Obviously, only de-
construction unifications and procedure calls should be annotated.

Modularisation: Intelligent Compilation Process In our experiments, espe-
cially in the larger benchmarks, recompilation of the modules was required to
correctly deal with mutually dependent modules. In the case of the ICFP ray
tracer, the program needed to be compiled three times before reaching a fixpoint,
for the finite domain solver, up to five passes were required. Clearly, a more
modern approach is needed to handle the intermodule dependencies in such situ-
ations. Adapting the CTGC to the new compilation scheme according to (Bueno,
García de la Banda, Hermenegildo, Marriott, Puebla, and Stuckey 2001) becomes
mandatory. An interesting starting point for adapting our analyses is (Nether-
cote 2001) studying program analysis in the context of HAL (Demoen, García de
la Banda, Harvey, Marriott, and Stuckey 1999).

Versioning As illustrated by our benchmarks, the CTGC system easily detects
too many opportunities for reuse. While this illustrates the strength of the under-
lying analyses, it also illustrates the weakness of our versioning heuristic: too
many opportunities can mean too harsh safeness conditions, hence limiting the
overall actual memory reuse.

A first simple solution to this problem is to give the programmer a tool allow-
ing her/him to express his interest (or lack thereof) of reusing specific terms. In
the constraint problem perfect we drastically augmented the overall memory re-
use by luring the compiler into believing that some of the terms are unsafe to be
reused. A simple pragma telling the compiler not to reuse terms of that specific
type would have been easier.

While many different heuristics or new language constructs can be found or
invented, a more interesting and fundamental approach is to consider the ver-
sioning problem as a new analysis domain in its own right. In Chapter 13 we
give a first tentative formulation for deriving so called optimisation properties,
in our view a mandatory stepping stone towards a formal approach to deriving
and studying the different optimised versions that can be obtained for each single
procedure (or other language entity to be optimised) defined in a program.

CTGC meets RTGC In our first experiments with the ICFP ray tracer, we ob-
tained speed-ups of up to 10% (and for particular sceneries we even reached fig-
ures of up to 17%). This was extraordinary, and made us feel euphoric about
the potential of compile-time garbage collection. To some extent we can say that
luckily, the second series of experiments did not yield these same speed-ups. This

284 CHAPTER 12. BENCHMARKS

allowed us to identify the fact that speed-ups can only be obtained if the memory
reuse possibilities identified by the CTGC system stroke with the locality prin-
ciples of the run-time system and its garbage collector. This is an interesting re-
search topic on its own, and we believe that by fine-tuning the CTGC and RTGC
systems for a good inter-operation, real speed-ups can certainly be guaranteed.

Higher Order Language Features Currently, we ignored the aspect of higher-
order programming as if it is not part of the language. Yet even in our ray tracer
benchmark, higher order calls are present. Indeed, the ray tracer relies on ba-
sic exception-handling facilities which are implemented as higher-order calls. It
also uses the classic map, foldl , filter procedures defined for manipulating list
structures.

As such, higher-order calls are not handled at all by our CTGC system. Yet
it appears that all the higher-order elements in the ray tracer are specialised into
plain first-order predicates. The code that the CTGC system therefore handles is a
simple first-order logic program, yielding the interesting results discussed earlier.

This seems to suggest that in the presence of a good performing higher-order
specialising compiler, there is no real need to extend the CTGC system to cope
with higher-order language features itself. Moreover, such an extension is far
from trivial. We refer the reader to (Vanhoof 2001) where first-order binding-time
analysis for first order Mercury is adapted for higher-order language constructs.

The Ultimate Benchmark As for now, only relatively small benchmarks are
studied for the CTGC system. This was deliberate as these benchmarks were used
to debug the system, to study the behaviour of the system, to study the missed
reuse opportunities, in short: the programs needed to be small enough to be able
to verify the results. In the near future, we hope to incorporate the CTGC system
into the main branch of the MMC7 in order to obtain a stable and reliable product
in which case we hope to be able to analyse the ultimate benchmark, which is
the Melbourne Mercury Compiler itself. Indeed, this compiler is mostly written
in Mercury. As previously exposed, there are two main structures that are used
within that compiler: the high level data structure (HLDS) and the low level data
structure (LLDS). These structures are handled, transformed, adapted by each of
the compiler passes, and at first sight these structures seem ideal candidates for
being updated destructively. Other structures, such as lists, maps, trees, also offer
a great potential for structure reuse.

7Currently, the CTGC system is implemented in a separate branch of the compiler.

12.8. CONCLUSION 285

12.8 Conclusion

A major contribution of this work is the integration of the CTGC system in the
Melbourne Mercury Compiler and its evaluation. Some small benchmarks were
used, but also two medium-sized real-life and more complex programs were con-
sidered: a ray tracer (mostly deterministic code) and a finite domain solver (with
non-deterministic search procedures).

For all our benchmarks we obtain considerable memory savings (up to 50%
for the ray tracer) depending on the CTGC configuration used. We observe that
in general the best results are obtained with the graph based selection strategy,
while allowing reuses with differing arities between the deconstructions and the
constructions is not recommended in the presence of cell caching. The CTGC
system performs well, even in the presence of non-deterministic code, although
of course the reuse within the non-deterministic code itself remains inherently
limited.

The experiments make clear that time speedup is not necessarily a consequence
of memory savings as this depends on the run-time system. A good cooperation
with the run-time garbage collector becomes mandatory.

286 CHAPTER 12. BENCHMARKS

Chapter 13

Optimisation Derivation
System

In the previous chapters we have taken as a heuristic that for each procedure
at most two versions are generated: a version that is always safe to call (and
that at most implements the unconditional forms of data structure reuse), and a
version that implements all forms of detected reuses yet that imposes a number
of conditions on calls to that version. This heuristic is simple and safe, yet may
lead to poor results if too many opportunities for reuse in procedures are detected
w.r.t. the actual uses of these procedures. In such cases we want to be able to find
more refined versions instead of only these two.

In this chapter we develop a so called optimisation derivation framework. The
idea is to derive descriptions of possible optimisations within a procedure in a
goal-independent way. This characterisation of the optimisation opportunities
gives a basis to a better understanding of the optimisation possibilities of the code
such that better heuristics can be derived, and more versions can be generated,
but having the guarantee that no two versions with same optimisations will ever
be created.

The framework is developed in a generic way using again the denotational
approach. We instantiate it for the domain of reuse information and discuss the
results.

13.1 Introduction

A recurring problem that most optimising compilers or program transformers
face is the problem of generating the adequate versions for each program entity
that can be optimised in order to obtain a sufficiently optimised program (Mazur,

287

288 CHAPTER 13. OPTIMISATION DERIVATION SYSTEM

Ross, Janssens, and Bruynooghe 2001; Vanhoof and Bruynooghe 1999; Leuschel,
Martens, and De Schreye 1998; Henglein and Mossin 1994; Puebla and Hermene-
gildo 1999a). In a logic programming setting, the entities to be optimised are for
example predicates or in our case procedures. If each procedure can be optimised
in a number of different ways, it is important to know which versions are inter-
esting. If too many versions are generated, the size of the transformed program
may become too large with respect to the efficiency gained by the optimisations
that these versions allow. On the other hand, if the version generation policy is
too restrictive, the program may be suboptimal, and still not as efficient as one
might have hoped.

A classic way of guiding the version generation process during the transform-
ation of a program is to use a top-down program analysis system that is able to
detect the different uses of a predicate (Puebla and Hermenegildo 1999a; Vanhoof
and Bruynooghe 1999; Leuschel, Martens, and De Schreye 1998). For each use of
a predicate, an adequate optimised version is generated leading to the so called
multiple specialisation of that predicate. Usually, this top-down approach still gen-
erates too many versions, therefore a separate pass dealing with this multiple
specialisation of the program may be needed (Puebla and Hermenegildo 1999a;
Winsborough 1992). Another disadvantage of these approaches is that for each
new use of a predicate — characterised by a different call description, the pro-
gram needs to be reanalysed as the underlying analyses can not guarantee that
the optimisations are safe for call descriptions differing from the descriptions
with which the predicate was already analysed. Finally, none of these global
approaches work well in the presence of modules.

In our work on CTGC, a typical example of program optimisation, we use a
different approach. For each procedure we generate at most two versions: a plain
non-optimised version that is always safe to call, and a fully optimised version
that can only be used if the caller of the predicate meets the (harsh) conditions in
order to guarantee that all the optimisations are safe. Obviously, there is no risk
for code explosion, yet a lot of intermediate opportunities for optimisations are
missed, as was illustrated by some of our benchmarks.

The common problem in the above approaches is that, although we are able
to spot the optimisations, we do not have an adequate mechanism for collecting
and comparing the possible optimisations before the actual versions are created1.
Therefore, we have developed an optimisation derivation system which is actually
an analysis tool that is capable of spotting possible optimisations and relating
these optimisations to the calls for which they are safe. Indeed, if we can collect
the set of possible optimisations within a predicate and relate each optimisation
to a requirement on the call descriptions of that predicate, then we can (automat-
ically) reason about the versions that are interesting to generate. Some examples:

1In (Puebla and Hermenegildo 1999a) the optimisations are compared once all the versions have
been characterised.

13.1. INTRODUCTION 289

• If more than one optimisation is spotted for the same call description, then
this may be a reason for generating a version with the corresponding optim-
isations. Translated in terms of CTGC, if two deconstructions (with match-
ing constructions that can reuse the deconstructed data structures) are char-
acterised by the same reuse information tuple, then a version implementing
both reuses might be of interest, as two reuses are obtained with only one
single reuse information tuple limiting the use of the obtained reuse version
of the procedure.

• For recursive procedure definitions it is more interesting to enable optimisa-
tions that can also be performed in each of the recursive calls then to obtain
versions in which only the first call of the procedure has interesting optim-
isations enabled, while none of the recursive calls in that call can profit from
these optimisations. In terms of CTGC in the context of a list-manipulating
procedure, it can for example be more interesting to focus on the reuses of
the list-cells that are consecutively deconstructed in each of the recursive
calls, then to envisage reuses of spurious small data structures.

Moreover, the relation between possible optimisations and a description of the
calls that allow them is also interesting feedback to the programmer: Why can an
atom at some program point not be optimised? How does a predicate need to be
called in order to profit from the full optimisation potential? Finally, it can also be
seen as a step towards conceptually separating the analysis of a predicate from
the version generation process which depends on it, opening the field for better
insights into the latter problem.

We assume that the input to our optimisation derivation system is a goal-
independent annotation table containing annotations that are needed to decide
the intended optimisations. In the context of CTGC, where intended memory op-
timisations depend on liveness analysis which itself depends on possible struc-
ture sharing and forward/backward use information, we therefore expect that
all underlying information is already at hand before reasoning about the reuse
information that depends on it. As already mentioned, we assume that these an-
notations are goal-independent and that they can be used to approximate goal-
dependent situations using the appropriate combination operator, in this text
consistently denoted by comb. This is not too much of a restriction, as we want
to continue to be able to support modular programming which requires a goal-
independent based approach to program analysis anyway. The precision of the
resulting approximated goal-dependent descriptions has an effect on the pre-
cision of the optimisations that can be derived. For domains that satisfy the
equivalence conditions required by Theorem 5.4 we have a guarantee that the
goal-dependent information based on the goal-independent annotations will al-
ways be as precise as the goal-dependent information derived by a separate goal-
dependent analysis. In the case of our structure sharing analysis, we have that

290 CHAPTER 13. OPTIMISATION DERIVATION SYSTEM

the underlying concrete structure sharing domain satisfies the equivalence con-
ditions, hence approximating the information in a goal-dependent setting is as
correct as approximating it in the goal-independent based setting. Moreover, as
the abstract structure sharing domain is not idempotent, the results of the dif-
ferential approach as well as the results of the goal-independent based approach
will in general be more precise then the results obtained in a goal-dependent
setting. Nevertheless, in the optimisation derivation framework derived in this
chapter we do not explicitly require the basic domain to satisfy the equivalence
conditions, although of course, it can be an advantage if it is.

Given a specification of the intended type of optimisation and a correctly an-
notated program, our analysis is able to identify all the literals within the pro-
gram that can potentially be optimised with respect to this specification. This
means that our optimisation derivation system intrinsically overestimates the op-
timisation opportunities. As a consequence extra care is needed when using the
obtained results for generating the appropriate safe versions. In general, this
may mean that some of the requirements for optimisation may have to be veri-
fied again. It is possible to avoid this overestimation, but then we need a way
to limit the number of optimisations we keep, hence, we need heuristics limiting
the number of versions, which ultimately leads us back to the original versioning
problem.

The main contribution of this chapter is a framework that embodies our novel
approach to the characterisation of the optimisation opportunities within a pre-
dicate. We identify each optimisable literal by a description of the calls for which
the optimisations are safe. Therefore, given a specific call description it becomes
straightforward to verify what optimisations it allows.

13.2 Concrete and Abstract Domains

We use the top-down collecting semantics (Cousot and Cousot 1977) for which
the concrete semantics of logic programs is expressed in terms of elements from
a domain C. As usual, C is required to be a complete lattice: 〈C ,⊆,∪,∩,>C ,⊥C〉.
The abstract counterpart of C is a domain 〈A,v,t,u,>A,⊥A〉. To ensure a ter-
minating fixpoint computation, we require this domain to be Noetherian2. Both
domains capture the information that is necessary for detecting the intended op-
timisations. While C captures the relevant parts of the program environments
as they occur while executing the program, A approximates these environments
at compile-time. In most cases this relevant part describes the variable bindings
as they occur at each stage of the program, limited to the variables occurring in
the context of the procedure that is being executed or considered. The domain

2Recall that Noetherian domains are domains in which all ascending chains have finite
length (Marriott, Søndergaard, and Jones 1994), c.f. Chapter 2.

13.2. CONCRETE AND ABSTRACT DOMAINS 291

of idempotent variable substitutions but also the domain we mainly used in this
thesis of existentially quantified ex-equations ℘(Eqn+) are typical concrete do-
mains. As other elements of the run-time environment can be of interest too —
such as structure sharing for our CTGC system, we do not limit ourselves to these
two typical concrete domains.

We require that the concrete and abstract domains are connected by a mono-
tone, strict (i.e., γ⊥A = ⊥C) and co-strict (i.e., γ>A = >C) concretisation func-
tion γ : A → C. Note that the strictness property was not required in our earlier
chapters, yet here it will be used to characterise the absence of possibilities of op-
timisation. We use the same terminology of call descriptions and exit descriptions
depending on whether the descriptions represent the calls of specific procedures
or the exit situation after completion of a call to a specific procedure. We also use
the same terminology and notation of safe approximation: let δ ∈ A, and σ ∈ C,
then δ is said to be a safe approximation of σ , denoted by δ ∝ σ , iff σ ⊆ γ(δ).

We assume that both the concrete and abstract domain are used in the context
of a goal-independent based semantics of the Mercury language. In that context,
let AC denote the goal-independent annotation table obtained by instantiating
SemM?p with the concrete domain C and auxiliary operations {initC , combC , addC},
and AA denote the goal-independent annotation table for the abstract domain A
in the semantics SemM?p with the instantiated operations {initA, combA, addA}.
If σ ∈ C, resp. δ ∈ A, represents an actual call description of a procedure p, and
i ∈ pp(p), then combC(σ , AC(i)), resp. combA(δ, AA), correctly represents the
call description at program point (i) (before the literal at (i) is actually performed)
when p is called with call description σ , resp. δ. Note that the particular selection
rule is implicitly present through the goal-independent annotation tables.

We provide the following explicit definition of the safeness of the goal-inde-
pendent annotation AA w.r.t. AC .

Definition 13.1 (Safeness) Let p be a procedure such that program point i ∈ pp(p),
then the goal-independent annotation AA(i) is safe w.r.t. the goal-independent annota-
tion AC(i) and the combination operations combA and combC for the abstract, resp. con-
crete domains, if and only if ∀σ ∈ C , δ ∈ A where δ ∝ σ , we have combC(σ , AC(i)) ∝
combA(δ, AA(i)).

A goal-independent annotation table AA : pp → A is safe w.r.t. a concrete an-
notation table AC : pp → C and the combination operators combA and combC iff each
goal-independent annotation within this annotation table is safe w.r.t. the concrete an-
notation.

292 CHAPTER 13. OPTIMISATION DERIVATION SYSTEM

13.3 Intuitive Example

Suppose we want to identify the unifications of the form X = f (Y1, . . . , Yn) that
can be compiled into deconstructions, assuming that some interesting optimisation
can be done for such unifications. Note that this is a pure hypothetical setting,
and has no other purpose than to illustrate our approach as such information is
normally available through the mode-information declared and inferred in Mer-
cury programs. One possible way to discover and optimise such deconstructions
is to use a standard polyvariant groundness analysis (Marriott and Søndergaard
1993; Heaton, Abo-Zaed, Codish, and King 2000; Howe and King 2000) system.
But such analyses are typically used to derive success descriptions for predicates,
while we are interested in deriving specifications of call descriptions.

Consider the code of predicate append in general, thus assuming general uni-
fications instead of specialised ones:

append (X,Y, Z) :−
(

(1) X = [] ,
(2) Z = Y

;
(3) X = [Xe | Xs] ,
(4) append (Xs , Y, Zs) ,
(5) Z = [Xe | Zs]

) .

Our goal is to describe the call descriptions for append for which some or all of
the unifications, either in the first call or in its recursive calls, are deconstruction
unifications.

In order to decide when unifications become deconstructions, mode inform-
ation is needed, i.e., we need to be able to determine when variables become
ground. In the concrete domain, this information can be expressed using exist-
ential term-equations which we can abstract by either using the domain of def-
inite boolean functions Def (Howe and King 2000), or the more precise domain
Pos (c.f. Chapter 5). Let Def⊥ and Pos⊥ be the domains Def and Pos resp., ex-
tended with the bottom element false, then these domains are complete lattices:
〈Def⊥, |=,∨,∧, true, false〉 and 〈Pos⊥, |=,∨,∧, true, false〉. Both domains can be re-
lated to the concrete domain ℘(Eqn+) using the concretisation function defined
for Pos⊥ in Example 5.7 (Page 73). Recall that for both domains false represents
the empty set of concrete variable bindings, hence reflects a failing derivation.

Figure 13.1 gives the goal-independent annotation table for append in terms of
the abstract domain Def⊥ but also in terms of the domain Pos⊥ as in the latter the
same table would have been obtained. We denote this table using Ag, where g is
used as a superscript to refer to the groundness information that it records. Both
domains use the same combination operation, namely combPos⊥ = combDef⊥ = ∧

13.3. INTUITIVE EXAMPLE 293

(c.f. Example 5.7). This table is safe w.r.t. ℘(Eqn+) and the concrete combination
operation comb℘(Eqn+) (Definition 5.6). Indeed, if δ ∈ Pos⊥ is a call description of
the procedure append, and i ∈ pp(append), then Ag(i) ∧ δ is a safe description of
the groundness information for each individual program point (i).

pp Ag(pp)
1 true
2 x
3 true
4 x↔ xe ∧ xs
5 (x↔ xe ∧ xs) ∧ (zs ↔ xs ∧ y)

Figure 13.1: Goal-independent annotation table Ag for predicate append in terms
of Pos⊥ (and Def⊥).

Using the goal-independent annotation table, we want to be able to relate call
descriptions with the intended optimisations. As these optimisations are only
possible if a unification turns out to be a deconstruction, we need to express this
fact as a kind of condition that needs to be satisfied by the literal. In our case,
a unification X = f (Y1, . . . , Yn) is a deconstruction if X is ground. In terms of
the domains Pos⊥ and Def⊥ this means that if the abstract call description δi ∈
Pos⊥ (or Def⊥) where i = pp(X = f (Y1, . . . , Yn)) is such that δi |= x, then the
unification is indeed a deconstruction. The condition of X needing to be ground,
here expressed by the simple abstract description x ∈ Pos⊥ (or Def⊥), is called
the minimal requirement for optimising the unification X = f (Y1, . . . , Yn). We
shall systematically denote descriptions used in the role of minimal requirement
by the letter µ. The columns in Figure 13.2 and Figure 13.3 labelled µpp (under
“iter 1”) show the (renamed) minimal requirements for the unifications in append
to become deconstructions.

Given these minimal requirements expressed at the level of the individual
unifications, we now need to find how to reason about the call descriptions for
append that would allow the optimisations implied by these minimal require-
ments. Consider a call description δ for append. We will now study the unific-
ation at program point (3). From the safety of the goal-independent annotation
table, we can check whether the unification at (3) is a deconstruction by verifying

Ag(i) ∧ δ |= µi (13.1)

for i = 3. We can use Equation (13.1) for deriving the most general call description
δ′i for which µi is satisfied and thus for which the optimisation is safe. Such a
most general call description is interesting as indeed, for each call description δ

that is subsumed by that most general description, optimisation is automatically
allowed: ∀δ |= δ′i , if δ′i satisfies Equation (13.1), then so does δ.

294 CHAPTER 13. OPTIMISATION DERIVATION SYSTEM

iter1 iter2
pp µpp δm

pp µpp δm
pp

1 x x x x
2 − − − −
3 x x x x
4 − − true true
5 z z z z

x ∨ z = true true

Figure 13.2: Gathered Def⊥-information for predicate append . µpp are minimal
requirements, δm

pp are call requirements. In Def⊥ we obtain that every call has a
possibility of optimisation, hence an overestimation.

iter1 iter2
pp µpp δm

pp µpp δm
pp

1 x x x x
2 − − − −
3 x x x x
4 − − xs ∨ zs x
5 z z z z

x ∨ z x ∨ z

Figure 13.3: Gathered Pos⊥-information for predicate append . µpp are minimal
requirements, δm

pp are call requirements. In this domain, append can be optimised
if either X or Z is ground.

The point is now to define that most general call description w.r.t. a given other
description. In the literature (Giacobazzi and Scozzari 1998; King and Lu 2002)
the most general call description w.r.t. the bottom element of the lattice domain is
usually called the pseudo-complement of that bottom element. Finding the most
general call description w.r.t. any other element of the lattice is called the relative
pseudo-complement. In both cases, the pseudo-complement is specifically defined
in terms of the greatest lower bound operation defined in that lattice. As we are
interested in finding most general descriptions w.r.t. any other combination oper-
ation defined in the lattice domain, we generalise the notion and define a general
relative pseudo-complement of the specific call description w.r.t. a specific combina-
tion operation, which we will simply abbreviate to general pseudo-complement.

In the context of the domain Pos⊥, the combination operation with which call
descriptions are combined is simply the greatest lower bound operation, hence
the pseudo-complement operation is identical to the general pseudo-complement,
and is in this case simply the logical implication (Giacobazzi and Scozzari 1998).

13.3. INTUITIVE EXAMPLE 295

Therefore, if δ′i is meant to represent the general pseudo-complement of a local
description given by a goal-independent annotation table Ag at program point
(i), then δ′i can be computed as Ag(i)→ µi, where µi is the minimal requirement
at that program point. Intuitively, in our running example, for i = 3, the situation
is rather trivial in the sense that it suffices for X to be ground to obtain a decon-
struction. As X is a head variable, this simply translates itself to the description
x for calls to append. This is confirmed by the (generalised) pseudo-complement.
We have Ag(3) = true, µ3 = x, and therefore δ′3 = true→ x = x.

In general, pseudo-complements may involve any variable of the procedure.
Take for example the following procedure definition:

% : − pred second (l i s t (i n t) , l i s t (i n t)) .
% : − mode second (in , out) i s semidet .
second (L1 , L) :−

(1) L1 = [X | L2] ,
(2) L2 = [Y | L3] ,
(3) Z i s X + Y,
(4) L3 = [Z | L3] .

Let us consider the second unification. This unification becomes a deconstruction
when L2 is ground. Hence, we have the minimal requirement: l2. The goal-
independent annotation at that unification consists of the description Ag(2) =
l1 ↔ (x ∧ l2). The generalised pseudo-complement of Ag(2) w.r.t. the minimal
requirement l2 is the expression l1 ↔ (x ∧ l2) → l2, which is equivalent to (l1 ∨
l2). Indeed, it suffices that l1 or l2 is ground in order for the second unification
to be a deconstruction. The variables of that generalised pseudo-complement are
{l1, l2}, hence also local variables can appear in such expressions. Yet, as these
pseudo-complements are used in fixpoint computations, we need to have only
head variables appearing in our resulting most general call descriptions. This can
be achieved by projecting the local variables away from the obtained expression.
For this purpose we use the so called universal projection with which we obtain a
description that subsumes the original description. In this particular example we
have: (l1 ∨ l2)|{l1 ,l} = ∀{l1 ,l}l1 ∨ l2 = ∀{l2}l1 ∨ l2 = l1 and indeed, l1 |= l1 ∨ l2. We
call the resulting universally projected pseudo-complements call requirements, as
they describe a requirement in terms of the variables of the head of the procedure
such that if that requirement is fulfilled, optimisation of the literal within the
procedure is safe.

Figure 13.2 and Figure 13.3 list the call requirements for each of the unifica-
tions of interest (column “iter 1”, δm

pp) in the append-procedure. The call require-
ments can have two extreme values: true — the optimisation is always possible
as all concrete call descriptions belong to the concretisation set of the abstract
value true, and false — no call description can ever allow the safe optimisation
of the involved literal as the concretisation of false is the empty set of concrete
ex-equations representing the concrete situation of failure. Note that in Def⊥, not

296 CHAPTER 13. OPTIMISATION DERIVATION SYSTEM

all abstract descriptions have a pseudo-complement, so in some cases approxim-
ation may be needed.

The above presented intuitions are mainly for literals with explicit possibilit-
ies of optimisations. Of course, if a procedure has some potential optimisation at
one of its literals, then calls to that procedure may have that same potential of op-
timisation, hence minimal requirements and therefore call requirements should
be derived too. We present the intuition using our example of append.

From Figure 13.2 and Figure 13.3 we deduce that some of the unifications
within a call to append(X,Y,Z) become deconstructions if either X is ground, or
Z. This is represented in the columns labelled “iter 1”, δm

pp. We can use this
information to check the optimisation possibilities of the recursive call in append.

In general, each procedure may have several opportunities for optimisation,
each opportunity characterised by its own call requirement. As a recursive call
requires a fixpoint computation, we must ensure finiteness of the computation,
hence we do not propagate each call requirement individually, but use the least
upper bound of the call requirements instead. The result is one single call re-
quirement that represents the calls for which some optimisation may be allowed.
Hence, we obtain a weak form of optimisation information. Another possibil-
ity of reducing the call requirements into one single description is by using the
greatest lower bound. This operation guarantees that if a call description is sub-
sumed by the resulting call requirement, then all detected optimisations are safe.
Yet, this approach is too restrictive as this allows only calls to optimised versions
of the procedures if all optimisations can be performed. This results in the same
approach as we used in our CTGC system, namely to compile each procedure into
at most two versions: a version without restrictions in use, and a version with full
optimisation yet with many restrictions imposed on its use. As this behaviour is
exactly the behaviour we want to avoid, we choose the liberal approach, and de-
cide to propagate optimisation requirements by their least upper bound. A viable
less restricting alternative is presented in Section 13.5.

For append the call requirements for optimising the unifications are x and z.
The resulting least upper bound is x ∨ z in Pos⊥ — if either X or Z is ground op-
timisation is possible, and true in Def⊥ — any call may have some potential of op-
timisation. While x ∨ z is a good and perfect estimation, true is a clear overestim-
ation. This illustrates the influence of the choice of the abstract domain on the ob-
tained results as well as the fact that using the least upper bound as our combina-
tion operator for individual call requirements inherently weakens the descriptions
of the possible optimisations. Using this resulting minimal requirement for the
recursive call, we again use Equation (13.1) to compute a new call requirement:
in Pos⊥, at program point (4), the pseudo-complement of Ag(4) = (x↔ xe ∧ xs)
w.r.t. µ4 = xs ∨ zs (notice the renaming) is δ′4 = x ∨ xs ∨ zs, which, after universal
projection on the head variables, yields δm

4 = δ′4|{x,y,z} = x. Note that it is not
surprising that the result is not x ∧ z as taking the left-to-right selection rule, and

13.4. OPTIMISATION DERIVATION SYSTEM 297

thus interpreting the code in the order in which it is written, whether append is
called with Z ground or not, the recursive call will always have a free variable as
its third argument3.

The result of collecting the optimisations for append can be read from the
columns labelled δm

pp (“iter 2”) and is as follows: Call descriptions in which X
is ground allow the optimisation of the literals at program points (1), (3) and
(4); call descriptions in which Z is ground allow only the optimisation of the uni-
fication at program point (5). In Def⊥, by overestimation, we also obtain that
the recursive call of append (program point (4)) might be optimisable for any call
description, regardless of the groundness in that description.

We can use these results in a number of different ways:

• Using the results obtained in Pos⊥, we may be able to (automatically) see
that when the first argument is ground, more optimisations can be per-
formed. Hence, it may be interesting to generate a version for that particular
case.
• When generating that specialised version, we only need to keep the op-

timisation requirement x, and compare all actual calls to append with that
requirement.

• When generating that specialised version, and thus actually optimise the
involved literals, we may need to verify each of the requirements at these
literals for calls satisfying the requirement x. This is as a form of extra con-
trol to guarantee the safeness of the resulting version.

• Obviously, the results obtained in Def⊥ are too coarse for deriving actual
interesting information.

The formalisation and generalisation of these ideas are presented in the fol-
lowing section.

13.4 Optimisation Derivation System

13.4.1 Basic Components

The optimisation derivation system starts with pre-defining clear conditions that
formalise when some literals can be optimised. We call the literals for which such
conditions are pre-defined the base atoms. The other literals are called non base
atoms. If a non base atom is a built-in, then it is called a non base built-in atom. If a
non base atom is a call to a user defined procedure, it is called a non base call atom.
In essence, we use the following subdivision for the set of literals:

Literal = BaseAtom∪NBBuiltin∪NBCall
3Recall that this is a hypothetical setting.

298 CHAPTER 13. OPTIMISATION DERIVATION SYSTEM

where BaseAtom, NBBuiltin and NBCall denote the set of base atoms, the set of
non base built-in atoms and the set of non base call atoms respectively. This
subdivision is important because optimisation information is generated at base
atoms and propagated through non base call atoms. Non base built-in atoms are
neutral w.r.t. the intended optimisations. For simplicity, we use the notation
p(X1, . . . , Xn), where {X1, . . . , Xn} ⊆ V and p ∈ Π, to refer to literals in general,
therefore not distinguishing unifications from other literals.

Example 13.1 In our groundness example, all unification literals are base atoms, and all
procedure calls are non base call atoms. In our CTGC system, the purpose is to optimise
deconstructions by reusing the memory associated with the involved data structure for
other data structures. Hence, only deconstruction unifications are considered as base
atoms. All other unifications are non base built-in atoms, while all remaining literals are
non base call atoms.

For each program we assume that a goal-independent annotation table is
available. This annotation table is expressed in terms of an abstract Noetherian
domain 〈A,v,t,u,⊥A,>A〉. The annotations describe the relevant goal-inde-
pendent information enabling the characterisation of the subsequent optimisa-
tions. We assume that the annotations are safe w.r.t. a concrete domain 〈C ,⊆,∪,∩,⊥C ,>C〉,
the abstract combination operation combA and concrete combination operation
combC . We require that the abstract domainAmust be suitable to express the con-
ditions of optimisation of the literals of interest, i.e., must be expressive enough
to formulate the so called minimal requirements for optimising the base atoms in
the language. Elements in A are related to elements in C through a so called con-
cretisation function γ. The tuple (C , γ,A) is required to be an insertion (Defini-
tion 5.1). As an extra we also require γ to be strict (instead of co-strict only).

Definition 13.2 (Requirement, Minimal Requirement) A requirement for the op-
timisation of a literal p(X1, . . . , Xn) is an abstract description µ′ ∈ A, such that for
all concrete descriptions in γ(µ′), the optimisation of the literal is allowed. Formally:
∀σ ∈ C, if σ ⊆ γ(µ′) then p(X1, . . . , Xn) can be optimised. A requirement µ is
called minimal if it is the largest requirement for optimisation of that literal, formally,
∀µ′ ∈ A, if µ′ expresses a requirement for optimisation, and µ′ v µ, then µ is a minimal
requirement.

We use the terminology of minimal in the sense that it states that descriptions
must at least satisfy the conditions expressed by µ in order to obtain a safe char-
acterisation of the optimisation involved.

Lemma 13.1 If µ is a minimal requirement for a literal, then the literal can be optimised
∀δ ∈ A for which δ v µ.

13.4. OPTIMISATION DERIVATION SYSTEM 299

This is a consequence of the monotonicity of γ. In the following sections, we
mainly use this formulation.

The minimal requirements for base atoms need to be predefined either by
hand when instantiating the optimisation derivation framework, or by some auto-
matic system preceding the optimisation derivation phase. We assume that the
minimal requirements for base atoms are recorded and stored in a so called base
table.

Definition 13.3 (Base Table) A base table, usually denoted by the letter B, is a func-
tion mapping base atoms modulo variance (which we denote by subscripting BaseAtom
with the symbol ≈) to their minimal requirements

BaseTable : BaseAtom≈ → A

The goal of the optimisation derivation system is to derive minimal require-
ments for non base call atoms. Minimal requirements are explicitly defined for
literals and express the possibility of optimising the literal it belongs to. In the
process of propagating the optimisation opportunities we also need to reason
about the optimisations at the level of a procedure. For this purpose we intro-
duce the notion of call requirement which expresses the possibility of optimising
a literal within the procedure definition in terms of the head variables of that
procedure.

Definition 13.4 (Call Requirement, Minimal Call Requirement) A call require-
ment for a procedure p with respect to a program point i ∈ pp(p) is an abstract de-
scription, systematically denoted by δm

i , such that for each concrete call to p subsumed by
δm

i , the optimisation of the literal at program point (i) in the definition of p is allowed.
Formally: ∀σ ∈ C : σ ⊆ γ(δm

i), literal li can safely be optimised. A call requirement is
minimal if there does not exist a larger call requirement w.r.t. the order relation v in A.

In the following we use call requirement as a synonym for minimal call requirement.
Finally, the abstract domain is required to have a generalised relative pseudo-

complement operator which is defined with respect to the combination operators
used for the goal-independent annotations.

Definition 13.5 (Generalised Pseudo-Complement) The generalised pseudo-com-
plement of an abstract description δa relative to an abstract description δb and w.r.t. the

combination operator combA : A → A → A, denoted as δa
combA→ δb, is a description

δ′c ∈ A such that:

δ′c =
⊔{δc ∈ A | combA(δa, δc) v δb}

and combA(δa, δ′c) v δb

300 CHAPTER 13. OPTIMISATION DERIVATION SYSTEM

This is a generalisation of the definition of a pseudo-complement as it is defined
in terms of a general combination operator combA instead of the greatest lower
bound operation u of the abstract domain (Giacobazzi and Scozzari 1998).

The pseudo-complement has an interesting property for concrete domains
having a bottom element representing a failing derivation. Indeed, if the concrete
domain has such a bottom element, then by the strictness of the concretisation
function (i.e., γ(⊥A) = ⊥C), we know that if the generalised pseudo-complement
is ⊥A, then the optimisation is never possible as there is no non-failing concrete
description that is correctly described by ⊥A. For such situations, it is useful to
require that ⊥C does represent failure. This is not a restriction in itself. If the do-
main did not contain such a bottom element, then it can always be added. Having
such an element ensures that the set {c ∈ A | combA(a, c) v b} in Definition 13.5
is never empty as it will always at least contain ⊥A. This makes the definition of
the pseudo-complement and its use more compact as there is no further discus-
sion needed on whether this set is empty or not, i.e., whether there exists at least
one call description δc such that combA(δa, δc) v δb is satisfied or not. Whether
or not δ′c satisfies combA(δa, δ′c) v δb depends on the abstract domain, and in
some cases approximation may be needed. This was already illustrated for the
particular domain Def⊥.

13.4.2 Basic Framework

In the process of deriving optimisations we compute call requirements from min-
imal requirements. We do this by using the generalised relative pseudo-com-
plements of the goal-independent annotations of a literal with respect to the
minimal requirement defined or computed for that literal. We formalise the ac-
tual optimisation derivation process using denotational semantics (Nielson and
Nielson 1992; Allison 1986) with which we relate the optimisation opportunit-
ies to the syntactic objects constituting a program. Optimisations are generated at
base atoms, and propagated at non base call atoms, independent of an exact call
description. This behaviour is similar to the behaviour described by the goal-
independent part of the goal-independent based semantics defined for Mercury
in Section 5.7 with the difference that instead of differentiating between unific-
ations and call atoms, here we make a distinction between base atoms and non
base call atoms. Therefore, we describe our optimisation derivation framework
as a variation on the SemM? semantics.

As we argued above, the abstract domain used to express the requirements is
the same abstract domain as the one used for the goal-independent annotations
on which the optimisation derivation system depends. Let 〈A,⊆,∪,∩,⊥A,>A〉
be that abstract domain for which a suitable combination operation combA is
defined and a generalised pseudo-complement w.r.t. that combination operation
is given. As the optimisation derivation is based on a goal-independent annota-

13.4. OPTIMISATION DERIVATION SYSTEM 301

tion table, say A, expressing the underlying goal-independent properties of each
of the literals in the program, and a base table B expressing the minimal require-
ments for the base atoms in the program, we could thread these tables explicitly
along each of the semantic functions in SemM?. Yet to not to clutter the notation,
we assume that these tables are implicitly present and can be queried using the
following functions:

gi : pp→ A
gi(i) = A(i) (13.2)

and
base : BaseAtom→ A
base(p(X)) = let (p(Y), δ) ∈ B in

ρY→X (δ)
(13.3)

We assume that base takes care of correctly renaming the minimal requirement of
the base atom that is looked up.

We now define the modified goal-independent semantics, Semω, as the semantics
consisting of the function clauses used in the definition of SemM?, see Figure 5.8
(page 92) and Figure 5.9 (page 92), where all M? subscripts are replaced by ω, yet
where the clauses defining the semantics of literals are replaced by the follow-
ing three clauses (here using δ to denote the optimisation requirements instead
of the usual S to differentiate the requirements from normal descriptions). The
semantics for literals is shown in Figure 13.4.

Lω[[p(X)]] e δ = let δgi = gi(pp(p(X)) in
let µi = base(p(X)) in

let δi = δgi
combA→ µi in

δ t δi
where p(X) ∈ BaseAtom

Lω[[p(X)]] e δ = let δgi = gi(pp(p(X)) in
let µi = e(p(X)) in

let δi = δgi
combA→ µi in

δ t δi
where p(X) ∈ NBCall

Lω[[p(X)]] e δ = δ

otherwise

Figure 13.4: Semantics of literals in Semω.

Some remarks to this definition:

• In this definition, the auxiliary functions add and comb are absent. The add
operation is indeed completely removed, yet the comb operation of the ab-

302 CHAPTER 13. OPTIMISATION DERIVATION SYSTEM

stract domain is still present through the generalised pseudo-complement
of the domain. This means that the set of auxiliary functions used in Semω

only consists of the init function and the generalised pseudo-complement
w.r.t. a combination operation.

• The formalisation for base atoms consists of consulting the base table to
look up the minimal requirement for the base atom, computing the gen-
eralised pseudo-complement of the goal-independent annotation w.r.t. that
minimal requirement, and combine the result with the already available call
requirement.

• Similarly, non base call atoms are handled by looking up the minimal re-
quirement for optimising the considered literal, computing the generalised
pseudo-complement w.r.t. the goal-independent annotation of that literal,
and combining the result with the already available call requirement.

• Call requirements are combined using the least upper bound operation t
instead of the greatest lower bound as we did in our strategy of producing
only two versions of each of the encountered procedures in the CTGC sys-
tem used in Chapter 12.

• If a literal can not be optimised then either this is due to the minimal re-
quirement being ⊥A or the call requirement computed using the general-
ised pseudo-complement operation is ⊥A. Both situations express the fact
that no abstract description can be found for which all the concrete descrip-
tions allow the intended optimisation. This behaviour is implicitly present
in the given semantic rules.

• In the preceding intuitive example we detailed how call requirements are
projected onto the head variables. In this definition this projection is still
present yet instead of projecting the computed call requirements immedi-
ately we only do the projection at the level of the procedure semantics (Prω)
which includes the projection to the head variables of the obtained descrip-
tion. Note that this projection operation must be such that the resulting call
requirement subsumes the original one.

Example 13.2 The groundness propagation system described intuitively in the previous
section can be formalised as an instantiation of Semω with either the domain 〈Pos⊥, |=
,∨,∧, false, true〉 or the domain 〈Def⊥, |=,∨,∧, false, true〉 as basic abstract domain.
The auxiliary operations are then

initPos⊥ = initDef⊥ = false

combPos⊥(δ1, δ2) = combDef⊥(δ1, δ2) = δ1 ∧ δ2

δ1
combPos⊥→ δ2 = δ1

combDef⊥→ δ2 = δ1 → δ2

13.4. OPTIMISATION DERIVATION SYSTEM 303

In this formalisation, call requirements are immediately combined with each
other, hence, for each procedure, one single call requirement is obtained. Due
to the use of the least upper bound as the combination operator for call require-
ments, the resulting call requirement of a procedure only gives a weak description
of the optimisation opportunities in its definition: if a call description meets the
call requirement of a procedure, then this does not necessarily mean that any of
its literals can be optimised. This is a drawback in the usefulness of the optimisa-
tion derivation framework as it demands a verification step to ensure the safeness
of the final optimisations.

13.4.3 Variation

A variation on the previous basic framework is to keep the individual call re-
quirements for a procedure separately, and only combine them when they are
actually used for the minimal requirement of a literal calling that procedure.
Although at the end the call requirements are also combined, at least we ob-
tain the full list of call requirements for each procedure. The advantage is that
the obtained list can be used for other purposes: verifying the most interesting
optimisation criteria, verifying the harshest optimisation requirement, etc. This
approach comes down to instantiating the above domain using the powerset of
the initial abstract domain instead of the abstract domain itself. The ordering of
this powerset follows naturally from the ordering of the underlying domain. If
〈A,v,t,u,⊥A,>A〉 forms the basic abstract domain, and 〈℘(A),⊆,∪,∩, { },A〉
the lattice of its powerset, and using ∆ to denote sets of call requirements, then
the clauses of the semantic functions for literals become as shown in Figure 13.5.

In this definition, the set of call requirements is only reduced when needed,
i.e., when computing the minimal requirement of a non base call atom. In this
setting, the init-function should also represent a set of initial requirements.

13.4.4 Notions of Correctness

Although the final obtained results with Semω+ are as weak as in the previous
formulation, now at least the intermediate separate call requirements are recor-
ded and can thus be studied individually. If needed, also the program points
can be recorded so as to be able to relate each call requirement with its literal
from where it stems. In that case, we obtain a kind of program point annotation
table recording the contribution of the corresponding literal to the optimisation
possibilities of the procedure to which it belongs. We give a clear definition of
such tables, provide an intended meaning for such tables obtained as a result of
interpreting a Mercury program under the Semω+ semantics, and prove that the
results with these semantics indeed respect this intended meaning.

304 CHAPTER 13. OPTIMISATION DERIVATION SYSTEM

Lω+[[p(X)]] e ∆ = let δgi = gi(pp(p(X)) in
let µi = base(p(X)) in

let δi = δgi
combA→ µi in

∆ ∪ {δi}
where p(X) ∈ BaseAtom

Lω+[[p(X)]] e ∆ = let ∆gi = gi(pp(p(X)) in
let δgi = t∆gi in
let µi = e(p(X)) in

let δi = δgi
combA→ µi in

∆ ∪ {δi}
where p(X) ∈ NBCall

Lω+[[p(X)]] e ∆ = ∆

otherwise

Figure 13.5: Semantic rules for literals in Semω+.

The function mapping program points of a procedure to call requirements al-
lowing the optimisation of the associated literals represents the local optimisation
table for that procedure. The table mapping the procedures of a rulebase onto
local optimisation tables describing the possible optimisations within these pro-
cedures is called the global optimisation table for that rulebase.

Formally we have:

Definition 13.6 (Local and Global Optimisation Table) The local optimisation ta-
ble for a procedure p, denoted by ωp is a mapping between some of the program points
in p and call requirements describing the optimisations of the literals at these program
points.

The global optimisation table of the rulebase r of a program, denoted by Ωr, is a
mapping between the procedures defined in r and the local optimisation tables derived for
these procedures.

The intended meaning of the global and local optimisation tables is defined
as follows:

Definition 13.7 (Intended meaning of Ωr) Let Ωr be the result of interpreting a rule-
base of a program consisting of the procedures p1 to pnp in Semω+ based on propagating
sets of call requirements and using the rules in Figure (13.5). Let (p j,ω j) ∈ Ωr and
(i, δm

i) ∈ ω j. If a call description δ of p j is such that δ v δm
i , then, depending on the

nature of the literal at program point i, i.e., li, we interpret this as:

• if li ∈ BaseAtom, then the literal can definitely be optimised for calls with call
description δ.

13.4. OPTIMISATION DERIVATION SYSTEM 305

• otherwise, i.e., li ∈ NBCall, the procedure corresponding to the called atom might
allow some optimisations within it.

For the semantics Semω+ to be acceptable we need to prove that it is well
defined, i.e., it can be computed by a terminating fixpoint computation, and correct
w.r.t. the intended meaning of the derived optimisation table.

We first prove the following lemma which shows that the pseudo-comple-
ment operation is monotone, in particular in its second argument.

Lemma 13.2 The generalised pseudo-complement combA→ is monotone in its second ar-
gument.

Proof Let c1 = a combA→ b1, c2 = a combA→ b2, and b1 v b2. We need to prove

that c1 v c2. By the definition of combA→ we have combA(a, c1) v b1, and
therefore by transitivity combA(a, c1) v b2. This means that c1 ∈ C2 =
{c | combA(a, c) v b2}. By definition we have c2 =

⊔
C2, and therefore

c1 v c2.
2

We now formulate the correctness of Semω (and Semω+) w.r.t. the intended
meaning of the resulting optimisation table (assuming sets of call requirements
are propagated).

Theorem 13.1 Semω+ is well defined w.r.t. the intended meaning of the global optim-
isation table (Definition 13.7) it defines for a rulebase r for a particular instantiation, if
the instantiations of the auxiliary operations are monotonic.

We only give an outline of the proof.
We assumed that our underlying abstract domainA is Noetherian (Page 298),

hence it suffices to show that all auxiliary functions used in Semω are monotone
in order to guarantee well definedness (Nielson and Nielson 1992). Knowing
that initA and combA are required to be monotone anyway, and that the pseudo-
complement is also monotone (Lemma 13.2), this is indeed the case.

The correctness of the semantics with respect to the definition of the intended
meaning of a logic program in this setting follows from the correctness of the base
table, the safeness of the goal-independent annotation table, and the definition of
Lω+ for base atoms and non base call atoms. The latter depends on the defin-
ition of the generalised pseudo-complement. This definition guarantees that if
the requirement µ is minimal, then the call requirement δm computed from it will
be minimal too. While for base atoms we use the exact minimal requirements as
tabled in the base table, the minimal requirements used for non base call atoms
might be approximations due to the use of the t in the definition of Lω+.

306 CHAPTER 13. OPTIMISATION DERIVATION SYSTEM

13.5 Increased Precision

While the above variation on the basic framework does not increase the overall
precision hence strength of the results, here we propose a way to do so.

The precision can be strengthened if each call requirement is propagated indi-
vidually. In that case, two call requirements would never be joined together. The
definition of the literals would then be:

LΩ[[p(X)]] e ∆ = let δgi = gi(pp(p(X)) in
let µi = base(p(X)) in

let δi = δgi
combA→ µi in

∆ ∪ {δi}
where p(X) ∈ BaseAtom

LΩ[[p(X)]] e ∆ = let ∆gi = gi(pp(p(X)) in
let µi = e(p(X)) in

let ∆i = {δgi
combA→ µi | δgi ∈ ∆gi} in

∆ ∪ ∆i
where p(X) ∈ NBCall

LΩ[[p(X)]] e ∆ = ∆

otherwise

The intended meaning of the resulting optimisation table is similar to the
meaning we gave in Definition 13.7, except that now, the optimisation inform-
ation derived for non base call atoms is also definite. If a call description δ of a
procedure p is such that there exists a call requirement within p, δm

i (i ∈ pp), for
which δ v δm

i , then the literal at that program point i can definitely be optimised,
regardless of the nature of that literal. Yet, a verification step is still required in
order to check what exactly can be optimised if the literal is a non base call atom.

It can be shown that, if a fixpoint is reached, the semantics SemΩ is correct with
respect to this intended meaning. But in this setting, we can not guarantee that
for each Noetherian domain a fixpoint will always be reached. Either extra re-
strictions on the domain need to be imposed, or widening operations need to be
used (Cousot and Cousot 1992a; Cousot and Cousot 1992c; Zaffanella, Bagnara,
and M. Hill 1999; Codish, Heaton, and King 1997).

13.6 CTGC reformulated

We reformulate the reuse analysis underlying the CTGC system using the Semω+
formalism. The formalisation of the CTGC system consists of defining the domain
for expressing the call requirements of the intended optimisations, correctly de-

13.6. CTGC REFORMULATED 307

fining the base atoms, and initialising the base table, and finally, defining the
auxiliary functions on elements of this domain.

Call Requirements Domain In the above presented theory, the abstract domain
used to express the goal-independent annotations is assumed to be the same ab-
stract domain used to describe the minimal and call requirements. Yet in the for-
mulation of the CTGC system, we clearly use abstract liveness descriptions as our
underlying domain, while we derive reuse information tuples based on it. How-
ever, given the fact that the operation mapping reuse information tuples onto the
associated abstract liveness call descriptions is an isomorphism, this does not in
fact contradict our initial assumption.

As reuse information tuples are easier to determine for expressing the possib-
ilities of reuse at a certain tuple, then its associated call descriptions, it is only nat-
ural that we continue to useRI as the domain to express the minimal and call re-
quirements, while elements of AL are used for the underlying goal-independent
annotations.

As the theoretical ordering in RI (Definition 10.8) is hard to use in practice,
we use Definition 10.10 instead. This probably induces some loss of precision, the
extent of which is left for future research.

We will thus formalise the CTGC system in Semω+ not by propagating ele-
ments from AL but call requirements expressed as reuse information tuples in
RI . Recall that this domain, ordered by vr (Definition 10.10), is a complete lat-
tice, with bottom element the empty set, and top element the set of all possible
combinations of reuse information tuples over the set of variables of interest.

Base Atoms, Base Table Translating the terminology used for the propagation
of reuse information into the current setting, we have that the verification of dir-
ect reuses corresponds to the verification of minimal requirements at base atoms,
while determining indirect reuses consists of verifying and propagating call re-
quirements at non base call atoms.

Before actually defining the call requirements, we need to make some obser-
vations concerning the first formalisation of reuse information tuples and their
verification. In Chapter 10 our focus was on a correct handling of modules, and
therefore translating reuse tuples to the head variables of the procedures to which
they refer. For that purpose, we immediately added all the local information to
the reuse information tuples, such that the verification of reuses could simply be
performed by comparing the call descriptions of a procedure with these tuples.
In this chapter, our formalisation expresses a slightly different behaviour as here
we expect that minimal (and call) requirements are purely expressed in terms of
the literal to be optimised, assuming that these requirements are compared with
the call description at that literal, instead of the call description of the proced-
ure to which the literal belongs. Yet this difference is minimal, and can be easily

308 CHAPTER 13. OPTIMISATION DERIVATION SYSTEM

overcome given the following observation:

Corollary 13.1 Consider a deconstruction unification X ⇒ f (Y1, . . . , Yn) at a program
point (i) in a procedure p with reuse information Ri =

〈〈
{Xε}, Ui , Al,i

〉〉
where Ui is the

local in use set, and Al,i is the local structure sharing set. Let AL0 = 〈A0, L0〉 be a call
description for procedure p. Then we can observe that:

AL0] Ri ⇔ combupdateAL(AL0, 〈Al,i , Ui〉)]
〈〈
{Xε}, { }, { }

〉〉
This is an immediate consequence of the definition of combupdate (Definition 8.21)
based on the improved definition for computing liveness information, c.f. Equa-
tion (8.6), the definition of verifying the reuse information, and the facts that
extenda(L, { }) = L and comba(A, { }) = A.

This observation allows us to define the minimal requirements for deconstruc-
tion unifications to allow reuses purely in terms of the involved deconstruction.
The generic condition of reuses at deconstructions thus becomes: let X ⇒ Y,
be a deconstruction unification (leaving the exact term corresponding to Y un-
determined here), then the minimal requirement for reusing the top level data
structure of X is the reuse tuple

〈〈
{Xε}, { }, { }

〉〉
.

The base table therefore consists of only one entry, X ⇒ Y, with minimal
requirement

〈〈
{Xε}, { }, { }

〉〉
.

Auxiliary Functions The init function is obviously trivial. Before starting to
propagate call requirements expressing reuse we initialise the set of call require-
ments to the empty set. Thus: initRI = { }.

Before defining the pseudo-complement operation we must clearly identify
the combination operator w.r.t. which we need to define that pseudo-complement.
As was already observed when presenting the minimal requirements for the CTGC
system, the approach of the initial formalisation of the propagation of reuse in-
formation was to compare call descriptions of procedures to reuse information
that was already updated with the local annotations, while in this chapter, we
want to compare requirements for optimisation with the result of combining call
descriptions with local descriptions. Corollary 13.1 showed that this difference
can be overcome for direct reuses, we show that in the same way it also can be
overcome for the case of indirect reuses:

Corollary 13.2 Let Rq =
〈〈

Dq, Uq, Aq
〉〉

be a reuse information tuple characterising
the optimisation opportunities within a procedure q with head variables {X1, . . . , Xn}.
Let the literal at program point (i) within the definition of a procedure p consist of a
call q(Y1, . . . , Yn). Moreover, the local information at (i) consists of the tuple ALl,i =
〈Al,i , Ui〉. Let AL be a call description for procedure p. Then we have:

AL]
〈〈
ρ

(
Dq

)
, ρ

(
Uq

)
tad Ui , comba(Al,i , ρ

(
Aq

)
)
〉〉

m
combupdateAL(AL, ALl,i)]ρ

(
Rq

)

13.6. CTGC REFORMULATED 309

where ρ (.) is the function mapping all occurrences of the formal head variables of q, i.e.,
X1, . . . , Xn, onto the actual arguments of q in the call, i.e., Y1, . . . , Yn.

The correctness of this corollary depends on the same insights as the previous
one.

In these corollaries we see that reuse information tuples are compared to the
combination of abstract liveness descriptions using the combupdateAL operation.
Hence, we need to define the operation allowing to compute the most general
call description AL, such that AL combined with the local description ALl,i at a
program point i where some optimisation might be performed, should remain
subsumed by the call or minimal requirement at that program point described by
a reuse information tuple Ri: combupdateAL(AL, ALl,i)] Ri. In this formulation,
we consider that Ri is not already updated with that local information, i.e., with
ALl,i.

According to Theorem 10.1 for direct reuse, and Theorem 10.2 for the case of
indirect reuse, reuse information tuples can be propagated by compacting them
w.r.t. to the local information ALl,i available. Hence, it is only natural to try to
express the pseudo-complement operation through that operation.

Definition 13.8 (Pseudo-complement inRI) Let R = 〈〈D, U, A〉〉 be a minimal or
call requirement expressed in RI for a program point (i), and ALl,i = 〈Ui , Al,i〉 be
the goal-independent annotation recorded for that program point, then the generalised

pseudo-complement of R w.r.t. ALl,i, denoted as ALl,i
combupdateAL

→ R, is a new tuple
R′ = compact(Ru,H) (Definition 10.4) where

Ru = 〈〈D, U tad Ui , comba(Al,i , A)〉〉

and whereH are the head variables of the procedure to which program point (i) belongs.

Using this definition, if a call description satisfies the pseudo-complement
then the the result of combining that call description with the local description
definitely satisfies the initial call requirement (c.f. Theorem 10.1 and Theorem 10.2).

However, the pseudo-complement as defined here may not cover the least
upper bound of all the call descriptions satisfying the initial reuse information.
Hence, a more precise definition may exist. Yet, finding that exact definition and
comparing it to the definition here is left for future work.

Summary To summarise the instantiation of Semω for the CTGC system:

• While minimal and call requirements are expressed as elements in RI , the
underlying goal-independent annotations are in terms of the domain AL.
Given the one-to-one link between elements of these domains, this does not
violate ur prerequisites for our optimisation derivation system.

310 CHAPTER 13. OPTIMISATION DERIVATION SYSTEM

• The base atoms consist of all deconstruction unifications X ⇒ Y, for which
the minimal requirement

〈〈
{Xε}, { }, { }

〉〉
must be taken into account.

• Finally, we have:
initRI = { }
combRI = combupdateAL

combRI→ =
combupdateAL→

13.7 Discussion

In the above semantics we have restricted the language to non-modular pro-
grams. In general, we can lift this restriction by computing all the optimisation
tables for the modules within a program in a bottom-up way: if a module A de-
pends on a module B, then the optimisation derivation system should first derive
the optimisations for the procedures in B, before deriving the optimisations pos-
sible within module A. In such cases, we have no loss of precision. Note that the
optimisation derivation system is not concerned with the actual version genera-
tion. This still requires a separate pass, which becomes indeed more complicated
in the presence of modules. Programs with circular dependencies among mod-
ules pose the usual problems as ideally the fixpoint iteration should be done over
the module graph (Puebla and Hermenegildo 1999b). See also our discussion on
Page 251.

We introduced minimal requirements. These are call descriptions µ related to
literals l, such that for each call description δ, if δ v µ, then l can be optimised.
This means that we need an abstract domain in which a suitable order relation v
can be expressed for the intended optimisation. A careful design of the abstract
domain is therefore necessary.

We generalised the notion of pseudo-complement such that the operation is
not limited to the greatest lower bound of the abstract domain used. We expect
that for most domains, the combination operation will indeed be the greatest
lower bound, but we did not want to limit our formalisation to this operation.
One of the reasons was that for the propagation of reuse information tuples, a
specialised combination operation is used. In this context, we also want to be able
to reason about the largest abstract description δ for which the result of combining
it with a goal-independent annotation can still correctly be approximated by the
minimal requirement for optimisation. Computing this largest abstract descrip-
tion is exactly what the pseudo-complement does with respect to u. Therefore, it
is natural to generalise this operation to allow other combination operations.

In the present setting we assumed that the abstract domain is such that the
(generalised) pseudo-complement of two elements always exists. This means that
in Definition 13.5, δ′c always satisfies the equation combA(δa, δ′c) v δb. This im-
poses a certain restriction on the domains that can be used. Domains in which the

13.7. DISCUSSION 311

relative pseudo-complements exist are the Heyting algebras (King and Lu 2002;
Giacobazzi and Scozzari 1998), a particular case of which being the condensing
domains (Jacobs and Langen 1992; Giacobazzi, Ranzato, and Scozzari). Yet this
guarantee may in general not be valid if other combination operations are used
than the greatest lower bound.
In our intuitive example, we suggested that approximations of these pseudo-
complements can be a good alternative for situations and domains for which the
exact pseudo-complement does not exist (which is for example the case for de-
scriptions in Def⊥). For these approximations, there are two alternatives. Either
one approximates the exact pseudo-complement, say δm, from above — δm v δm,
, or from below — δm v δm. Approximating from above means that there might
be some call descriptions, which, when compared to δm, erroneously suggest that
optimisation is possible. This means that even for base atoms, we can not be sure
how to interpret the obtained optimisation results. Therefore, this alternative is
not interesting. On the other hand, approximating from below respects safety
of the results for base atoms, yet, in some cases, some optimisations might not
be spotted — this may be the case for the definition of the pseudo-complement
given for the derivation of reuse information tuples. Note that such approxima-
tion might impose other restrictions on the abstract domain used. Determining
exactly which restrictions requires further investigation.

In our optimisation system we have deliberately taken the least upper bound
of the individual call requirements within a procedure instead of the greatest
lower bound. The advantage of this approach is that we can spot all possible op-
timisations. The disadvantage is that if the optimisation derivation system spots
that a procedure call might be optimisable, we do not know exactly which op-
timisations are possible, if at all (this may be the case for some abstract domains).
The price to pay is that extra checks are necessary during the actual version gen-
eration pass. The alternative, the greatest lower bound, has the advantage that
if the optimisation derivation spots optimisations, then these optimisations are
definitely possible. The disadvantage though is that an optimisation is only iden-
tified as such if all the optimisations within the called procedure are safe. Hence,
a lot of intermediate combinations of optimisations may be missed, which is ex-
actly what we want to avoid. A possible solution to the loss of precision using t
instead of u is by collecting the call requirements as sets, keeping them distinct,
as we described in Section 13.5.

This work is clearly work in progress. And a formal setting for deriving and
generating the adequate versions based on the derived over-approximation of op-
timisation opportunities needs yet to be created. Intuitively, we think that the de-
rived optimisation opportunities do give a good starting point for the versioning
problem as it makes the link between possible optimisations and call descriptions
for which these optimisations are safe explicit, making it possible to (automatic-
ally) recognise “interesting” versions to be generated. Moreover, in our work we

312 CHAPTER 13. OPTIMISATION DERIVATION SYSTEM

have faced a number of situations where we had to thoroughly search through
the code of our benchmarks in order to see why exactly some reuse could not
be performed. Having all the optimisation criteria at hand, propagated up the
call graph, we expect that such identification process could be made easier. This
means that also for the end-user, interesting and understandable feedback could
be given about the optimisations that might have failed for her/his particular
code.

13.8 Related Work

Program analyses that are part of optimising compilers are always confronted
with the issue of version generation: if a predicate can be optimised in several
ways, which versions should be generated knowing that not all optimisations
are safe in each calling context? Without a priori information about the use of
the predicates, there are two possibilities: either the optimising compiler gener-
ates all possible combinations of optimised predicates, or the compiler uses some
predefined criterion that guides the number of versions that it will produce (a
common criterion being that at most two versions are generated per predicate: a
genuine, non-optimised version, and a fully optimised version). While the former
ensures that the resulting program can make full use of its optimisation potential,
the code explosion it requires may make this technique unfeasible in practice.
The alternative option limits the code explosion, but it also limits the optimisa-
tion possibilities. It is possible to overcome the above problems of code explosion
and suboptimality by using information about how some of the predicates are
used. Up to now, the most common technique was to build a top-down ana-
lysis and version generation process. In such a system, each call to a predicate is
described in the abstract domain, and for each such call a different optimised ver-
sion is generated. Depending on the granularity of the abstract domain, this may
still involve the creation of a large number of versions (Vanhoof and Bruynooghe
1999; Leuschel, Martens, and De Schreye 1998; Henglein and Mossin 1994; Puebla
and Hermenegildo 1999a). In (Puebla and Hermenegildo 1999a), for example, the
analysis and version generation pass is therefore followed by a pruning pass: this
pass tries to identify similar versions and merges them, hence reducing the num-
ber of versions. All the above mentioned techniques have one aspect in common:
each of the versions is identified by one specific call description for which the pro-
cedure call is considered safe. If a different call description is encountered, then
none of the analyses can safely decide whether it is still safe to call the optimised
version or not (without at least a partial new analysis).

In this chapter we propose an optimisation derivation system that relies on
information that is a priori collected (in a call independent way), and that allows
to identify each single optimisation by a description of the calls for which that
optimisation is safe. In case of CTGC deriving that a data structure is dead en-

13.8. RELATED WORK 313

ables the optimisation of reusing that data structure. Also other existing abstract
domains – such as for example the domains used in (Bevemyr 1996; Lindgren,
Bevemyr, and Millroth 1995) – could be coupled with our system. This optimisa-
tion information gives the version generation pass almost full knowledge about
when the optimisations are possible, enabling more sophisticated heuristics for
version generation. Also, given a new call to a procedure, it enables the version
generation system to simply compare the actual call description with the descrip-
tion of the calls for which a particular optimisation is known to be safe, hence
safely identifying the possible optimisations and therefore the version to be used.
No separate analysis is required.

The proposed optimisation derivation system is based on generalised pseudo-
complements (for mapping individual minimal requirements to the variables ap-
pearing in the head atom of the procedure they belong to), and least upper bounds
(for collecting call requirements) with the purpose of deriving a single descrip-
tion of when an optimisation is safe. These ideas are very similar to the ideas
behind the so-called backwards analysis (as opposed to the classical forward ana-
lyses), a new analysis system introduced by King and Lu (2002). The goal of a
backwards analysis is to derive a description of the calls of a procedure for which
that procedure is guaranteed not to fail (w.r.t. some criterion such as termination,
moding, etc.). The ideas for backwards analysis are successfully applied to the
domain of termination inference (Genaim and Codish 2001; Lu and King 2002)
as well as pair sharing where descriptions of calls are derived that guarantee the
absence of sharing (Lu and King 2004). See also (Howe, King, and Lu 2004) for
an overview of backwards analysis applications in logic programming.

Some of the ideas presented here are clearly present in the backwards analysis
system. Yet, there are two reasons why this model of analysis does not fully fit
our needs. A first reason is that, per predicate, backwards analysis computes in-
formation on a program point (i) using information it computed a step earlier for
program point (i + 1), the program point associated with the next literal within
the same procedure w.r.t. (i), under the usual left-to-right resolution scheme. This
is necessary if all the underlying basic information still needs to be derived. In our
setting we want to separate the process of deriving the underlying information
from the derivation of the optimisations they allow, which means that we con-
sider that all such information is already present. This also means that we do not
need to thread each of the call requirements from one program point to the other,
as we can immediately translate the optimisation information at a program point
to the head of the predicate definition. Moreover, backwards analysis is based
on the relative pseudo-complement. We deliberately decided to generalise this
operation as we want to be able to use other combination operators than simply
the greatest lower bound of the lattice. Finally, another reason why our goal does
not immediately fit within backwards analysis is that if a predicate contains more
than one literal that can be optimised, then the call descriptions for each of these

314 CHAPTER 13. OPTIMISATION DERIVATION SYSTEM

optimisations to occur are conjoined during backwards analysis. This results in
a restrictive call description for which all optimisations are safe, instead of a de-
scription for which some individual optimisation may be done. Our goal was to
derive the non-restrictive call description for optimisation.

More recently, Gallagher (2004) suggested a new approach to the backwards
analysis as formulated by (King and Lu 2002) that might replace the need for spe-
cial abstract domains and relative pseudo-complements. The idea is to make the
effect that calls have on specific program points explicit by constructing the res-
ultants semantics (Gabbrielli, Levi, and Meo 1996) of the original program. This
makes the behaviour at these program points of interest observable. Deriving de-
scriptions of calls for which some properties hold at these program points can be
obtained by using a standard abstract interpretation framework, and requiring
no further restrictions on the abstract domain.
The use of the resultants semantics may be a promising approach for a more clean
and compact formulation of the optimisation derivation system developed here.

13.9 Conclusion

Collecting information about possible optimisations within a program before ac-
tually generating code supporting the optimisations is, in our view, an essential
step for a better understanding of which versions need to be generated to obtain
better global optimisation results. Here we have developed a mechanism which
makes it possible to relate the optimisations with the call descriptions for which
they are safe. The novelty of this approach is that the actual version generation
pass is totally separated from the characterisation of the possible optimisation (for
which one could use a maximally optimising version generator (Puebla and Her-
menegildo 1999a), or any other version generator). Another important advantage
is that if a new use of a predicate is encountered, no new analysis is needed as it
suffices to compare that use with the optimisation requirements derived by our
system in order to know what version to generate for that use.

We applied the framework to the derivation of the optimisation opportunities
detected by our CTGC system. The instantiation remains purely theoretical, as
the implementation needs yet to be done. Such an instantiation would be useful
to acknowledge our intuition about the ease of understanding failed reuse possib-
ilities, as well as to verify how version generation systems could be implemented
on top of it. All this is a matter of future work.

Chapter 14

Conclusion

The goal of this thesis was to develop a complete compile-time garbage collection
system for the pure declarative language Mercury. This involves two key issues:
the memory usage of the programs optimised using the CTGC system must be
safe, even in the presence of modules — i.e., it is a severe error to reuse or deal-
locate memory during the execution of a program when the information stored
in that memory is still needed by that program — and the CTGC system should
be of practical use for real-life programs.

We tackled the first issue by meticulously building the compile-time garbage
collection system as a sequence of different program analyses that act upon the
original source program. We used a denotational approach to define the natural
semantics of a Mercury program, and used this platform as a base to express each
of the involved program analyses. The correctness of these analyses is proven by
systematically relating a concrete domain and its operations, to an abstract domain
and its corresponding operations. The role of the concrete domain is to express
the run-time properties one wishes to observe for any given Mercury program,
while the carefully designed abstract domain correctly approximates these prop-
erties. The properties of interest in the compile-time garbage collection system
are: structure sharing, liveness information, and finally, reuse information. To express
program analysis in the presence of modules, we defined the goal-independent se-
mantics of a Mercury program and proved its conditional equivalence with the
natural semantics. By using this semantics instead of the natural semantics, we
could correctly transpose each of the program analyses of the CTGC system to a
modular setting.

We successfully addressed the second issue by taking care to verify the feas-
ibility and efficiency of the CTGC system at each of its development steps using
an appropriate prototype implementation and accompanying set of benchmarks.
Ultimately this has led to the incorporation of the CTGC system into an existing
Mercury compiler, the Melbourne Mercury Compiler. During the implementa-

315

316 CHAPTER 14. CONCLUSION

tion of that system a number of practical aspects needed to be dealt with: heur-
istics to choose how dead cells should best be reused, techniques of increasing
the overall precision of the analyses, and a widening operation to speed up the
analysis when needed. The result is a working CTGC system, ready to be used
for even larger programs.

We discuss the specific contributions of this work.

Denotational Semantics We defined a number of new semantics of first-order
Mercury programs using a denotational approach. This facilitates the develop-
ment of new program analyses: it suffices to define a concrete domain and a safe
approximating domain w.r.t. that concrete domain in order to guarantee the safe-
ness of the resulting analysis obtained by instantiating the adequate semantics
with the abstract domain. This approach was inspired by (Marriott, Søndergaard,
and Jones 1994). The novelty resides in the explicit formulation of the semantics
for Mercury programs (instead of pure first-order Prolog), and the formal char-
acterisation of the equivalence between the natural semantics, SemM, and the goal-
independent based semantics, SemM•. This equivalence is essential for proving the
correctness of a program analysis defined in terms of SemM• w.r.t. the actual con-
crete meaning of a program defined as an instantiation of SemM.

Basic Structure Sharing and Liveness Information Mulkers (1991) developed
a liveness analysis for first-order Prolog programs based on structure sharing in-
formation. Both analyses are formulated in terms of a generic top-down frame-
work for abstract interpretation (Bruynooghe 1991). We adapted the underlying
ideas of these analyses to the context of Mercury programs and the semantics we
defined for these programs.

For the structure sharing analysis this required the careful redesign of the con-
crete and abstract structure sharing domains with which we could prove that the
results in a goal-independent setting are equivalent to the results obtained when
using the concrete domain in the natural semantics.

Compared to (Mulkers 1991), the novelty of the liveness analysis resides in
the non-deterministic execution schemes that it takes into account when approx-
imating the live data structures within a procedure. Previously, only forward
execution was considered, relying on an instrumented run-time system to guar-
antee that reused garbage cells are reset upon backtracking. The main reason why
we can approximate the live memory cells in the presence of backtracking is the
strictly moded character of the Mercury language.

Reuse Analysis An important contribution of our work is the definition of the
reuse analysis. This analysis identifies the garbage cells within a program, finds
ways of reusing these cells locally, and propagates these reuse results in the call

317

graph of the program. This reuse analysis is especially challenging in the pres-
ence of modules.

Modular Analysis Mercury has an advanced module system where each mod-
ule is meant to be compiled separately. We adapt each of the previously de-
veloped analyses to conform with such a compilation scheme.
For the reuse analysis in particular this consists in adapting the analysis such that
it derives for each predicate a reuse condition that serves as a pre-condition that
must be met by the caller in order for the memory reuses to be safe. We prove
that the propagation of these conditions is correct, therefore guaranteeing that no
unsafe memory reuse will ever be performed during the execution of a Mercury
program.

Optimisation Derivation System In this work we create at most two versions
for each analysed procedure: a version with optimised memory usage for which
the safeness can only be guaranteed if the caller meets the reuse conditions de-
rived for that procedure, and a plain non-optimised version that is always safe
to use. We use this heuristic to limit the number of versions that could other-
wise be created for each of the analysed procedures. The drawback is that many
opportunities for reuse may be missed.

To overcome this limitation, we formulated a tentative framework to char-
acterise optimisation opportunities — here consisting of possibilities of struc-
ture reuse — by the call descriptions for which they can be safe. This frame-
work presents many similarities with backwards analysis (King and Lu 2002) which
Gallagher (2004) recently linked to the area of resultants semantics (Gabbrielli,
Levi, and Meo 1996). The latter view simplifies the operations present in back-
wards analysis and should therefore be profitable for the optimisation derivation
framework too.

Working CTGC system Finally, the main contribution of our work is the integ-
ration of each of the described analyses into a complete CTGC system embedded
within the Melbourne Mercury compiler. To the best of our knowledge, this is
the first and only complete CTGC system that has ever been built for a program-
ming language. We experimented with this system using a number of small and
medium-sized benchmarks. For some of these benchmarks, memory savings of
up to 50% could be observed. These results are especially remarkable as they
were obtained with benchmarks that were not specifically fine-tuned for their
use with the CTGC system.

In the following paragraphs we outline some interesting guidelines for future
work.

318 CHAPTER 14. CONCLUSION

Stable CTGC System Currently, the CTGC system is implemented in a separ-
ate branch of the Mercury compiler. A natural step is to bring this work to the
main branch, and measure the usefulness of the CTGC system on larger projects.
A beautiful benchmark would be the Melbourne Mercury Compiler itself. We
believe that there should be a high potential for structure reuse, yet these reuses
may in a first experiment not be detected.

On a short term, the CTGC system could be upgraded to include the following
features.

• Provide better feedback. Currently the feedback about the detected reuses and
more importantly the missed reuses within a Mercury program is limited to
obscure messages. This feedback should be more elaborated. As most of
the information about structure sharing as well as liveness is at hand, this
should be achievable with little effort.
• Limit the reuses. Looking at our benchmarks we see that the impact of the

structure reuses detected by the CTGC system can be severely limited when
this system detects too many opportunities for reuse. Once procedures for
which too much structure reuse are (automatically) identified, the program-
mer should have the possibility of annotating of annotating her/his code to
specifically limit the reuses of some of the data structures involved by using
dedicated declarations.
• Automatically limit the reuses. At a later stage, we can try to have the com-

piler to limit the reuses automatically. We think that during the develop-
ment cycle of a program, the compiler can already collect the uses of the
procedures defined in it. This information could then be used to automatic-
ally determine the reuse opportunities that each of these uses would allow,
hence creating only a reuse version incorporating those reuses which are
of interest for the overall program. Note that such an approach is com-
pletely different from the theoretical approach of the optimisation deriva-
tion framework developed in this thesis.
• Cooperation with the RTGC. The study of the benchmarks has revealed that

the impact of the CTGC system on the execution time of the analysed pro-
gram is strongly related to the memory behaviour of the program expected
by the run-time system. Obviously, in the benchmarks where we observed a
decrease in execution speed, the RTGC and CTGC step on each others toes.
A closer study of how both systems can be tuned for a better cooperation is
mandatory.

Region-based Memory Management In the area of functional programming,
regions have become a hot topic in the context of automatic memory manage-
ment (Tofte and Talpin 1997). While traditionally, the memory of a program is
split into a stack and one heap, here, the dynamically allocated memory is split
over a number of different regions. When all the data stored in a region becomes

319

dead, the whole region is collected at once, as such removing the overhead of
collecting the individual cells. The use of these regions can be in the hands of the
programmer (Tofte, Birkedal, Elsman, Hallenberg, Højfeld, Sestoft, and Bertelsen
1997), yet automatic region inference is obviously preferred (Tofte and Birke-
dal 1998). While first steps have been undertaken to translate the region based
memory organisation into the context of Prolog (Makholm 2000), it remains an
interesting issue on how CTGC combines with regions.

Other Programming Paradigms Compile-time garbage collection is also an in-
teresting issue for languages such as Java. In (Shaham, Kolodner, and Sagiv 2001)
the authors have studied the gap between the moment when an object becomes
dead and the moment at which it is collected by the run-time garbage collector,
as well as the impact on the general performance of the program when that gap
is reduced to a minimum. This has led to a number of insights enabling some
form of compile-time garbage collection (Shaham, Yahav, Kolodner, and Sagiv
2003). It would be interesting to see how their findings match with our experi-
ence, and how our experience can bring to new insights in the domain of CTGC
for object-oriented languages.

320 CHAPTER 14. CONCLUSION

Appendix A

Source code: labelopt

%−−−%
% C o p y r i g h t (C) 1994−1997 The U n i v e r s i t y o f Melbourne .
% Thi s f i l e may on ly be c o p i e d under t h e t e rms o f t h e GNU G e n e r a l
% P u b l i c L i c e n s e − s e e t h e f i l e COPYING in t h e Mercury d i s t r i b u t i o n .
%−−−%

% m y l a b e l o p t .m (p r e v i o u s l y l a b e l o p t .m) − module t o e l i m i n a t e
% u s e l e s s l a b e l s and dead c o d e .

% Author : z s .
%
% F i l e a d a p t e d f o r use in t h e p r o t o t y p e CTGC syst em by Nancy Mazur . The main
% c h a n g e s c o n s i s t o f t h e e x p l i c i t i n c l u s i o n o f l i s t −m a n i p u l a t i n g p r e d i c a t e s
% w h i l e t h e opt−u t i l r e l a t e d p r e d i c a t e s a r e s u b s t i t u t e d by dummies .
%−−−%

:− module mylabelopt .

:− i n t e r f a c e .

:− import_module bool , l i s t .
:− import_module l l d s .

% B u i l d up a s e t showing which l a b e l s a r e b r a n c h e d to ,
% then t r a v e r s e t h e i n s t r u c t i o n l i s t removing u n n e c e s s a r y l a b e l s .
% I f t h e i n s t r u c t i o n b e f o r e t h e l a b e l b r a n c h e s away , we a l s o
% remove t h e i n s t r u c t i o n b l o c k f o l l o w i n g t h e l a b e l .

:− pred mylabelopt_main (l i s t (i n s t r u c t i o n) , bool , l i s t (i n s t r u c t i o n) , bool) .
:− mode mylabelopt_main (in , in , out , out) i s det .

% B u i l d up a s e t showing which l a b e l s a r e b r a n c h e d t o .

:− pred mylabelopt__bui ld_useset (l i s t (i n s t r u c t i o n) , s e t (l a b e l)) .
:− mode mylabelopt__bui ld_useset (in , out) i s det .

%−−−%

:− implementation .

:− import_module o p t _ u t i l .
:− import_module s t d _ u t i l .

mylabelopt_main (I n s t r s 0 , F inal , I n s t r s , Mod) : −
mylabelopt__bui ld_useset (I n s t r s 0 , Useset) ,
m y l a b e l o p t _ _ i n s t r _ l i s t (I n s t r s 0 , yes , Useset , I n s t r s 1 , Mod) ,
(F i n a l = yes , Mod = yes −>

mylabelopt_main (I n s t r s 1 , F inal , I n s t r s , _)
;

I n s t r s = I n s t r s 1
) .

%−−−%

mylabelopt__bui ld_useset (I n s t r s , Useset) : −

321

322 APPENDIX A. SOURCE CODE: LABELOPT

s e t _ i n i t (Useset0) ,
mylabelopt__bui ld_useset_2 (I n s t r s , Useset0 , Useset) .

:− pred mylabelopt__bui ld_useset_2 (l i s t (i n s t r u c t i o n) , s e t (l a b e l) , s e t (l a b e l)) .
:− mode mylabelopt__bui ld_useset_2 (in , in , out) i s det .

mylabelopt__bui ld_useset_2 ([] , Useset , Useset) .
mylabelopt__bui ld_useset_2 ([I n s t r | I n s t r u c t i o n s] , Useset0 , Useset) : −

I n s t r = Uinstr − _Comment ,
o p t _ u t i l _ i n s t r _ l a b e l s (Uinstr , Labels , _CodeAddresses) ,
s e t _ i n s e r t _ l i s t (Useset0 , Labels , Useset1) ,
mylabelopt__bui ld_useset_2 (I n s t r u c t i o n s , Useset1 , Useset) .

%−−−%

% Go through t h e g i v e n i n s t r u c t i o n s e q u e n c e . When we f i n d a l a b e l ,
% we c h e c k whe the r t h e l a b e l can be b r a n c h e d t o e i t h e r from w i t h i n
% t h e p r o c e d u r e or from t h e o u t s i d e . I f yes , we l e a v e i t a l o n e .
% I f not , we d e l e t e i t . We d e l e t e t h e f o l l o w i n g c o d e as w e l l i f
% t h e l a b e l was p r e c e d e d by c o d e t h a t canno t f a l l th rough .

:− pred m y l a b e l o p t _ _ i n s t r _ l i s t (l i s t (i n s t r u c t i o n) , bool , s e t (l a b e l) ,
l i s t (i n s t r u c t i o n) , bool) .

:− mode m y l a b e l o p t _ _ i n s t r _ l i s t (in , in , in , out , out) i s det .

m y l a b e l o p t _ _ i n s t r _ l i s t ([] , _Fal l through , _Useset , [] , no) .
m y l a b e l o p t _ _ i n s t r _ l i s t ([I n s t r 0 | MoreInstrs0] ,

Fal l through , Useset , MoreInstrs , Mod) : −
I n s t r 0 = Uinstr0 − _Comment ,
(Uinstr0 = l a b e l (Label) −>

(
(Label = exported (_)
; Label = l o c a l (_)
; set_member (Label , Useset)
)

−>
R e p l I n s t r s = [I n s t r 0] ,
Fa l l through1 = yes ,
Mod0 = no

;
mylabelopt__el iminate (I n s t r 0 , yes (Fal l through) ,

Repl Ins t r s , Mod0) ,
Fal l through1 = Fal l through

)
;

(Fa l l through = yes −>
R e p l I n s t r s = [I n s t r 0] ,
Mod0 = no

;
mylabelopt__el iminate (I n s t r 0 , no , Repl Ins t r s , Mod0)

) ,
o p t _ u t i l _ c a n _ i n s t r _ f a l l _ t h r o u g h (Uinstr0 , Canfal l through) ,
(Canfal l through = yes −>

Fal l through1 = Fal l through
;

Fal l through1 = no
)

) ,
m y l a b e l o p t _ _ i n s t r _ l i s t (MoreInstrs0 , Fal l through1 , Useset ,

MoreInstrs1 , Mod1) ,
l i s t_append (Repl Ins t r s , MoreInstrs1 , MoreInstrs) ,
(Mod0 = no , Mod1 = no −>

Mod = no
;

Mod = yes
) .

% I n s t e a d o f removing e l i m i n a t e d i n s t r u c t i o n s from t h e i n s t r u c t i o n l i s t ,
% we can r e p l a c e them by p l a c e h o l d e r comments . The o r i g i n a l comment
% f i e l d on t h e i n s t r u c t i o n i s o f t e n enough t o deduce what t h e
% e l i m i n a t e d i n s t r u c t i o n was .

:− pred mylabelopt__el iminate (i n s t r u c t i o n , maybe (bool) , l i s t (i n s t r u c t i o n) , bool) .
:− mode mylabelopt__el iminate (in , in , out , out) i s det .

mylabelopt__el iminate (Uinstr0 − Comment0 , Label , I n s t r , Mod) : −
l a b e l o p t _ e l i m i n a t e _ t o t a l (Tota l) ,
(

Tota l = yes ,
I n s t r = [] ,
Mod = yes

;
Tota l = no ,
(Uinstr0 = comment (_) −>

323

Comment = Comment0 ,
Uinstr = Uinstr0 ,
Mod = no

;
(Label = yes (Follow) −>

(Follow = yes −>
Uinstr = comment (" e l iminated l a b e l only ")

;
% F ol l ow = no ,
Uinstr = comment (" e l iminated l a b e l and block ")

)
;

% L a b e l = no ,
Uinstr = comment (" e l iminated i n s t r u c t i o n ")

) ,
Comment = Comment0 ,
Mod = yes

) ,
I n s t r = [Uinstr − Comment]

) .

:− pred l a b e l o p t _ e l i m i n a t e _ t o t a l (bool) .
:− mode l a b e l o p t _ e l i m i n a t e _ t o t a l (out) i s det .

l a b e l o p t _ e l i m i n a t e _ t o t a l (yes) .

%−−−%
% o p t _ u t i l−r e l a t e d d e f i n i t i o n s

% dummy
:− pred o p t _ u t i l _ i n s t r _ l a b e l s (i n s t r , l i s t (l a b e l) , l i s t (code_addr)) .
:− mode o p t _ u t i l _ i n s t r _ l a b e l s (in , out , out) i s det .

o p t _ u t i l _ i n s t r _ l a b e l s (_ , [] , []) .

% dummy
:− pred o p t _ u t i l _ c a n _ i n s t r _ f a l l _ t h r o u g h (i n s t r , bool) .
:− mode o p t _ u t i l _ c a n _ i n s t r _ f a l l _ t h r o u g h (in , out) i s det .

o p t _ u t i l _ c a n _ i n s t r _ f a l l _ t h r o u g h (_ , yes) .

%−−−%
% s e t−r e l a t e d d e f i n i t i o n s

% s e t (T) == s e t _ o r d l i s t (T) == l i s t (T) .
:− type s e t (T) == l i s t (T) .

:− pred s e t _ i n i t (s e t (T)) .
:− mode s e t _ i n i t (out) i s det .

s e t _ i n i t ([]) .

:− pred s e t _ i n s e r t _ l i s t (s e t (T) , l i s t (T) , s e t (T)) .
:− mode s e t _ i n s e r t _ l i s t (in , in , out) i s det .

s e t _ i n s e r t _ l i s t (Set0 , L i s t0 , Se t):−
l is t_sort_and_remove_dups (L is t0 , L i s t) ,
list_merge_and_remove_dups (L i s t , Set0 , Se t) .

:− pred set_member (T , s e t (T)) .
:− mode set_member (in , in) i s semidet .

set_member (T , L) : − l ist_member (T , L) .

%−−−%
% l i s t −r e l a t e d d e f i n i t i o n s

:− pred l i s t_append (l i s t (T) , l i s t (T) , l i s t (T)) .
:− mode l i s t_append (in , in , out) i s det .

l i s t_append ([] , Y , Y) .
l i s t_append ([X|Xs] , Y , [X|Zs]) :−

l i s t_append (Xs , Y , Zs) .

:− pred l is t_sort_and_remove_dups (l i s t (T) , l i s t (T)) .
:− mode l is t_sort_and_remove_dups (in , out) i s det .

l is t_sort_and_remove_dups (L0 , L) : −
l i s t _ m e r g e _ s o r t (L0 , L1) ,
l i s t_remove_adjacent_dups (L1 , L) .

:− pred l i s t _ m e r g e _ s o r t (l i s t (T) , l i s t (T)) .
:− mode l i s t _ m e r g e _ s o r t (in , out) i s det .

324 APPENDIX A. SOURCE CODE: LABELOPT

l i s t _ m e r g e _ s o r t ([] , []) .
l i s t _ m e r g e _ s o r t ([X] , [X]) .
l i s t _ m e r g e _ s o r t (L i s t , S o r t e d L i s t) : −

L i s t = [_ , _|_] ,
l i s t _ l e n g t h (L i s t , Length) ,
HalfLength i s Length / / 2 ,
(l i s t _ s p l i t _ l i s t (HalfLength , L i s t , Front , Back) −>

l i s t _ m e r g e _ s o r t (Front , SortedFront) ,
l i s t _ m e r g e _ s o r t (Back , SortedBack) ,
l i s t_ merge (SortedFront , SortedBack , S o r t e d L i s t)

;
e r r o r (" l i s t _ _ m e r g e _ s o r t ")

) .

:− pred l i s t _ l e n g t h (l i s t (T) , i n t) .
:− mode l i s t _ l e n g t h (in , out) i s det .

l i s t _ l e n g t h (L , N) : −
l i s t _ l e n g t h _ 2 (L , 0 , N) .

:− pred l i s t _ l e n g t h _ 2 (l i s t (T) , in t , i n t) .
:− mode l i s t _ l e n g t h _ 2 (in , in , out) i s det .

l i s t _ l e n g t h _ 2 ([] , N, N) .
l i s t _ l e n g t h _ 2 ([_ | L1] , N0 , N) : −

N1 i s N0 + 1 ,
l i s t _ l e n g t h _ 2 (L1 , N1 , N) .

:− pred l i s t _ s p l i t _ l i s t (in t , l i s t (T) , l i s t (T) , l i s t (T)) .
:− mode l i s t _ s p l i t _ l i s t (in , in , out , out) i s semidet .

l i s t _ s p l i t _ l i s t (N, L i s t , S t a r t , End) : −
(N = 0 − >

S t a r t = [] ,
End = L i s t

;
N > 0 ,
N1 i s N − 1 ,
N1 = 1 ,
L i s t = [Head | L i s t 1] ,
S t a r t = [Head | S t a r t 1] ,
l i s t _ s p l i t _ l i s t (N1 , L is t1 , S t a r t 1 , End)

) .

:− pred l i s t _merge (l i s t (T) , l i s t (T) , l i s t (T)) .
:− mode l i s t_ merge (in , in , out) i s det .

l i s t _merge (A, B , C) : −
(A = [X|Xs] −>

(B = [Y|Ys] −>
C = [Z|Zs] ,
(

compare (< , X , Y)
−>

Z = X ,
l i s t_ merge (Xs , B , Zs)

;
Z = Y ,
l i s t_ merge (A, Ys , Zs)

)
;

C = A
)

;
C = B

) .

:− pred l i s t_remove_adjacent_dups (l i s t (T) , l i s t (T)) .
:− mode l i s t_remove_adjacent_dups (in , out) i s det .

l i s t_remove_adjacent_dups ([] , []) .
l i s t_remove_adjacent_dups ([X|Xs] , L) : −

l i s t_remove_adjacent_dups_2 (Xs , X , L) .

:− pred l i s t_remove_adjacent_dups_2 (l i s t (T) , T , l i s t (T)) .
:− mode l i s t_remove_adjacent_dups_2 (in , in , out) i s det .

l i s t_remove_adjacent_dups_2 ([] , X , [X]) .
l i s t_remove_adjacent_dups_2 ([X1|Xs] , X0 , L) : −

(
X0 = X1

−>
l is t_remove_adjacent_dups_2 (Xs , X1 , L)

;

325

L = [X0 | L0] ,
l i s t_remove_adjacent_dups_2 (Xs , X1 , L0)

) .

:− pred list_merge_and_remove_dups (l i s t (T) , l i s t (T) , l i s t (T)) .
:− mode list_merge_and_remove_dups (in , in , out) i s det .

list_merge_and_remove_dups (A, B , C) : −
l i s t_ merge (A, B ,C) .

:− pred l ist_member (T , l i s t (T)) .
:− mode l ist_member (in , in) i s semidet .

l ist_member (X , [X | _]) .
l ist_member (X , [_ | Xs]) : −

l ist_member (X , Xs) .

326 APPENDIX A. SOURCE CODE: LABELOPT

Appendix B

Details of the ICFP2000
benchmark

This appendix presents the details of the memory usage and timings of the pro-
cessing of each of the individual scenes for each of the CTGC-configurations oc-
curring in Table 12.3 (page 270). Recall that each of these configurations is com-
piled without reuse enabled in the basic libraries of the compiler.

327

328 APPENDIX B. DETAILS OF THE ICFP2000 BENCHMARK

N
o

R
eu

se
gr

ap
h

m
at

ch -

gr
ap

h
m

at
ch

cc

gr
ap

h
sa

m
ec

on
s

-

gr
ap

h
sa

m
ec

on
s

cc
in

pu
t

nr
m

nr
t

1 m
1 t

2 m
2 t

3 m
3 t

4 m
4 t

(k
W

or
d)

(s
ec

)
%

%
%

%
%

%
%

%
ch

ec
ke

d-
co

ne
.g

m
l

33
23

.5
1

0.
24

-6
.9

7
-8

.3
3

-1
5.

03
4.

17
-5

.1
1

-4
.1

7
-1

3.
80

12
.5

0
ch

ec
ke

d-
cu

be
.g

m
l

40
06

.8
5

0.
26

-6
.1

6
-3

.8
5

-1
2.

61
7.

69
-4

.5
0

-3
.8

5
-1

1.
42

19
.2

3
ch

ec
ke

d-
cy

lin
de

r.g
m

l
76

93
.1

5
0.

44
-8

.9
9

-4
.5

5
-1

3.
79

9.
09

-6
.5

7
-2

.2
7

-1
2.

00
18

.1
8

ch
ec

ke
d-

sp
he

re
.g

m
l

60
78

.0
5

0.
36

-1
2.

32
-5

.5
6

-1
7.

89
5.

56
-9

.7
0

2.
78

-1
5.

93
19

.4
4

cy
lin

de
r.g

m
l

25
11

2.
53

2.
11

-2
7.

54
-1

0.
90

-3
9.

02
-1

.9
0

-2
5.

43
-8

.0
6

-3
7.

44
1.

42
di

ce
.g

m
l

54
24

12
.7

5
50

.9
8

-2
9.

34
1.

41
-5

7.
64

6.
90

-2
8.

68
3.

24
-5

7.
21

5.
90

fib
.g

m
l

39
76

0.
55

3.
40

-2
9.

84
-6

.7
6

-7
2.

10
-0

.8
8

-2
9.

00
-4

.7
1

-7
1.

42
-1

.1
8

go
lf

.g
m

l
44

12
7.

04
3.

40
-1

0.
75

10
.5

9
-2

4.
18

16
.1

8
-9

.6
3

13
.5

3
-2

3.
72

20
.8

8
m

ca
ps

ul
e.

gm
l

45
17

.8
3

0.
38

-1
9.

01
-7

.8
9

-3
2.

45
2.

63
-1

6.
32

-5
.2

6
-3

0.
12

7.
89

m
in

te
rs

ec
t.g

m
l

30
06

.2
1

0.
26

-1
6.

46
0.

00
-3

2.
81

7.
69

-1
4.

41
0.

00
-3

0.
85

15
.3

8
m

te
st

1.
gm

l
38

09
.9

4
0.

30
-2

2.
10

-1
0.

00
-3

1.
86

0.
00

-1
8.

67
-6

.6
7

-2
9.

23
3.

33
m

te
st

10
.g

m
l

27
67

2.
61

2.
05

-2
1.

40
-6

.8
3

-4
0.

87
1.

95
-1

9.
57

-5
.3

7
-3

9.
18

4.
39

m
te

st
11

.g
m

l
26

34
5.

10
2.

03
-7

.6
7

-2
.4

6
-2

0.
89

8.
87

-6
.4

0
-1

.4
8

-2
0.

16
12

.8
1

m
te

st
2.

gm
l

12
56

.8
8

0.
13

-1
8.

77
-7

.6
9

-3
7.

28
7.

69
-1

8.
67

0.
00

-3
7.

22
7.

69
m

te
st

3.
gm

l
38

70
.9

4
0.

30
-2

1.
23

-1
0.

00
-3

0.
84

0.
00

-1
7.

61
-6

.6
7

-2
8.

00
6.

67
m

te
st

4.
gm

l
69

35
.6

3
0.

53
-2

4.
78

-9
.4

3
-3

9.
58

1.
89

-2
1.

38
-3

.7
7

-3
6.

92
9.

43
m

te
st

5.
gm

l
87

20
.5

6
0.

65
-2

4.
72

-9
.2

3
-3

8.
77

1.
54

-2
1.

15
-3

.0
8

-3
6.

03
9.

23
m

te
st

6.
gm

l
11

16
5.

26
0.

83
-2

7.
34

3.
61

-4
9.

47
15

.6
6

-2
4.

61
8.

43
-4

7.
31

15
.6

6
m

te
st

7.
gm

l
12

04
09

.1
4

8.
68

-2
3.

04
12

.2
1

-4
7.

88
17

.0
5

-2
0.

14
-3

.3
4

-4
5.

52
18

.7
8

m
te

st
8.

gm
l

30
06

.1
9

0.
26

-1
6.

46
0.

00
-3

2.
81

11
.5

4
-1

4.
41

0.
00

-3
0.

85
15

.3
8

m
te

st
9.

gm
l

56
07

.9
7

0.
43

-2
7.

38
-9

.3
0

-4
2.

56
-2

.3
3

-2
4.

21
-4

.6
5

-3
9.

81
4.

65
m

un
io

n.
gm

l
53

88
.7

8
0.

46
-1

8.
74

-8
.7

0
-3

1.
78

0.
00

-1
5.

90
-6

.5
2

-2
9.

58
4.

35
re

fle
ct

.g
m

l
38

60
9.

22
2.

92
-2

1.
88

-7
.5

3
-3

9.
27

5.
82

-1
8.

33
-6

.5
1

-3
6.

75
6.

16
re

fle
ct

2.
gm

l
39

37
5.

85
2.

92
-2

1.
84

-7
.1

9
-3

9.
26

8.
22

-1
8.

28
-4

.4
5

-3
6.

73
8.

56
sp

he
re

s.
gm

l
13

10
1.

37
0.

95
-2

4.
56

-5
.2

6
-3

9.
95

2.
11

-2
2.

40
-5

.2
6

-3
9.

01
8.

42
sp

he
re

s2
.g

m
l

13
59

6.
32

0.
99

-2
3.

93
-5

.0
5

-3
9.

03
4.

04
-2

1.
58

-4
.0

4
-3

7.
86

9.
09

sp
ot

lig
ht

.g
m

l
15

44
4.

67
1.

27
-3

3.
57

-1
4.

96
-4

4.
52

-5
.5

1
-3

2.
08

-7
.0

9
-4

3.
77

-4
.7

2
to

ta
l

10
24

35
4.

9
87

.5
3

-2
5.

60
0.

50
-4

9.
74

7.
31

-2
4.

13
0.

86
-4

8.
69

7.
87

329

N
o

R
eu

se
gr

ap
h

w
it

hi
n1

-

gr
ap

h
w

it
hi

n1
cc

gr
ap

h
w

it
hi

n2
-

gr
ap

h
w

it
hi

n2
cc

in
pu

t
nr

m
nr

t
5 m

5 t
6 m

6 t
7 m

7 t
8 m

8 t
(k

W
or

d)
(s

ec
)

%
%

%
%

%
%

%
%

ch
ec

ke
d-

co
ne

.g
m

l
33

23
.5

1
0.

24
-9

.6
6

-8
.3

3
-1

6.
07

0.
00

-9
.6

6
-8

.3
3

-1
6.

07
0.

00
ch

ec
ke

d-
cu

be
.g

m
l

40
06

.8
5

0.
26

-1
1.

90
-7

.6
9

-1
1.

92
3.

85
-1

1.
90

-7
.6

9
-1

1.
92

7.
69

ch
ec

ke
d-

cy
lin

de
r.g

m
l

76
93

.1
5

0.
44

-1
4.

31
-4

.5
5

-1
4.

32
4.

55
-1

4.
31

-6
.8

2
-1

4.
32

4.
55

ch
ec

ke
d-

sp
he

re
.g

m
l

60
78

.0
5

0.
36

-1
4.

39
-5

.5
6

-1
4.

40
5.

56
-1

4.
39

-8
.3

3
-1

4.
40

5.
56

cy
lin

de
r.g

m
l

25
11

2.
53

2.
11

-3
2.

17
-1

2.
32

-3
8.

87
-2

.8
4

-3
2.

17
-1

2.
32

-3
8.

87
-3

.3
2

di
ce

.g
m

l
54

24
12

.7
5

50
.9

8
-3

0.
62

0.
27

-3
2.

68
9.

00
-3

0.
62

0.
16

-3
2.

68
9.

00
fib

.g
m

l
39

76
0.

55
3.

40
-3

0.
43

-7
.3

5
-4

9.
88

-0
.2

9
-3

0.
43

-7
.3

5
-4

9.
88

-0
.2

9
go

lf
.g

m
l

44
12

7.
04

3.
40

-1
7.

13
8.

53
-1

8.
79

18
.8

2
-1

7.
13

8.
53

-1
8.

79
19

.1
2

m
ca

ps
ul

e.
gm

l
45

17
.8

3
0.

38
-2

4.
90

-7
.8

9
-2

6.
11

-2
.6

3
-2

4.
90

-7
.8

9
-2

6.
11

0.
00

m
in

te
rs

ec
t.g

m
l

30
06

.2
1

0.
26

-2
3.

08
-3

.8
5

-2
3.

52
7.

69
-2

3.
08

-3
.8

5
-2

3.
52

7.
69

m
te

st
1.

gm
l

38
09

.9
4

0.
30

-2
4.

73
-1

0.
00

-2
4.

75
0.

00
-2

4.
73

-1
0.

00
-2

4.
75

-3
.3

3
m

te
st

10
.g

m
l

27
67

2.
61

2.
05

-2
6.

50
-8

.2
9

-3
2.

44
1.

46
-2

6.
50

-8
.2

9
-3

2.
44

1.
46

m
te

st
11

.g
m

l
26

34
5.

10
2.

03
-1

6.
55

-3
.9

4
-1

7.
02

22
.1

7
-1

6.
55

-3
.4

5
-1

7.
02

22
.6

6
m

te
st

2.
gm

l
12

56
.8

8
0.

13
-1

8.
84

0.
00

-1
8.

92
0.

00
-1

8.
84

0.
00

-1
8.

92
0.

00
m

te
st

3.
gm

l
38

70
.9

4
0.

30
-2

3.
95

-6
.6

7
-2

3.
98

0.
00

-2
3.

95
-6

.6
7

-2
3.

98
0.

00
m

te
st

4.
gm

l
69

35
.6

3
0.

53
-2

7.
33

-9
.4

3
-3

0.
61

0.
00

-2
7.

33
-9

.4
3

-3
0.

61
0.

00
m

te
st

5.
gm

l
87

20
.5

6
0.

65
-2

7.
46

-1
0.

77
-3

0.
77

0.
00

-2
7.

46
-9

.2
3

-3
0.

77
0.

00
m

te
st

6.
gm

l
11

16
5.

26
0.

83
-2

9.
35

2.
41

-3
7.

14
15

.6
6

-2
9.

35
3.

61
-3

7.
14

15
.6

6
m

te
st

7.
gm

l
12

04
09

.1
4

8.
68

-2
5.

32
1.

15
-4

2.
40

18
.5

5
-2

5.
32

1.
61

-4
2.

40
19

.0
1

m
te

st
8.

gm
l

30
06

.1
9

0.
26

-2
3.

08
-3

.8
5

-2
3.

52
7.

69
-2

3.
08

0.
00

-2
3.

52
7.

69
m

te
st

9.
gm

l
56

07
.9

7
0.

43
-2

8.
82

-9
.3

0
-3

3.
41

-2
.3

3
-2

8.
82

-9
.3

0
-3

3.
41

-2
.3

3
m

un
io

n.
gm

l
53

88
.7

8
0.

46
-2

4.
67

-8
.7

0
-2

4.
98

-4
.3

5
-2

4.
67

-8
.7

0
-2

4.
98

-4
.3

5
re

fle
ct

.g
m

l
38

60
9.

22
2.

92
-2

4.
12

-9
.5

9
-3

3.
46

5.
48

-2
4.

12
-9

.5
9

-3
3.

46
5.

48
re

fle
ct

2.
gm

l
39

37
5.

85
2.

92
-2

4.
09

-8
.9

0
-3

3.
50

7.
88

-2
4.

09
-8

.5
6

-3
3.

50
8.

56
sp

he
re

s.
gm

l
13

10
1.

37
0.

95
-2

5.
02

-7
.3

7
-2

9.
97

2.
11

-2
5.

02
-6

.3
2

-2
9.

97
3.

16
sp

he
re

s2
.g

m
l

13
59

6.
32

0.
99

-2
4.

91
-7

.0
7

-2
9.

68
3.

03
-2

4.
91

-7
.0

7
-2

9.
68

3.
03

sp
ot

lig
ht

.g
m

l
15

44
4.

67
1.

27
-3

5.
06

-1
3.

39
-4

4.
02

-5
.5

1
-3

5.
06

-1
4.

17
-4

4.
02

-5
.5

1
to

ta
l

10
24

35
4.

9
87

.5
3

-2
7.

80
-1

.6
5

-3
3.

23
8.

91
-2

7.
80

-1
.6

3
-3

3.
23

9.
01

330 APPENDIX B. DETAILS OF THE ICFP2000 BENCHMARK

N
o

R
eu

se
lif

o
m

at
ch -

lif
o

m
at

ch
cc

lif
o

sa
m

ec
on

s
-

lif
o

sa
m

ec
on

s
cc

in
pu

t
nr

m
nr

t
9 m

9 t
10

m
10

t
11

m
11

t
12

m
12

t
(k

W
or

d)
(s

ec
)

%
%

%
%

%
%

%
%

ch
ec

ke
d-

co
ne

.g
m

l
33

23
.5

1
0.

24
-7

.5
9

-8
.3

3
-1

5.
65

0.
00

-5
.7

3
-4

.1
7

-1
4.

41
12

.5
0

ch
ec

ke
d-

cu
be

.g
m

l
40

06
.8

5
0.

26
-6

.6
0

-3
.8

5
-1

3.
06

3.
85

-4
.9

5
-3

.8
5

-1
1.

86
19

.2
3

ch
ec

ke
d-

cy
lin

de
r.g

m
l

76
93

.1
5

0.
44

-9
.6

1
-4

.5
5

-1
4.

41
6.

82
-7

.2
0

0.
00

-1
2.

62
22

.7
3

ch
ec

ke
d-

sp
he

re
.g

m
l

60
78

.0
5

0.
36

-1
2.

97
-5

.5
6

-1
8.

55
5.

56
-1

0.
36

-2
.7

8
-1

6.
59

19
.4

4
cy

lin
de

r.g
m

l
25

11
2.

53
2.

11
-2

7.
53

-8
.5

3
-3

9.
01

-2
.8

4
-2

5.
41

-8
.0

6
-3

7.
42

2.
84

di
ce

.g
m

l
54

24
12

.7
5

50
.9

8
-2

9.
14

1.
92

-5
7.

44
6.

47
-2

8.
49

1.
65

-5
7.

01
5.

88
fib

.g
m

l
39

76
0.

55
3.

40
-3

0.
00

-6
.1

8
-7

2.
26

-1
.7

6
-2

9.
15

-7
.0

6
-7

1.
58

-0
.5

9
go

lf
.g

m
l

44
12

7.
04

3.
40

-1
0.

53
11

.1
8

-2
3.

96
17

.3
5

-9
.4

1
12

.6
5

-2
3.

50
24

.1
2

m
ca

ps
ul

e.
gm

l
45

17
.8

3
0.

38
-1

9.
37

-5
.2

6
-3

2.
81

0.
00

-1
6.

68
-5

.2
6

-3
0.

48
7.

89
m

in
te

rs
ec

t.g
m

l
30

06
.2

1
0.

26
-1

6.
55

0.
00

-3
2.

90
7.

69
-1

4.
49

0.
00

-3
0.

94
11

.5
4

m
te

st
1.

gm
l

38
09

.9
4

0.
30

-2
2.

89
-6

.6
7

-3
2.

65
0.

00
-1

9.
46

-6
.6

7
-3

0.
02

6.
67

m
te

st
10

.g
m

l
27

67
2.

61
2.

05
-2

1.
53

-6
.8

3
-4

1.
00

2.
93

-1
9.

70
-6

.3
4

-3
9.

31
4.

39
m

te
st

11
.g

m
l

26
34

5.
10

2.
03

-7
.6

7
-0

.4
9

-2
0.

89
7.

88
-6

.4
0

-2
.4

6
-2

0.
16

15
.7

6
m

te
st

2.
gm

l
12

56
.8

8
0.

13
-1

8.
79

-7
.6

9
-3

7.
30

0.
00

-1
8.

69
-7

.6
9

-3
7.

24
7.

69
m

te
st

3.
gm

l
38

70
.9

4
0.

30
-2

2.
01

-6
.6

7
-3

1.
62

0.
00

-1
8.

38
-6

.6
7

-2
8.

77
6.

67
m

te
st

4.
gm

l
69

35
.6

3
0.

53
-2

5.
51

-5
.6

6
-4

0.
31

-1
.8

9
-2

2.
11

-3
.7

7
-3

7.
65

11
.3

2
m

te
st

5.
gm

l
87

20
.5

6
0.

65
-2

5.
54

-4
.6

2
-3

9.
59

-1
.5

4
-2

1.
97

-4
.6

2
-3

6.
84

12
.3

1
m

te
st

6.
gm

l
11

16
5.

26
0.

83
-2

7.
90

6.
02

-5
0.

03
13

.2
5

-2
5.

17
7.

23
-4

7.
88

16
.8

7
m

te
st

7.
gm

l
12

04
09

.1
4

8.
68

-2
1.

86
-4

.2
6

-4
6.

69
16

.1
3

-1
8.

95
-4

.4
9

-4
4.

33
20

.5
1

m
te

st
8.

gm
l

30
06

.1
9

0.
26

-1
6.

55
0.

00
-3

2.
90

11
.5

4
-1

4.
49

0.
00

-3
0.

94
11

.5
4

m
te

st
9.

gm
l

56
07

.9
7

0.
43

-2
7.

79
-6

.9
8

-4
2.

97
-2

.3
3

-2
4.

62
-4

.6
5

-4
0.

22
6.

98
m

un
io

n.
gm

l
53

88
.7

8
0.

46
-1

9.
38

-6
.5

2
-3

2.
42

0.
00

-1
6.

54
-6

.5
2

-3
0.

22
6.

52
re

fle
ct

.g
m

l
38

60
9.

22
2.

92
-2

0.
55

-5
.1

4
-3

7.
94

1.
71

-1
7.

01
-5

.8
2

-3
5.

43
8.

56
re

fle
ct

2.
gm

l
39

37
5.

85
2.

92
-2

0.
52

-4
.1

1
-3

7.
94

4.
11

-1
6.

96
-3

.4
2

-3
5.

41
10

.6
2

sp
he

re
s.

gm
l

13
10

1.
37

0.
95

-2
4.

76
-1

.0
5

-4
0.

15
2.

11
-2

2.
60

-6
.3

2
-3

9.
22

14
.7

4
sp

he
re

s2
.g

m
l

13
59

6.
32

0.
99

-2
4.

13
0.

00
-3

9.
23

3.
03

-2
1.

78
-5

.0
5

-3
8.

06
15

.1
5

sp
ot

lig
ht

.g
m

l
15

44
4.

67
1.

27
-3

3.
57

-9
.4

5
-4

4.
52

-9
.4

5
-3

2.
08

-1
0.

24
-4

3.
77

-0
.7

9
to

ta
l

10
24

35
4.

9
87

.5
3

-2
5.

30
-0

.1
8

-4
9.

44
6.

49
-2

3.
83

-0
.4

1
-4

8.
39

8.
71

331

N
o

R
eu

se
lif

o
w

it
hi

n1
-

lif
o

w
it

hi
n1

cc

lif
o

w
it

hi
n2

-

lif
o

w
it

hi
n2

cc
in

pu
t

nr
m

nr
t

13
m

13
t

14
m

14
t

15
m

15
t

16
m

16
t

(k
W

or
d)

(s
ec

)
%

%
%

%
%

%
%

%
ch

ec
ke

d-
co

ne
.g

m
l

33
23

.5
1

0.
24

-1
0.

09
-4

.1
7

-1
6.

51
4.

17
-8

.1
7

-4
.1

7
-1

4.
59

0.
00

ch
ec

ke
d-

cu
be

.g
m

l
40

06
.8

5
0.

26
-8

.7
0

-3
.8

5
-8

.7
2

7.
69

-6
.9

0
-3

.8
5

-6
.9

2
7.

69
ch

ec
ke

d-
cy

lin
de

r.g
m

l
76

93
.1

5
0.

44
-1

2.
65

-2
.2

7
-1

2.
66

9.
09

-9
.9

9
-2

.2
7

-1
0.

00
6.

82
ch

ec
ke

d-
sp

he
re

.g
m

l
60

78
.0

5
0.

36
-1

4.
07

-5
.5

6
-1

4.
08

8.
33

-7
.3

1
0.

00
-7

.3
2

8.
33

cy
lin

de
r.g

m
l

25
11

2.
53

2.
11

-2
9.

70
-9

.0
0

-3
6.

40
-2

.8
4

-1
6.

71
-6

.6
4

-2
3.

41
2.

37
di

ce
.g

m
l

54
24

12
.7

5
50

.9
8

-2
9.

57
1.

90
-3

1.
62

10
.6

9
-3

.5
6

11
.3

4
-5

.6
1

19
.6

4
fib

.g
m

l
39

76
0.

55
3.

40
-3

0.
26

-8
.2

4
-4

9.
72

-1
.4

7
-6

.7
8

-2
.6

5
-2

6.
23

5.
59

go
lf

.g
m

l
44

12
7.

04
3.

40
-1

1.
02

10
.2

9
-1

2.
67

22
.3

5
-7

.3
2

15
.5

9
-8

.9
7

25
.5

9
m

ca
ps

ul
e.

gm
l

45
17

.8
3

0.
38

-2
0.

55
-5

.2
6

-2
1.

75
2.

63
-1

0.
45

-5
.2

6
-1

1.
66

7.
89

m
in

te
rs

ec
t.g

m
l

30
06

.2
1

0.
26

-1
7.

09
0.

00
-1

7.
53

7.
69

-6
.2

1
0.

00
-6

.6
5

15
.3

8
m

te
st

1.
gm

l
38

09
.9

4
0.

30
-2

4.
20

-3
.3

3
-2

4.
23

0.
00

-1
1.

85
0.

00
-1

1.
87

3.
33

m
te

st
10

.g
m

l
27

67
2.

61
2.

05
-2

3.
39

-7
.8

0
-2

9.
37

6.
34

-1
1.

81
-3

.9
0

-1
7.

79
10

.2
4

m
te

st
11

.g
m

l
26

34
5.

10
2.

03
-8

.8
0

-0
.4

9
-9

.2
7

12
.3

2
-7

.0
7

-0
.4

9
-7

.5
4

12
.8

1
m

te
st

2.
gm

l
12

56
.8

8
0.

13
-1

8.
82

0.
00

-1
8.

91
0.

00
-0

.3
3

0.
00

-0
.4

2
7.

69
m

te
st

3.
gm

l
38

70
.9

4
0.

30
-2

3.
31

-6
.6

7
-2

3.
34

0.
00

-1
1.

14
-3

.3
3

-1
1.

17
3.

33
m

te
st

4.
gm

l
69

35
.6

3
0.

53
-2

6.
73

-5
.6

6
-3

0.
01

0.
00

-1
2.

43
-1

.8
9

-1
5.

71
3.

77
m

te
st

5.
gm

l
87

20
.5

6
0.

65
-2

6.
90

-6
.1

5
-3

0.
21

0.
00

-1
3.

41
-1

.5
4

-1
6.

73
3.

08
m

te
st

6.
gm

l
11

16
5.

26
0.

83
-2

8.
86

6.
02

-3
6.

65
15

.6
6

-1
0.

74
12

.0
5

-1
8.

53
20

.4
8

m
te

st
7.

gm
l

12
04

09
.1

4
8.

68
-2

2.
78

-3
.9

2
-3

9.
85

18
.6

6
-1

2.
69

-0
.8

1
-2

9.
76

23
.9

6
m

te
st

8.
gm

l
30

06
.1

9
0.

26
-1

7.
09

-3
.8

5
-1

7.
53

7.
69

-6
.2

1
0.

00
-6

.6
5

15
.3

8
m

te
st

9.
gm

l
56

07
.9

7
0.

43
-2

7.
79

-9
.3

0
-3

2.
38

0.
00

-1
3.

00
-4

.6
5

-1
7.

59
2.

33
m

un
io

n.
gm

l
53

88
.7

8
0.

46
-2

0.
60

-6
.5

2
-2

0.
91

0.
00

-1
1.

01
-4

.3
5

-1
1.

33
4.

35
re

fle
ct

.g
m

l
38

60
9.

22
2.

92
-2

2.
27

-9
.2

5
-3

1.
61

3.
77

-1
3.

30
-2

.4
0

-2
2.

64
8.

22
re

fle
ct

2.
gm

l
39

37
5.

85
2.

92
-2

2.
23

-7
.5

3
-3

1.
64

5.
82

-1
3.

27
-2

.0
5

-2
2.

68
11

.3
0

sp
he

re
s.

gm
l

13
10

1.
37

0.
95

-2
4.

76
-2

.1
1

-2
9.

72
5.

26
-1

2.
42

1.
05

-1
7.

37
6.

32
sp

he
re

s2
.g

m
l

13
59

6.
32

0.
99

-2
4.

57
-1

.0
1

-2
9.

35
4.

04
-1

2.
59

2.
02

-1
7.

36
7.

07
sp

ot
lig

ht
.g

m
l

15
44

4.
67

1.
27

-3
4.

81
-1

0.
24

-4
3.

77
-8

.6
6

-1
5.

67
-7

.0
9

-2
4.

63
-1

.5
7

to
ta

l
10

24
35

4.
9

87
.5

3
-2

6.
05

-0
.5

8
-3

1.
48

9.
87

-7
.2

2
6.

52
-1

2.
65

16
.9

2

332 APPENDIX B. DETAILS OF THE ICFP2000 BENCHMARK

N
o

R
eu

se
ra

nd
om

m
at

ch -

ra
nd

om
m

at
ch

cc

ra
nd

om
sa

m
ec

on
s

-

ra
nd

om
sa

m
ec

on
s

cc
in

pu
t

nr
m

nr
t

17
m

17
t

18
m

18
t

19
m

19
t

20
m

20
t

(k
W

or
d)

(s
ec

)
%

%
%

%
%

%
%

%
ch

ec
ke

d-
co

ne
.g

m
l

33
23

.5
1

0.
24

-6
.9

7
-4

.1
7

-1
5.

03
0.

00
-5

.1
1

-4
.1

7
-1

3.
80

12
.5

0
ch

ec
ke

d-
cu

be
.g

m
l

40
06

.8
5

0.
26

-6
.1

6
-7

.6
9

-1
2.

61
3.

85
-4

.5
0

-3
.8

5
-1

1.
42

19
.2

3
ch

ec
ke

d-
cy

lin
de

r.g
m

l
76

93
.1

5
0.

44
-8

.9
9

-4
.5

5
-1

3.
79

6.
82

-6
.5

7
-2

.2
7

-1
2.

00
18

.1
8

ch
ec

ke
d-

sp
he

re
.g

m
l

60
78

.0
5

0.
36

-1
2.

32
-2

.7
8

-1
7.

89
5.

56
-9

.7
0

-2
.7

8
-1

5.
93

16
.6

7
cy

lin
de

r.g
m

l
25

11
2.

53
2.

11
-2

7.
07

-8
.5

3
-3

8.
55

-3
.3

2
-2

4.
95

-8
.0

6
-3

6.
96

2.
37

di
ce

.g
m

l
54

24
12

.7
5

50
.9

8
-2

8.
92

2.
28

-5
7.

23
6.

14
-2

8.
27

1.
24

-5
6.

79
5.

71
fib

.g
m

l
39

76
0.

55
3.

40
-2

9.
84

-5
.8

8
-7

2.
10

-1
.7

6
-2

9.
00

-8
.5

3
-7

1.
42

-2
.3

5
go

lf
.g

m
l

44
12

7.
04

3.
40

-9
.8

8
12

.3
5

-2
3.

31
17

.9
4

-8
.7

6
12

.6
5

-2
2.

85
25

.0
0

m
ca

ps
ul

e.
gm

l
45

17
.8

3
0.

38
-1

9.
01

-5
.2

6
-3

2.
45

0.
00

-1
6.

32
-5

.2
6

-3
0.

12
7.

89
m

in
te

rs
ec

t.g
m

l
30

06
.2

1
0.

26
-1

6.
46

0.
00

-3
2.

81
7.

69
-1

4.
41

0.
00

-3
0.

85
15

.3
8

m
te

st
1.

gm
l

38
09

.9
4

0.
30

-2
2.

10
-3

.3
3

-3
1.

86
0.

00
-1

8.
67

-1
0.

00
-2

9.
23

6.
67

m
te

st
10

.g
m

l
27

67
2.

61
2.

05
-2

1.
40

-6
.8

3
-4

0.
87

2.
44

-1
9.

57
-6

.3
4

-3
9.

18
4.

39
m

te
st

11
.g

m
l

26
34

5.
10

2.
03

-7
.1

9
-0

.9
9

-2
0.

41
7.

39
-5

.9
2

-1
.4

8
-1

9.
67

15
.2

7
m

te
st

2.
gm

l
12

56
.8

8
0.

13
-1

8.
77

0.
00

-3
7.

28
0.

00
-1

8.
67

0.
00

-3
7.

22
7.

69
m

te
st

3.
gm

l
38

70
.9

4
0.

30
-2

1.
23

-6
.6

7
-3

0.
84

0.
00

-1
7.

61
-6

.6
7

-2
8.

00
6.

67
m

te
st

4.
gm

l
69

35
.6

3
0.

53
-2

4.
78

-5
.6

6
-3

9.
58

-1
.8

9
-2

1.
38

-5
.6

6
-3

6.
92

11
.3

2
m

te
st

5.
gm

l
87

20
.5

6
0.

65
-2

4.
72

-6
.1

5
-3

8.
77

0.
00

-2
1.

15
-4

.6
2

-3
6.

03
12

.3
1

m
te

st
6.

gm
l

11
16

5.
26

0.
83

-2
7.

34
6.

02
-4

9.
47

13
.2

5
-2

4.
61

7.
23

-4
7.

31
18

.0
7

m
te

st
7.

gm
l

12
04

09
.1

4
8.

68
-2

1.
34

-4
.3

8
-4

6.
17

16
.8

2
-1

8.
43

-4
.4

9
-4

3.
81

20
.1

6
m

te
st

8.
gm

l
30

06
.1

9
0.

26
-1

6.
46

0.
00

-3
2.

81
7.

69
-1

4.
41

0.
00

-3
0.

85
11

.5
4

m
te

st
9.

gm
l

56
07

.9
7

0.
43

-2
7.

38
-9

.3
0

-4
2.

56
-2

.3
3

-2
4.

21
-6

.9
8

-3
9.

81
6.

98
m

un
io

n.
gm

l
53

88
.7

8
0.

46
-1

8.
74

-6
.5

2
-3

1.
78

0.
00

-1
5.

90
-6

.5
2

-2
9.

58
6.

52
re

fle
ct

.g
m

l
38

60
9.

22
2.

92
-1

9.
53

-5
.1

4
-3

6.
92

2.
05

-1
5.

98
-6

.1
6

-3
4.

40
8.

22
re

fle
ct

2.
gm

l
39

37
5.

85
2.

92
-1

9.
49

-3
.4

2
-3

6.
92

4.
45

-1
5.

94
-4

.4
5

-3
4.

39
10

.6
2

sp
he

re
s.

gm
l

13
10

1.
37

0.
95

-2
3.

54
0.

00
-3

8.
93

2.
11

-2
1.

38
-6

.3
2

-3
8.

00
14

.7
4

sp
he

re
s2

.g
m

l
13

59
6.

32
0.

99
-2

2.
95

-1
.0

1
-3

8.
05

2.
02

-2
0.

60
-5

.0
5

-3
6.

88
15

.1
5

sp
ot

lig
ht

.g
m

l
15

44
4.

67
1.

27
-3

2.
82

-9
.4

5
-4

3.
77

-9
.4

5
-3

1.
33

-9
.4

5
-4

3.
02

-1
.5

7
to

ta
l

10
24

35
4.

9
87

.5
3

-2
4.

90
0.

09
-4

9.
04

6.
36

-2
3.

43
-0

.7
5

-4
7.

99
8.

48

333

N
o

R
eu

se
ra

nd
om

w
it

hi
n1

-

ra
nd

om
w

it
hi

n1
cc

ra
nd

om
w

it
hi

n2
-

ra
nd

om
w

it
hi

n2
cc

in
pu

t
nr

m
nr

t
21

m
21

t
22

m
22

t
23

m
23

t
24

m
24

t
(k

W
or

d)
(s

ec
)

%
%

%
%

%
%

%
%

ch
ec

ke
d-

co
ne

.g
m

l
33

23
.5

1
0.

24
-9

.4
8

-4
.1

7
-1

5.
89

4.
17

-7
.5

5
-4

.1
7

-1
3.

97
8.

33
ch

ec
ke

d-
cu

be
.g

m
l

40
06

.8
5

0.
26

-8
.2

5
-3

.8
5

-8
.2

7
7.

69
-6

.4
5

-3
.8

5
-6

.4
7

11
.5

4
ch

ec
ke

d-
cy

lin
de

r.g
m

l
76

93
.1

5
0.

44
-1

2.
03

0.
00

-1
2.

04
6.

82
-9

.3
6

-4
.5

5
-9

.3
7

13
.6

4
ch

ec
ke

d-
sp

he
re

.g
m

l
60

78
.0

5
0.

36
-1

3.
41

0.
00

-1
3.

42
5.

56
-6

.6
6

-2
.7

8
-6

.6
7

13
.8

9
cy

lin
de

r.g
m

l
25

11
2.

53
2.

11
-2

9.
24

-5
.6

9
-3

5.
94

-0
.4

7
-1

6.
30

-5
.6

9
-2

2.
99

4.
74

di
ce

.g
m

l
54

24
12

.7
5

50
.9

8
-2

9.
35

6.
14

-3
1.

40
10

.2
6

-3
.1

7
15

.5
6

-5
.2

2
20

.2
6

fib
.g

m
l

39
76

0.
55

3.
40

-3
0.

10
-7

.0
6

-4
9.

56
-1

.7
6

-6
.6

0
-1

.4
7

-2
6.

06
7.

06
go

lf
.g

m
l

44
12

7.
04

3.
40

-1
0.

37
3.

24
-1

2.
02

24
.1

2
-6

.7
8

-2
.0

6
-8

.4
3

28
.2

4
m

ca
ps

ul
e.

gm
l

45
17

.8
3

0.
38

-2
0.

19
-2

.6
3

-2
1.

39
5.

26
-1

0.
21

-5
.2

6
-1

1.
42

10
.5

3
m

in
te

rs
ec

t.g
m

l
30

06
.2

1
0.

26
-1

7.
00

0.
00

-1
7.

44
11

.5
4

-6
.1

5
-3

.8
5

-6
.5

9
19

.2
3

m
te

st
1.

gm
l

38
09

.9
4

0.
30

-2
3.

41
-6

.6
7

-2
3.

44
-3

.3
3

-1
1.

06
-3

.3
3

-1
1.

08
6.

67
m

te
st

10
.g

m
l

27
67

2.
61

2.
05

-2
3.

26
-5

.3
7

-2
9.

24
5.

85
-1

0.
92

-2
.4

4
-1

6.
90

9.
27

m
te

st
11

.g
m

l
26

34
5.

10
2.

03
-8

.3
2

2.
96

-8
.7

9
12

.3
2

-6
.6

3
-0

.4
9

-7
.1

0
12

.3
2

m
te

st
2.

gm
l

12
56

.8
8

0.
13

-1
8.

80
-7

.6
9

-1
8.

89
0.

00
-0

.3
1

0.
00

-0
.4

0
7.

69
m

te
st

3.
gm

l
38

70
.9

4
0.

30
-2

2.
53

-6
.6

7
-2

2.
56

0.
00

-1
0.

37
-6

.6
7

-1
0.

39
6.

67
m

te
st

4.
gm

l
69

35
.6

3
0.

53
-2

6.
00

0.
00

-2
9.

28
0.

00
-1

1.
93

-3
.7

7
-1

5.
21

7.
55

m
te

st
5.

gm
l

87
20

.5
6

0.
65

-2
6.

09
0.

00
-2

9.
40

0.
00

-1
2.

65
-4

.6
2

-1
5.

96
6.

15
m

te
st

6.
gm

l
11

16
5.

26
0.

83
-2

8.
30

7.
23

-3
6.

09
14

.4
6

-1
0.

00
2.

41
-1

7.
79

24
.1

0
m

te
st

7.
gm

l
12

04
09

.1
4

8.
68

-2
2.

26
-0

.1
2

-3
9.

33
10

.1
4

-1
1.

25
0.

81
-2

8.
32

22
.2

4
m

te
st

8.
gm

l
30

06
.1

9
0.

26
-1

7.
00

0.
00

-1
7.

44
11

.5
4

-6
.1

5
-3

.8
5

-6
.5

9
19

.2
3

m
te

st
9.

gm
l

56
07

.9
7

0.
43

-2
7.

38
-4

.6
5

-3
1.

97
0.

00
-1

1.
19

-6
.9

8
-1

5.
78

6.
98

m
un

io
n.

gm
l

53
88

.7
8

0.
46

-1
9.

96
-2

.1
7

-2
0.

27
4.

35
-1

0.
57

-6
.5

2
-1

0.
89

6.
52

re
fle

ct
.g

m
l

38
60

9.
22

2.
92

-2
1.

24
-0

.3
4

-3
0.

58
6.

85
-1

1.
30

-1
.3

7
-2

0.
65

9.
93

re
fle

ct
2.

gm
l

39
37

5.
85

2.
92

-2
1.

21
1.

71
-3

0.
61

8.
90

-1
1.

25
0.

68
-2

0.
66

12
.6

7
sp

he
re

s.
gm

l
13

10
1.

37
0.

95
-2

3.
54

4.
21

-2
8.

50
3.

16
-1

1.
53

-4
.2

1
-1

6.
49

8.
42

sp
he

re
s2

.g
m

l
13

59
6.

32
0.

99
-2

3.
40

5.
05

-2
8.

17
2.

02
-1

1.
70

-2
.0

2
-1

6.
48

8.
08

sp
ot

lig
ht

.g
m

l
15

44
4.

67
1.

27
-3

4.
07

-8
.6

6
-4

3.
02

-7
.8

7
-1

4.
92

-7
.8

7
-2

3.
88

0.
79

to
ta

l
10

24
35

4.
9

87
.5

3
-2

5.
65

3.
19

-3
1.

08
9.

06
-6

.5
3

8.
35

-1
1.

96
17

.7
3

334 APPENDIX B. DETAILS OF THE ICFP2000 BENCHMARK

References

Allison, L. (1986). A Practical Introduction to Denotational Semantics. Cambridge Com-
puter Science Texts. Cambridge-University-Press.

Bagnara, R., P. M. Hill, and E. Zaffanella (2000). Efficient structural information ana-
lysis for real CLP languages. In M. Parigot and A. Voronkov (Eds.), Proceedings of
the 7th International Conference on Logic for Programming and Automated Reasoning,
Volume 1955 of Lecture Notes in Computer Science, Reunion Island, France, pp. 189–
206. Springer-Verlag.

Bagnara, R., E. Zaffanella, and P. M. Hill (2000). Enhanced sharing analysis techniques:
A comprehensive evaluation. In M. Gabbrielli and F. Pfenning (Eds.), Proceedings of
the 2nd International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, Montreal, Canada, pp. 103–114. ACM Press.

Bagnara, R., E. Zaffanella, and P. M. Hill (2005, January). Enhanced sharing ana-
lysis techniques: A comprehensive evaluation. Theory and Practice of Logic Program-
ming 5(1-2). To appear.

Barbuti, R., R. Giacobazzi, and G. Levi (1993). A general framework for semantics-based
bottom-up abstract interpretation of logic programs. ACM Transactions on Program-
ming Languages and Systems 15(1), 133–181.

Bekkers, Y. and P. Tarau (1995, December 4–7). Monadic constructs for logic program-
ming. In J. Lloyd (Ed.), Proceedings of the International Symposium on Logic Program-
ming, Cambridge, pp. 51–65. MIT Press.

Bevemyr, J. (1996). Data-parallel Implementation of Prolog. Ph. D. thesis, Computing Sci-
ence Department, Uppsala University, Uppsala, Sweden.

Blanchet, B. (1998, June). Escape analysis: Correctness proof, implementation and ex-
perimental results. In Proceedings of SIGPLAN’98 Conference on Programming Lan-
guages Design and Implementation, ACM SIGPLAN Notices, Montreal, pp. 25–37.
ACM Press.

Blanchet, B. (1999, October). Escape analysis for object oriented languages: Application
to Java. In OOPSLA’99 ACM Conference on Object-Oriented Systems, Languages and
Applications, Volume 34(10) of ACM SIGPLAN Notices, Denver, CO, pp. 20–34. ACM
Press.

Boehm, H.-J. and M. Weiser (1988). Garbage collection in an uncooperative environ-
ment. Software Practice and Experience 18(9), 807–820.

335

336 REFERENCES

Bruynooghe, M. (1991, February). A practical framework for the abstract interpretation
of logic programs. Journal of Logic Programming 10(2), 91–124.

Bruynooghe, M., M. Codish, J. Gallagher, S. Genaim, and W. Vanhoof (2003, May). Ter-
mination analysis through combination of type based norms. Technical report, De-
partment of Computer Science; Ben-Gurion University.

Bruynooghe, M., M. Codish, S. Genaim, and W. Vanhoof (2002, September). Reuse
of results in termination analysis of typed logic programs. In M. Hermenegildo
and G. Puebla (Eds.), Proceedings of The 9th International Static Analysis Symposium
(SAS 2002), Volume 2477 of Lecture Notes in Computer Science, pp. 477–492. Springer-
Verlag.

Bruynooghe, M. and D. De Schreye (1988). Tutorial on abstract interpretation of logic
programs. In R. A. Kowalski and K. A. Bowen (Eds.), Proceedings of the Fifth Interna-
tional Conference and Symposium on Logic Programming, Seatle. ALP, IEEE: The MIT
Press.

Bruynooghe, M., G. Janssens, and A. Kågedal (1997). Live-structure analysis for logic
programming languages with declarations. In L. Naish (Ed.), Proceedings of the Four-
teenth International Conference on Logic Programming (ICLP’97), Leuven, Belgium, pp.
33–47. MIT Press.

Bruynooghe, M. and K. Lau (Eds.) (2004). Proceedings of the International Symposium on
Logic-based Program Synthesis and Transformation, Revised Selected Papers, Volume 3018
of Lecture Notes in Computer Science. Springer-Verlag. To appear.

Bueno, F., M. García de la Banda, M. Hermenegildo, K. Marriott, G. Puebla, and P. J.
Stuckey (2001, July). A model for inter-module analysis and optimizing compila-
tion. In K.-K. Lau (Ed.), Tenth International Workshop on Logic-based Program Synthesis
and Transformation, Volume 2042 of Lecture Notes in Computer Science, London, UK,
pp. 86–102. Springer-Verlag.

Codish, M. and B. Demoen (1993, October). Analysing logic programs using “Prop”-
ositional logic programs and a Magic Wand. In D. Miller (Ed.), Proceedings of the
1993 International Logic Programming Symposium, Vancouver, pp. 114–129. MIT Press.

Codish, M., M. García de la Banda, M. Bruynooghe, and M. Hermenegildo (1997). Ex-
ploiting goal independence in the analysis of logic programs. Journal of Logic Pro-
gramming 32(3), 247–261.

Codish, M., S. Genaim, M. Bruynooghe, J. Gallagher, and W. Vanhoof (2003, June). One
loop at a time. In 6th International Workshop on Termination (WST 2003).

Codish, M., A. Heaton, and A. King (1997, December). Widening Pos for efficient and
scalable groundness analysis of logic programs. Technical Report 16-97, University
of Kent at Canterbury.

Codish, M., K. Marriott, and C. Taboch (2000). Improving program analyses by structure
untupling. Journal of Logic Programming 43(3), 251–263.

Conway, T., F. Henderson, and Z. Somogyi (1995). Code generation for Mercury. In
J. Lloyd (Ed.), Logic Programming, Proceedings of the 1995 International Symposium
(ILPS’95), Portland, Oregon, pp. 242–256. MIT Press.

Cortesi, A. and G. Filé (1991). Abstract interpretation of logic programs: An abstract
domain for groundness, sharing, freeness and compoundness analysis. In P. Hudak

REFERENCES 337

and N. Jones (Eds.), Proc. Symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation, PEPMA’91, Connecticut,USA, pp. 52–61. SIGPLAN Notices vol.
26 nb. 11.

Cortesi, A., G. Filé, and W. Winsborough (1991). Prop revisited: Propositional formula
as abstract domain for groundness analysis. In Proceedings of the Sixth Annual IEEE
Symposium on Logic in Computer Science, pp. 322–327.

Cousot, P. and R. Cousot (1977). Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Pro-
ceedings of the Fourth ACM Symposium on Principles of Programming Languages, Los
Angeles, pp. 238–252.

Cousot, P. and R. Cousot (1992a, May/July). Abstract interpretation and application to
logic programs. Journal of Logic Programming 13(2 & 3), 103–179.

Cousot, P. and R. Cousot (1992b). Abstract interpretation frameworks. Journal of Logic
Programming 2(4), 511–547.

Cousot, P. and R. Cousot (1992c). Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation. In M. Bruynooghe and M. Wirsing
(Eds.), Proceedings of the Fourth International Symposium on Programming Language Im-
plementation and Logic Programming, Volume 631 of Lecture Notes in Computer Science,
Leuven, Belgium, pp. 269–295. Springer-Verlag.

Davey, B. A. and H. A. Priestley (2002). An Introduction to Lattices and Order, 2nd Edition.
Cambridge: Cambridge University Press.

Debray, S. K. (1993). On copy avoidance in single assignment languages. In D. S. War-
ren (Ed.), Proceedings of the Tenth International Conference on Logic Programming, Bud-
apest, Hungary, pp. 393–407. The MIT Press.

Demoen, B., M. García de la Banda, W. Harvey, K. Marriott, and P. J. Stuckey (1999).
An overview of HAL. In Proceedings of the International Conference on Principles and
Practice of Constraint Programming, Volume 1713 of Lecture Notes in Computer Science,
pp. 174–188. Springer-Verlag.

Dowd, T., F. Henderson, and P. Ross (2001). Compiling Mercury to the .NET common
language runtime. In N. Benton and A. Kennedy (Eds.), Electronic Notes in Theoretical
Computer Science, Volume 59. Elsevier.

Dowd, T., Z. Somogyi, F. Henderson, T. Conway, and D. Jeffery (1999). Run time type
information in Mercury. In Principles and Practice of Declarative Programming, Volume
1702 of Lecture Notes in Computer Science, pp. 224–243. Springer-Verlag.

Falaschi, M., M. Gabbrielli, and K. Marriott (1993). Compositional analysis for concur-
rent constraint programming. In Proceedings of the Eigth Annual IEEE Symposium on
Logic in Computer Science (LICS), Los Alamitor, California, pp. 210–221. IEEE Com-
puter Society Press.

Gabbrielli, M., G. Levi, and M. C. Meo (1996). Resultants semantics for Prolog. Journal
of Logic and Computation 6(4), 491–521.

Gallagher, J. (2004). A program transformation for backwards analysis of logic pro-
grams. See Bruynooghe and Lau (2004). To appear.

García de la Banda, M., K. Marriott, P. Stuckey, and H. Søndergaard (1998, April). Differ-
ential methods in logic program analysis. Journal of Logic Programming 35(1), 1–37.

338 REFERENCES

Genaim, S. and M. Codish (2001, December). Inferring termination conditions for logic
programs using backwards analysis. In R. Nieuwenhuis and A. Voronkov (Eds.),
Proceedings of the Eighth International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, Volume 2250 of Lecture Notes in Artificial Intelligence, pp.
681–690. Springer-Verlag.

Giacobazzi, R., F. Ranzato, and F. Scozzari. Making abstract domains condensing. ACM
Transactions on Computational Logic. To appear.

Giacobazzi, R. and F. Scozzari (1998). A logical model for relational abstract domains.
ACM Transactions on Programming Languages and Systems 20(5), 1067–1109.

Gordon, M. J. (1979). The Denotational Description of Programming Languages: An Intro-
duction. Springer-Verlag.

Gosling, J. and H. McGilton (1995, October). The Java language environment – A white-
paper. Technical report, Sun Microsystems.

Gudjonsson, G. and W. Winsborough (1993). Update in place: Overview of the Siva pro-
ject. In D. Miller (Ed.), Proceedings of the International Logic Programming Symposium,
Vancouver, Canada, pp. 94–113. The MIT Press.

Hall, C. V., K. Hammond, S. L. P. Jones, and P. L. Wadler (1996). Type classes in Haskell.
ACM Transactions on Programming Languages and Systems (TOPLAS) 18(2), 109–138.

Hamilton, G. W. (1993). Compile-Time Optimisation of Store Usage in Lazy Funtional Pro-
grams. Ph. D. thesis, University of Stirling.

Hamilton, G. W. (1995, September). Compile-time garbage collection for lazy functional
languages. In H. Baker (Ed.), Proceedings of International Workshop on Memory Man-
agement, Volume 986 of Lecture Notes in Computer Science, Department of Computer
Science, Keele University. Springer-Verlag.

Heaton, A., M. Abo-Zaed, M. Codish, and A. King (2000). Simple, efficient and scalable
groundness analysis of logic programs. Journal of Logic Programming 45(1-3), 143–
156.

Henderson, F., T. Conway, Z. Somogyi, and D. Jeffery (1996, February). The Mercury
language reference manual. Technical Report 96/10, Dept. of Computer Science,
University of Melbourne.

Henderson, F. and Z. Somogyi (2002). Compiling Mercury to high-level C code. In
R. N. Horspool (Ed.), Compiler Construction : 11th International Conference, CC 2002,
Volume 2304 of Lecture Notes in Computer Science, Grenoble, France, pp. 197–212.
Springer-Verlag.

Henglein, F. and C. Mossin (1994, April). Polymorphic binding-time analysis. In D. San-
nella (Ed.), Programming Languages and Systems — ESOP’94. 5th European Symposium
on Programming, Volume 788 of Lecture Notes in Computer Science, Edinburgh, U.K.,
pp. 287–301. Springer-Verlag.

Hill, P. M., R. Bagnara, and E. Zaffanella (1998). The correctness of set-sharing. In G. Levi
(Ed.), Static Analysis: Proceedings of the 5th International Symposium, Volume 1503 of
Lecture Notes in Computer Science, Pisa, Italy, pp. 99–114. Springer-Verlag.

Hill, P. M. and F. Spoto (2002). A foundation of escape analysis. In H. Kirchner and
C. Ringeissen (Eds.), Algebraic Methodology and Software Technology; Proceedings of
9th International Conference, AMAST 2002, Volume 2422 of Lecture Notes in Computer
Science, Reunion Island, France, pp. 380–395. Springer-Verlag.

REFERENCES 339

Hindley, J. R. (1969, December). The principal type-scheme of an object in combinatory
logic. Transactions of the American Mathematical Society 146, 29–60.

Howe, J. M. and A. King (2000, March). Implementing groundness analysis with def-
inite boolean functions. In G. Smolka (Ed.), European Symposium on Programming,
Volume 1782 of Lecture Notes in Computer Science, pp. 200–214. Springer-Verlag.

Howe, J. M., A. King, and L. Lu (2004, May). Analysing logic programs by reasoning
backwards. In M. Bruynooghe and K.-K. Lau (Eds.), Program Development in Compu-
tational Logic, Lecture Notes in Computer Science. Springer-Verlag.

Hudak, P., S. P. Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M. Guzmán, K. Ham-
mond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and J. Peterson
(1992). Report on the programming language Haskell: a non-strict, purely func-
tional language – version 1.2. ACM SIGPLAN Notices 27(5), 1–164.

Hughes, S. (1992). Compile-time garbage collection for higher-order functional lan-
guages. Journal of Logic and Computation 2(4), 483–509.

Jacobs, D. and A. Langen (1992, May/July). Static analysis of logic programs for inde-
pendent AND-parallelism. Journal of Logic Programming 13(2 &3), 291–314.

Jaffar, J. and M. J. Maher (1994, May/July). Constraint Logic Programming: A survey.
Journal of Logic Programming 19 & 20, 503–581.

Janssens, G., M. Bruynooghe, and V. Dumortier (1995). A blueprint for an abstract ma-
chine for abstract interpretation of (constraint) logic programs. In J. LLoyd (Ed.),
Logic Programming, Proceedings of the 1995 International Symposium (ILPS’95), Port-
land, Oregon, pp. 336–350. MIT Press.

Janssens, G., M. Hermenegildo, F. Bueno, M. García de la Banda, and A. Mulkers (1992,
February). A review of some abstract interpretation systems. Report CW143, De-
partment of Computer Science, Katholieke Universiteit Leuven.

Jeffery, D. (2002, February). Expressive Type Systems for Logic Programming Languages. Ph.
D. thesis, Department of Computer Science and Software Engineering, The Univer-
sity of Melbourne.

Jeffery, D., F. Henderson, and Z. Somogyi (1998, September). Type classes in Mercury.
Technical Report 98/13, Department of Computer Science and Software Engineer-
ing, The University of Melbourne, Melbourne, Australia.

Jones, N. D. and H. Søndergaard (1987). A semantic-based framework for the abstract
interpretation of Prolog. In S. Abramsky and C. Hankin (Eds.), Abstract Interpretation
of Declarative Languages, Ellis Horwood Series in Computers and their Applications,
pp. 123–142. Chichester: Ellis Horwood.

Kågedal, A. (1995). Exploiting Groundness in Logic Programs. Ph. D. thesis, Linköping
University, Dept. of Computer and Information Science, S-581 83 Linköping,
Sweden. Linköping Studies in Science and Technology. No. 383.

Kernighan, B. W. and D. M. Ritchie (1978). The C Programming Language (1st ed.). Pren-
tice Hall.

King, A. (1994). A synergistic analysis for sharing and groundness which traces lin-
earity. In D. Sannella (Ed.), Proceedings of Fifth European Symposium on Programming
Languages and Systems – ESOP’94, Edinburgh, pp. 363–378. Springer-Verlag.

King, A. and L. Lu (2002, July). A backward analysis for constraint logic programs.
Theory and Practice of Logic Programming 2(4-5), 517–547.

340 REFERENCES

Kluźniak, F. (1987). Type synthesis for ground Prolog. In J.-L. Lassez (Ed.), Proceedings
of the Fourth International Conference on Logic Programming, Melbourne, pp. 788–816.
MIT Press.

Lagoon, V., F. Mesnard, and P. J. Stuckey (2003, December). Termination analysis with
types is more accurate. In C. Palamidessi (Ed.), Logic Programming, 19th International
Conference, ICLP 2003, Mumbai, India, December 9-13, 2003, Proceedings, Volume 2916
of Lecture Notes in Computer Science, pp. 254–268. Springer-Verlag.

Lagoon, V. and P. J. Stuckey (2001, March). A framework for analysis of typed logic pro-
grams. In H. Kuchen and K. Ueda (Eds.), Functional and Logic Programming, 5th Inter-
national Symposium, FLOPS 2001, Tokyo, Japan, March 7-9, 2001, Proceedings, Volume
2024 of Lecture Notes in Computer Science, pp. 296–310. Springer-Verlag.

Le Charlier, B. and P. Van Hentenryck (1993). Groundness analysis for Prolog: Im-
plementation and evaluation of the domain Prop. In D. Schmidt (Ed.), ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
PEPMA’93, Copenhagen,Denmark, pp. 99–110. ACM Press.

Le Charlier, B. and P. Van Hentenryck (1994). Experimental evaluation of a generic ab-
stract interpretation algorithm for Prolog. ACM Trans. Program. Lang. Syst. 16(1),
35–101.

Leuschel, M., B. Martens, and D. De Schreye (1998). Controlling generalisation and
polyvariance in partial deduction of normal logic programs. ACM Transactions on
Programming Languages and Systems 20(1), 208 – 258.

Lindgren, T., J. Bevemyr, and H. Millroth (1995, June). Compiler optimizations in Re-
form Prolog: Experiments on the KSR-1 multiprocessor. Technical Report 110, Com-
puting Science Department, Uppsala University.

Lloyd, J. W. (1987). Foundations of Logic Programming. Springer-Verlag.
Lu, L. and A. King (2002, September). Backward type inference generalises type check-

ing. In M. Hermenegildo and G. Puebla (Eds.), Proceedings of The 9th International
Static Analysis Symposium (SAS 2002), Volume 2477 of Lecture Notes in Computer Sci-
ence, pp. 85–101. Springer-Verlag.

Lu, L. and A. King (2004, April). Backward pair sharing analysis. In Y. Kameyama and
P. Stuckey (Eds.), Seventh International Symposium on Functional and Logic Program-
ming, Lecture Notes in Computer Science. Springer-Verlag.

Makholm, H. (2000, 15–16 October). A region-based memory manager for Prolog. In
International Symposium on Memory Management, Minneapolis, MN, USA. ACM.

Marriott, K. and H. Søndergaard (1993). Precise and efficient groundness analysis for
logic programs. ACM Lett. Prog. Lang. Syst. 2(1-4), 181–196.

Marriott, K., H. Søndergaard, and N. D. Jones (1994, May). Denotational abstract inter-
pretation of logic programs. ACM Transactions on Programming Languages and Sys-
tems 16(3), 607–648.

Martelli, A. and U. Montanari (1982). An efficient unification algorithm. ACM Trans.
Program. Lang. Syst. 4(2), 258–282.

Mazur, N., G. Janssens, and M. Bruynooghe (1999a, June). Towards memory reuse for
Mercury. Report CW 278, Department of Computer Science, K.U.Leuven, Leuven,
Belgium.

REFERENCES 341

Mazur, N., G. Janssens, and M. Bruynooghe (1999b). Towards modular liveness ana-
lysis for Mercury. In K. Sagonas and P. Tarau (Eds.), Proceedings of the International
Workshop on Implementation of Declarative Languages, Paris, France, pp. 1–17.

Mazur, N., G. Janssens, and M. Bruynooghe (1999c). Towards modular liveness ana-
lysis for Mercury. In S. Etalle (Ed.), Proceedings of the 1999 Benelux Workshop on Logic
Programming, pp. 1–17.

Mazur, N., G. Janssens, and M. Bruynooghe (2000). A module based analysis for
memory reuse in Mercury. In J. L. et al (Ed.), Computational Logic - CL 2000, First
International Conference, London, UK, July 2000, Proceedings, Volume 1861 of Lecture
Notes in Artificial Intelligence, pp. 1255–1269. Springer-Verlag.

Mazur, N., P. Ross, G. Janssens, and M. Bruynooghe (2001). Practical aspects for a
working compile time garbage collection system for Mercury. In P. Codognet (Ed.),
Proceedings of ICLP 2001 - Seventeenth International Conference on Logic Programming,
Volume 2237 of Lecture Notes in Computer Science. Springer-Verlag.

Microsoft. Microsoft .NET. http://www.microsoft.com/net/.

Milner, R. (1978). A theory of type polymorphism in programming languages. Journal
of Computer and System Science 17(3), 348–375.

Milner, R., M. Tofte, and D. Macqueen (1997). The Definition of Standard ML. MIT Press.

Mohnen, M. (1995, May). Efficient compile-time garbage collection for arbitrary data
structures. Technical Report 95–08, University of Aachen. Also in Seventh Interna-
tional Symposium on Programming Languages, Implementations, Logics and Pro-
grams, PLILP95.

Mohnen, M. (1997). Optimising the Memory Management of Higher-Order Functional Pro-
grams. Ph. D. thesis, RWTH Aachen.

Morrisett, G. and J. Reppy (2000). The third annual ICFP programming contest. In
Conjunction with the 2000 International Conference on Functional Programming,
http://www.cs.cornell.edu/icfp/.

Mulkers, A. (1991, December). Deriving Live Data Structures in Logic Programs by Means
of Abstract Interpretation. Ph.D. thesis, Department of Computer Science, Katholieke
Universiteit Leuven.

Muthukumar, K. and M. Hermenegildo (1989). Determination of variable dependence
information through abstract interpretation. In E. Lusk and R. Overbeek (Eds.), Pro-
ceedings of the North American Conference on Logic Programming, Cambridge, pp. 166–
185. MIT Press.

Muthukumar, K. and M. Hermenegildo (1991). Combined determination of sharing and
freeness of program variables through abstract interpretation. In K. Furukawa (Ed.),
Proceedings of the Eighth International Conference on Logic Programming, Paris, pp. 49–
63. MIT Press, Cambridge.

Muthukumar, K. and M. Hermenegildo (1992, July). Compile-time derivation of vari-
able dependency using abstract interpretation. Journal of Logic Programming 13(2&3),
315–347.

Mycroft, A. and R. A. O’Keefe (1984). A polymorphic type system for Prolog. Artificial
Intelligence 23(3), 295–307.

342 REFERENCES

Nethercote, N. (2001, September). The analysis framework of HAL. Master’s thesis, De-
partment of Computer Science and Software Engineering, University of Melbourne,
Australia.

Nielson, F. (1982). A denotational framework for data flow analysis. Acta Informatica 18,
265–287.

Nielson, F. (1988). Strictness analysis and denotational abstract interpretation. Informa-
tion and Computation 76(1), 29–92.

Nielson, F., H. R. Nielson, and C. Hankin (1999). Principles of Program Analysis. Springer-
Verlag.

Nielson, H. R. and F. Nielson (1992). Semantics with Applications: A Formal Introduction.
Wiley Professional Computing. Chichester: John Wiley & Sons, Inc.

Nielson, H. R. and F. Nielson (1996). Semantics with applications: Model-based pro-
gram analysis. Technical Report DAIMI FN-61, Aarhus University, Denmark.

Okasaki, C. (1998). Purely Functional Data Structures. Cambridge University Press.
Pfenning, F. (1992). Types in Logic Programming. MIT Press.
Platt, D. S. (2003). Introducing Microsoft@ .NET, Third Edition. Microsoft Press.
Puebla, G., J. Correas, M. Hermenegildo, F. Bueno, M. García de la Banda, K. Marri-

ott, and P. J. Stuckey (2004). A generic framework for context-sensitive analysis of
modular programs. See Bruynooghe and Lau (2004). To appear.

Puebla, G. and M. Hermenegildo (1999a, November). Abstract multiple specialization
and its application to program parallelization. Journal of Logic Programming. Special
Issue on Synthesis, Transformation and Analysis of Logic Programs 41(2&3), 279–316.

Puebla, G. and M. Hermenegildo (1999b). Some issues in analysis and specialization of
modular Ciao-Prolog programs. In M. Leuschel (Ed.), Proceedings of the Workshop on
Optimization and Implementation of Declarative Languages, Las Cruces. In Electronic
Notes in Theoretical Computer Science, Volume 30 Issue No.2, Elsevier Science.

Shaham, R., E. K. Kolodner, and M. Sagiv (2001). Heap profiling for space-efficient Java.
In Proceedings of the ACM SIGPLAN 2001 conference on Programming language design
and implementation, pp. 104–113. ACM Press.

Shaham, R., E. Yahav, E. Kolodner, and M. Sagiv (2003, June). Establishing local tem-
poral heap safety properties with applications to compile-time memory manage-
ment. In Proc. of Static Analysis Symposium (SAS’03), Volume 2694 of Lecture Notes in
Computer Science, pp. 483–503. Springer-Verlag.

Somogyi, Z., F. Henderson, and T. Conway (1996, October-December). The execution
algorithm of Mercury, an efficient purely declarative logic programming language.
Journal of Logic Programming 29(1–3), 17–64.

Speirs, C., Z. Somogyi, and H. Søndergaard (1997). Termination analysis for Mercury.
In Proceedings of the 4th International Symposium on Static Analysis, Volume 1302 of
Lecture Notes in Computer Science, pp. 160–171. Springer-Verlag.

Steele, G. L. (1984). COMMON LISP: The language. Bedford, USA: Digital Press. With
contributions by Scott E. Fahlman and Richard P. Gabriel and David A. Moon and
Daniel L. Weinreb.

Sterling, L. and E. Shapiro (1986). The Art of Prolog. MIT Press.

REFERENCES 343

Stuckey, P. J. and K. Marriott (1998). Programming with Constraints: An Introduction. MIT
Press, Cambridge, Mass.

Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its application. Pacific
J.Math. 5, 285–309.

The Mercury Team (2000). ICFP 2000: The Merry Mercurians. Descrip-
tion of the Mercury entry to the ICFP’2000 programming contest,
http://www.mercury.cs.mu.oz.au/information/events/icfp2000.html.

Tofte, M. and L. Birkedal (1998, July). A region inference algorithm. ACM Transactions
on Programming Languages and Systems 20(4), 734–767.

Tofte, M., L. Birkedal, M. Elsman, N. Hallenberg, T. H. O. Højfeld, P. Sestoft, and P. Ber-
telsen (1997). Programming with regions in the ML Kit. Technical Report D-342,
Dept. of Computer Science, University of Copenhagen.

Tofte, M. and J.-P. Talpin (1997). Region-based memory management. Information and
Computation 132(2), 109–176.

Van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. MIT Press.
Van Hentenryck, P., A. Cortesi, and B. Le Charlier (1995). Type analysis of Prolog using

type graphs. Journal of Logic Programming 22(3), 179–209.
Vandecasteele, H. (1999a, may). Constraint Logic Programming: Applications

and Implementation. Phd, Department of Computer Science, K.U.Leuven,
Leuven, Belgium. 226+vii pagesURL = http://www.cs.kuleuven.ac.be/cgi-
bin-dtai/publ_info.pl?id=21836.

Vandecasteele, H. (1999b). MROPE II: A finite domain solver on top of Mercury. In
Proceedings of the 1999 ERCIM/COMPULOG Workshop on Constraints, pp. 1–13. URL
= http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ_info.pl?id=18802.

Vandecasteele, H., B. Demoen, and G. Janssens (2000). A finite domain CLP solver on
top of Mercury. In New Trends in Constraints : Joint ERCIM/Compulog Workhsop, Pa-
phos, Cyprus, October 1999, Selected Papers, Volume 1865 of Lecture Notes in Artificial
Intelligence, pp. 256–273. ERCIM/Compulog: Springer-Verlag.

Vanhoof, W. (2001, June). Techniques for On- and Off-line Specialisation of Logic Programs.
Ph. D. thesis, Department of Computer Science, K.U.Leuven, Leuven, Belgium.
Pages: xiv+323+xxxiii.

Vanhoof, W. and M. Bruynooghe (1999). Binding-time analysis for Mercury. In
D. De Schreye (Ed.), Proceedings of the 16th International Conference on Logic Program-
ming, pp. 500–514. MIT Press.

W3C. Hypertext markup language (HTML). http://www.w3.org/MarkUp.
Wadler, P. (1992, January). The essence of functional programming. In Conference Record

of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Albequerque, New Mexico, pp. 1–14.

Wadler, P. and S. Blott (1989, January). How to make ad-hoc polymorphism less ad-hoc.
In Conference Record of the 16th Annual ACM Symposium on Principles of Programming
Languages, pp. 60–76. ACM.

Wilson, P. R. (1992, 16–18 September). Uniprocessor garbage collection techniques. In
Y. Bekkers and J. Cohen (Eds.), Proceedings of International Workshop on Memory Man-
agement, Volume 637 of Lecture Notes in Computer Science, St Malo, France. Springer-
Verlag.

344 REFERENCES

Winsborough, W. (1992, May/July). Multiple specialization using minimal-function
graph semantics. Journal of Logic Programming 13(2 &3), 259–290.

Zaffanella, E., R. Bagnara, and P. M. Hill (1999). Widening Sharing. In G. Nadathur
(Ed.), Principles and Practice of Declarative Programming, Volume 1702 of Lecture Notes
in Computer Science, Paris, France, pp. 414–431. Springer-Verlag.

Biography

Nancy Mazur was born on the 19th of December 1974 in Leuven. She finished
High School at the Lycée Emile Jacqmain in Brussels in 1992. In 1994 she received a
Bachelor’s degree of Science in Engineering (Kandidaat Burgerlijk Ingenieur) and in
1997 a Master’s degree of Science in Engineering in Computer Science (Burgerlijk
Ingenieur in de Computerwetenschappen) from the Katholieke Universiteit Leuven
in Belgium. Her master thesis with the title “Declarative I/O within a Functional
Logic Language: Determinism Analysis” was supervised by Professor Danny De
Schreye and Professor Michael Hanus (RWTH Aachen). In 1996 she participated
with the European student exchange project ERASMUS and spent five months
studying at the RWTH Aachen.

In September 1997 she started working at SIEMENS ATEA, in Herentals. In
February 1998 she came back to her Alma Mater where she joined the DTAI re-
search group and started working as a Ph.D. student, funded by a K.U.Leuven
Research grant. She was a visiting scholar at the University of Melbourne, Aus-
tralia, working with the Mercury Team under the guidance of Professor Zoltan
Somogyi from January to February 2000.

345

346 REFERENCES

Hergebruik van afgedankt geheugen
tijdens de vertaling in de declaratieve

programmeertaal Mercury

Nancy MAZUR

Beknopte Samenvatting

Een belangrijk aspect van hoog niveau programeertalen is het voorzien in automa-
tisch geheugenbeheer waarbij de programmeur verlost wordt van de foutgevoelige
taak van expliciet geheugen te reserveren en na gebruik weer vrij te geven. Een
gekende manier van automatisch geheugenbeheer is gebruik te maken van een
garbage collector. Conceptueel is dit een afzonderlijk programma dat samen met
het gebruikersprogramma wordt uitgevoerd en dat instaat voor het toekennen
van geheugen aan dat programma, alsook voor het vrijgeven van dat geheugen
van zodra het door het gebruikersprogramma niet meer gebruikt wordt.

Terwijl bovengenoemde garbage collector voor automatisch geheugenbeheer
zorgt tijdens de uitvoering van het programma, zo bestaat er een complementaire
vorm van automatisch geheugenbeheer die het geheugengebruik van een pro-
gramma onderzoekt en optimaliseert tijdens de vertaling van dat programma. De
vertaler onderzoekt de levensduur van de variabelen en voegt de nodige instruc-
ties toe voor het al dan niet vrijgeven of herbruiken van het geheugen dat met
deze variabelen overeenstemt.

In deze thesis bestuderen we de tweede vorm van automatisch geheugenbe-
heer in de context van de declaratieve taal Mercury. Declaratieve talen hebben de
eigenschap dat ze elke vorm van door de programmeur gecontroleerd expliciet
herbruik van geheugen verbieden. Een gevolg hiervan is dat programma’s in de-
ze talen een hoog geheugenverbruik vertonen, wat het belang van automatisch
geheugenbeheer in het algemeen, en geheugenbeheer tijdens de vertaling in het
bijzonder, voor deze talen benadrukt. Bovendien vergemakkelijkt de wiskundi-
ge achtergrond van Mercury de realisatie van de programma analyses waar het
uiteindelijke geheugenbeheer tijdens de vertaling op steunt.

Hiervoor definiëren we een aantal wiskundig onderlegde semantieken voor
de programmeertaal Mercury en tonen formeel hun equivalentie aan. We gebrui-
ken deze semantieken om de programma analyses die deel uit maken van het
geheugenbeheer systeem uit te werken. We breiden het geheugenbeheer systeem
uit zodat het op een efficiënte wijze met een modulaire structuur van program-
ma’s kan omgaan. Tenslotte implementeren we dit geheugenbeheer systeem in
de Melbourne Mercury vertaler. Voor zover we weten is dit de meest volledige
implementatie van dit type van geheugenbeheer voor een in de praktijk gebruikte
programmeertaal.

ii Inleiding

1 Inleiding

Het doel van deze thesis is het ontwikkelen van een automatisch geheugenbeheer
systeem dat tijdens de vertaling van een gegeven programma bepaalt hoe het ge-
heugen best gebruikt wordt. Gezien het hoge geheugengebruik bij declaratieve
programma’s enerzijds en hun wiskundige achtergrond anderzijds verwezenlij-
ken we dit systeem in de specifieke context van de declaratie taal Mercury.

Een van de belangrijkste aspecten van hoog niveau programmeertalen is dat
ze trachten zo veel mogelijk technische laag niveau details rond het programme-
ren te verbergen opdat de programmeur zich uitsluitend op het eigenlijke soft-
ware probleem kan concentreren. Het beheren van het geheugen is een moeilijke
en foutgevoelige taak, en zo is het dus niet verwonderlijk dat men net deze taak
uit de handen van de programmeur wil nemen. De meest gangbare wijze om
dit te realiseren is door gebruik te maken van een geheugenrecuperatie program-
ma (Eng. garbage collector). Conceptueel gezien is dit een afzonderlijk programma
dat samen met het gebruikersprogramma wordt uitgevoerd en dat instaat voor
het toekennen van geheugen aan dat programma, alsook voor het vrijgeven van
dat geheugen van zodra het door het gebruikersprogramma niet meer gebruikt
wordt. Het vrijgeven gebeurt door regelmatig het geheugen van het gebruikers-
programma te onderzoeken en na te gaan welke geheugencellen niet meer be-
reikt kunnen worden vanuit dat programma. Dit zijn de zogenoemde afgedankte
geheugencellen, in tegenstelling tot de actieve geheugencellen die wel nog door het
programma zouden kunnen gebruikt worden.

Het gebruik van een geheugenrecuperatie programma bevrijdt weliswaar de
programmeur van het zelf beheren van dat geheugen, maar kan ook een aantal
nadelen hebben. Zo neemt het geheugenrecuperatie programma zelf geheugen
en uitvoeringstijd in beslag. Met name voor tijdskritische toepassingen is deze
kost niet altijd aanvaardbaar. Tijdens de uitvoering van een programma heeft
men vaak ook niet alle gegevens ter beschikking. Dit betekent dat het geheu-
genrecuperatie programma een overschatting zal moeten maken van de actie-
ve geheugencellen. Zodoende verkrijgt men een groter geheugenverbruik van
het gebruikersprogramma dan eventueel verwacht. Tenslotte worden afgedankte
geheugencellen slechts gerecupereerd wanneer het recuperatieprogramma actief
wordt. Het kan dus best zijn dat afgedankte geheugencellen een hele poos onno-
dig in het geheugen bewaard worden, wat dan weer een negatieve invloed heeft
op het algemeen geheugengebruik van het gebruikersprogramma.

Deze gebreken kunnen gedeeltelijk verholpen worden door tijdens het ver-
talen van het gebruikersprogramma het geheugengebruik van dat programma
te analyseren, en zodoende te optimaliseren. Dit leidt ons tot een nieuwe vorm
van automatisch geheugenbeheer: geheugenherbruik tijdens de vertaling. Hierbij
onderzoekt de vertaler de levensduur van de variabelen en voegt dan de nodi-
ge instructies toe voor het al dan niet vrijgeven of herbruiken van het geheugen

Intuïtief Voorbeeld iii

dat met deze variabelen overeenstemt. Het resultaat is een vertaald programma
waarin het vrijgeven en herbruik van het geheugen gedeeltelijk in het programma
gecodeerd is. Men kan dan verwachten dat hierdoor het gebruik van een afzon-
derlijk geheugenrecuperatieprogramma aanzienlijk kan verminderd worden en
het algemeen geheugengebruik van het gebruikersprogramma verbeterd wordt.

Zoals reeds aangekondigd ontwikkelen we in deze thesis een geheugenher-
bruik systeem tijdens de vertaling voor de specifieke context van de declaratieve
taal Mercury. Declaratieve talen hebben de eigenschap dat echt elke vorm van
expliciet manueel geheugenbeheer onmogelijk wordt gemaakt. Zo kan de pro-
grammeur de waarde van een variabele niet meer wijzigen eens zij of hij er een
waarde aan heeft toegekend. Indien zij/hij een andere waarde wenst te gebrui-
ken moet zij/hij daartoe een andere variabele aanmaken. Dit principe is essenti-
eel voor declaratieve talen, maar heeft natuurlijk als gevolg dat het geheugenge-
bruik van programma’s in deze talen aanzienlijk groot is. Een goed automatisch
geheugenbeheer systeem is daarom onontbeerlijk en we verwachten dan ook dat
het gebruik van een geheugenherbruik systeem tijdens de vertaling voor deze
talen merkbare resultaten geeft. Bovendien vergemakkelijkt de wiskundige ach-
tergrond van declaratieve talen in het algemeen, en Mercury in het bijzonder, de
realisatie van deze vorm van geheugenbeheer.

De belangrijkste bijdragen van dit werk zijn als volgt: we definiëren een aantal
wiskundig onderlegde semantieken voor de programmeertaal Mercury en tonen
formeel hun equivalentie aan. We gebruiken deze semantieken om de program-
ma analyses die deel uit maken van het geheugenbeheer systeem uit te werken.
We breiden het geheugenbeheer systeem uit zodat het op een efficiënte wijze met
een modulaire structuur van programma’s kan omgaan. Tenslotte implemente-
ren we dit geheugenbeheer systeem in de Melbourne Mercury vertaler.

Het vervolg van deze samenvatting is als volgt opgebouwd. In paragraaf 2
stellen we de taken van een geheugenherbruik systeem tijdens de vertaling voor
aan de hand van een intuïtief voorbeeld. We beschrijven de programmeertaal
Mercury in paragraaf 3 en definiëren de semantiek van programma’s in deze taal
in paragraaf 4. Op basis van de notie van een geheugenstructuur (paragraaf 5) de-
finiëren we de programma analyses die bij deze vorm van geheugenbeheer nodig
zijn: het bepalen van de gedeelde geheugenstructuren, het bepalen van de actieve ge-
heugenstructuren, en tenslotte, het afleiden van het herbruik van geheugenstructuren.
Dit vormt de inhoud van paragraaf 6. In paragraaf 7 passen we deze analyses aan
aan de modulaire structuur van Mercury programma’s. In paragraaf 8 beschrij-
ven we enkele praktische problemene die nog aangepast moesten worden om tot
een performante implementatie van het voorgestelde geheugenbeheer systeem
te komen. Ook de resultaten worden in die paragraaf kort besproken. In de
thesis ontwikkelden we ook een raamwerk voor het afleiden van optimalisaties
waarover we in paragraaf 9 berichten. In paragraaf 10 halen we de voornaamste
onderzoeksdomeinen aan die met deze thesis verband houden waarop we dan in

iv Intuïtief Voorbeeld

paragraaf 11 deze samenvatting besluiten.

2 Intuïtief Voorbeeld

Laat ons het eenvoudige voorbeeld nemen van een gegevensbank waarin men
de personeelsgegevens van een bedrijf wenst bij te houden. Indien we veron-
derstellen dat een werknemer eenvoudigweg beschreven wordt door zijn naam,
geboortedatum en loon, dan kan men dat in Mercury voorstellen door een term
met drie argumenten. Het predikaat om het loon van een werknemer aan te passen
zou er dan als volgt uit kunnen zien.

Voorbeeld 1

updateSalary (EmployeeRecord , NewSalary , NewRecord) :−
EmployeeRecord = employee (Name, Bi r thday , OldSalary) ,
NewRecord = employee (Name, Bi r thday , NewSalary) .

In deze definitie wordt de oorspronkelijke term die de gegevens van een be-
paalde werknemer voorstelt niet gewijzigd, maar gaat men een nieuwe term aan-
maken waarin men de naam en de geboortedatum van de oorspronkelijke term
overneemt, en waarbij nu het loon gelijk wordt gesteld aan het nieuwe loon.

Stel dat dit predikaat deel uit maakt van een grotere administratieve toepas-
sing en stel dat tijdens de uitvoering van deze toepassing een variabele gebruikt
wordt JackRecord die op dat moment gebonden is aan de term:

employee (" Jack Newman" , 19490319 , 40000)

Deze term stelt dan de gegevens voor van de werkgever Jack Newman, gebo-
ren op 19 maart 1949, en die momenteel 40000EUR per jaar verdient. Men kan
het loon van deze werkgever wijzigen door bovenstaand predikaat op te roepen,
bijvoorbeeld als volgt:

updateSalary (JackRecord , 42000 , NewJackRecord)

Figuur 1 geeft schematisch de toestand van het geheugen weer vóór (a) en na
(b) het uitvoeren van deze predikaat-oproep.

Indien tijdens de uitvoering van dit predikaat blijkt dat de term waaraan vari-
abele JackRecord gebonden is nergens elders meer door het programma gebruikt
zal worden, dan kan men na de uitvoering van dat predikaat de geheugencellen
die deze term voorstellen als afgedankte geheugencellen bestempelen (Figuur 2
(a)). Bij gebruik van een geheugenrecuperatie programma zullen deze afgedank-
te geheugencellen vrijgegeven worden tijdens één van de eerstvolgende interven-
ties van dat programma. Ondertussen zal men echter nieuw geheugen hebben
moeten toekennen om de term gebonden aan NewJackRecord weer te geven. Het
is duidelijk dat men hier het geheugengebruik zou willen optimaliseren door de

Intuïtief Voorbeeld v

e/3

e/3

42000

19490319

40000

s

"Jack Newman"

JackRecord

NewSalary

stack heap

EmployeeRecord

(a)

e/3

e/3

42000

19490319

40000

s

"Jack Newman"

e/3
19490319

42000

JackRecord

NewSalary

stack heap

EmployeeRecord

NewRecord

s

(b)

Figuur 1: Toestand van de geheugencellen vóór (a) en na (b) de oproep
updateSalary(JackRecord, 42000, NewJackRecord), waar JackRecord gebonden is aan
de term employee("Jack Newman", 19490319, 40000).

afgedankte geheugencellen rechtstreeks te herbruiken voor het voorstellen van
de nieuwe term (Figuur 2 (b)). Dit kan inderdaad gerealiseerd worden indien
men tijdens de vertaling van het predikaat kan achterhalen dat bij sommige op-
roepen van dat predikaat de term waaraan het eerste argument gebonden is, na
de oproep altijd afgedankte geheugencellen oplevert.

Deze vorm van geheugenherbruik is het doel van het geheugenherbruik tij-
dens vertaling die we in deze thesis beogen. Uit dit voorbeeld wordt duidelijk
wat er allemaal bij zo een systeem komt kijken.

• Tijdens de vertaling van het programma moet het geheugenherbruik sys-
teem achterhalen wanneer welke geheugencellen die tijdens de uitvoering
aangemaakt worden afgedankt worden. Deze informatie kan men verkrij-
gen door middel van programma analyse, en meer specifiek abstract inter-
pretatie. Deze techniek laat toe eigenschappen over de uitvoering van een
programma af te leiden, zonder het programma evenwel uit te voeren. De
centrale eigenschap bij dit geheugenherbruik systeem is de kennis over de
afgedankte cellen, of diens duale vorm, de kennis over de actieve geheu-
gencellen.

• Indien men te weten komt welke cellen actief zijn, en zodus welke cellen
afgedankt zijn, zo is het de taak van het geheugenherbruik systeem om te
beslissen wat met de afgedankte cellen gedaan moet worden. Gaat men dat
geheugen vrijgeven, of gaat men het rechtstreeks herbruiken?

vi Intuïtief Voorbeeld

e/3

42000

"Jack Newman"

e/3
19490319

42000

19490319

40000

JackRecord

NewSalary

stack heap

EmployeeRecord

NewRecord

s

se/3

(a)

e/3

42000

"Jack Newman"

e/3

19490319

42000
40000

JackRecord

NewSalary

stack heap

EmployeeRecord

NewRecord

(b)

se/3

Figuur 2: (a) Afgedankte geheugencellen (grijs). (b) Rechtstreeks herbruik van de
afgedankte geheugencellen.

• Natuurlijk is het niet voldoende om bovenstaande informatie gewoon af
te leiden, maar moet men deze informatie ook gebruiken wanneer men de
vertaalde code van het geanalyseerde programma gaat genereren. Omdat
waarschijnlijk niet bij elke oproep elke vorm van gededecteerd geheugen-
herbruik toegelaten is zal men éénzelfde predikaat vaak ontkoppelen in
meerdere versies die dan elk een voor het programma interessante vorm
van geheugenherbruik realiseren.

• Uit het updateSalary voorbeeld is duidelijk dat het herbruik van de geheu-
gencellen van de betrokken term enkel en alleen toegestaan mag worden
indien het programma deze geheugencellen daadwerkelijk niet meer ge-
bruikt. Het herbruik zal dus afhangen van de geheugentoestand van het
programma op het moment dat het predikaat opgeroepen wordt. Deze in-
formatie kan men bij programma’s die slechts uit één enkele module be-
staan prima achterhalen. In de aanwezigheid van modules echter wordt
het ingewikkelder: elke module wordt afzonderlijk vertaald, zodus kan
men niet meteen weten hoe een predikaat gedefinieerd in een module A
gebruikt zal worden vanuit een module B. Desalniettemin willen we dat er
geheugenherbruik plaats vindt voor zover de veiligheid van het program-
ma gewaarborgd kan blijven. Hierbij stellen zich twee specifieke vragen:

– Indien men een predikaat analyseert waaruit blijkt dat er geheugen-
herbruik mogelijk is, is het dan de moeite om een variant van dit pre-
dikaat aan te maken die dat geheugenherbruik inderdaad verwezen-
lijkt? Zal deze variant ooit tijdens de uitvoering van het programma

Mercury vii

gebruikt worden, of blijft het gewoon dode code die onnodig het pro-
gramma vergroot?

– Stel dat we inderdaad meerdere varianten voorzien voor een bepaald
predikaat, dan willen we weten wanneer deze varianten mogen opge-
roepen worden zonder de veiligheid van het uiteindelijke programma
in gevaar te brengen? Hoe gaan we de voorwaarden opstellen die deze
veiligheid garanderen?

Uit bovenstaande is duidelijk dat een geheugenherbruik systeem tijdens de
vertaling een niet-triviaal probleem is en dat er heel wat programma analyse bij
te pas komt. Opdat het systeem echter bruikbaar zou zijn in echte programmeer-
omgevingen moeten we er ook voor zorgen dat de kost van het gebruik van dit
systeem opweegt tegenover de winst in geheugengebruik die men er mee kan
verkrijgen. Dit betekent dat de onderliggende analyses voldoende snel moeten
zijn zonder hierbij aan precisie van de resultaten te verliezen. Dit op zich vormt
een uitdaging.

3 Mercury

Mercury is een pure logische programmeertaal met enkele kenmerken van een
functionele taal. Het werd ontwikkeld aan de University of Melbourne in Au-
stralië (Somogyi, Henderson, and Conway 1996). Bij de specificatie van deze
taal heeft men nauwlettend geprobeerd om de gekende problemen van de meest
gangbare logische programmeertalen te vermijden, we denken hierbij vooral aan
de taal Prolog (Sterling and Shapiro 1986). Het resultaat is een pure taal, met
expliciete ondersteuning voor het ontwikkelen van grote toepassingen door een
team van programmeurs, waarbij de vertaler sterke foutmeldingen tracht te ge-
ven. Tenslotte moeten Mercury programma’s resulteren in snelle en efficiënte
code.

In deze thesis beperken we ons tot eerste-orde logische programma’s. Het
alfabet voor deze programma’s bestaat uit een eindige verzameling variabelen,
V , een eindige verzameling functie-symbolen Σ alsook een eindige verzameling
predikaat symbolen Π. Met functie-symbolen en predikaat-symbolen associeert
men doorgaans een ariteit. Dit is een natuurlijk getal dat het aantal argumenten
van deze entiteiten weergeeft. Functie-symbolen met ariteit nul worden constan-
ten genoemd. Een term is een variabele of een functie-symbool f /n ∈ Σ toegepast
op n argumenten. Deze argumenten zijn elk opnieuw termen. Een atoom is een
predikaat-symbool p/n ∈ Π toegepast op een sequentie van n termen. Het pre-
dicaat symbool =/2 wordt op speciale wijze behandeld, en noemen we expliciete
unificatie. We beperken de betekenis van atoom daarom tot atomen die geen ex-
pliciete unificatie zijn. Een literal is dan een atoom, of een expliciete unificatie.

viii Mercury Semantiek

Een expressie is een term, een literal, of een compositie van deze elementen. Een
expressie is gegrond (Eng. ground) indien ze geen variabelen bevat.

In Mercury is een goal een conjunctie van goals, een disjunctie van goals, een
voorwaardelijke uitdrukking van goals, een negatie van een goal, of gewoon een
literal. Een predikaat bestaat dan uit een hoofd, en een lichaam. Het hoofd wordt
voorgesteld door een atoom, terwijl het lichaam een goal is. De volledige syntax
wordt weergegeven in Figuur 3.

In Mercury programma’s zoals ze door een programmeur moeten geschre-
ven worden verwacht men dat de programmeur elk van zijn predikaten zorg-
vuldig annoteert met type, mode en determinisme informatie. De vertaler gebruikt
type-informatie om aan elke variabele een type toe te kennen. Mode-informatie
beschrijft de gegrondheid van elk van de variabelen bij het gebruik van een pre-
dikaat, terwijl determinisme informatie het aantal oplossingen van een predikaat
weergeeft. In onze formele syntax wordt deze informatie niet expliciet overge-
nomen maar voorzien we eenvoudige operaties om, waar nodig, deze informatie
eventueel op te vragen. Een deel van de mode-informatie is echter wel zichtbaar
in de formele syntax. Mode-informatie laat de vertaler namelijk toe om elk van
de expliciete unificaties te specialiseren naar één van de volgende vier vormen:

• constructie: hierbij wordt een nieuwe term opgebouwd en aan een variabele
toegekend;
• deconstructie: de term waaraan een variabele is toegekend wordt ontleed om

de individuele argumenten aan te kunnen spreken;
• toekenning: een variabele wordt gebonden aan de term waaraan een andere

variabele gebonden is;
• test: de termen waaraan de twee betrokken variabelen gebonden zijn wor-

den vergeleken.

In deze thesis spelen vooral de deconstructie en de constructie een rol. Het ge-
heugenherbruik systeem zal bij deconstructies trachten te achterhalen of de ont-
leedde term niet toevallig tot afgedankte geheugencellen leidt, en zo ja, zal het
deze afgedankte geheugencellen bij constructies laten herbruiken.

4 Mercury Semantiek

De techniek van abstracte interpretatie (Cousot and Cousot 1977; Cousot and Cousot
1992a; Bruynooghe 1991) laat toe om eigenschappen over een programma te we-
ten te komen zonder deze programma’s uit te voeren. Deze eigenschappen zijn
waardevol voor een insectenverdelger, code optimalisatie, programma transfor-
matie en andere soortgelijke toepassingen. Typische eigenschappen die men via
abstracte interpretatie kan afleiden zijn: type informatie (Kluźniak 1987; Van
Hentenryck, Cortesi, and Le Charlier 1995), groundness informatie (Kågedal 1995;

Mercury Semantiek ix

Program ::= r ; q
RuleBase ::= {p1 . . . pnp} np ≥ 1
Procedure ::= p(X)← g
Goal ::= g1, g2

| g1; g2
| if g1 then g2 else g3
| not g
| l

Literal ::= X ⇒ f (Y) (deconstructie)
| X ⇐ f (Y) (constructien)
| X == Y (test)
| X := Y (toekenning)
| p(Y)

waar

r ∈ RuleBase
{p1, . . . , pnp} ⊆ Procedure
{q, g, g1, g2, g3} ⊆ Goal
l ∈ Literal
{X, Y, X1, . . . , Xn, Y1, . . . , Ym} ⊆ V
f /n ∈ Σ

Figuur 3: Formele syntax van eerste-orde Mercury programma’s. Hierin stelt np

het aantal predikaten voor in het programma, en Y1, . . . , Ym and X wordt gebruikt
om een rij van afzonderlijk verschillende variabelen voor te stellen.

Cortesi, Filé, and Winsborough 1991; Marriott and Søndergaard 1993), gedeeld-
heid van vrije variabelen (Jacobs and Langen 1992; Muthukumar and Hermene-
gildo 1989), of combinaties van deze eigenschappen (King 1994; Cortesi and Filé
1991; Muthukumar and Hermenegildo 1991; Bagnara, Zaffanella, and Hill 2000).

Meestal wordt abstracte interpretatie geformuleerd in termen van de operati-
onele semantiek van de taal. Men gaat hierbij een concreet domein definiëren —
dit formaliseert de eigenschap die men van de uitvoering van het programma
wenst te beschrijven, waarop men vervolgens de operaties definieert die het ef-
fect van de uitvoering van een programma in die taal weergeven. Met vertaalt
vervolgens zowel het domein als de operaties naar een abstract domein en over-
eenstemmende abstracte operaties. Het resultaat is dan een beschrijving van de
beoogde programma analyse. Om te vermijden dat men voor elke nieuwe ana-
lyse alle operaties opnieuw moet definiëren heeft men zogenoemde raamwerken

x Mercury Semantiek

ontwikkeld, waaronder (Bruynooghe 1991) de meest bekende is voor de context
van logisch programmeren. Zolang de onderliggende talen en analyses dezelfde
operationele semantiek volgen, kan men een zelfde raamwerk gebruiken om al
dan niet meerdere analyses te beschrijven.

In dit werk gaan we echter de denotationele semantiek van de taal gebruiken
als basis voor het definiëren van de programma analyses. Het essentiële verschil
is dat men hierbij een betekenis geeft aan programma’s geschreven in die taal,
los van de manier waarop de uitvoering van programma’s in die taal, of analy-
ses voor programma’s voor die taal gespecifieerd zijn. Een programma wordt
typisch uitgevoerd door een gegeven doelpredikaat op te lossen waarbij dan één
voor één elk van de tegengekomen predikaat-oproepen afgehandeld worden. In-
dien een predikaat meerdere keren opgeroepen wordt, zo zal het programma elk
van deze predikaat-oproepen afzonderlijk behandelen. Men spreekt van een top/-
down implementatie van de taal. Bij programma analyse kan het echter zijn dat
een top/down implementatie niet ideaal is en dat een bottom/up implementatie
beter is. Dit is dan een andere operationele semantiek. Om dan de correctheid
van de analyses aan te tonen moet men eerst aantonen dat de semantieken over-
eenstemmen. Dit werk kunnen we ons besparen door gebruik te maken van de
denotationele aanpak. Dit is ook de reden waarom Marriott, Søndergaard, and
Jones (1994) de notie van denotationele abstracte interpretatie hebben ingevoerd.

In deze aanpak gaat men een meta-taal gebruiken waarin men de denotatio-
nele semantiek van een programmeertaal uitdrukt. Deze semantiek bevat dan
één belangrijke vrijheidsgraad, namelijk het exacte domein dat de te beschrijven
eigenschappen weergeeft alsook de basisoperaties dat elementen van dit domein
correct manipuleert. Men kan dan de semantiek instantiëren met een bepaald do-
mein om het gedrag van het programma weer te geven m.b.t. die eigenschappen.
Indien Sem een gegeven semantiek is voor een taal, en A een domein en diens
eigenschappen, dan gebruiken we de notatie Sem(A) als het resultaat van het in-
stantiëren van Sem met dat domein. Hierbij moeten deze domeinen wel volledige
tralies (Eng. complete lattice) zijn.

Marriott, Søndergaard, and Jones (1994) hebben dan aangetoond in hun cen-
traal Theorema 4.4 dat voor een gegeven semantiek Sem en twee volledige tralies
A en B die met elkaar gerelateerd zijn volgens een concretisatiefunctie γ die aan
een aantal voorwaarden voldoet die we hier achterwege laten, de eigenschappen
beschreven door Sem(A) gerelateerd zullen zijn aan de eigenschappen beschre-
ven door Sem(B) volgens dezelfde concretisatiefunctie γ, indien de operaties ge-
definieerd over A ook volgens deze functie γ gerelateerd zijn aan de operaties
gedefinieerd over B. Zodoende, indien A het abstracte domein voorstelt dat een
correcte benadering weergeeft van de concrete eigenschappen die door het do-
mein B worden voorgesteld, zo zal Sem(A), de programma analyse, een correcte
benadering geven van de concrete uitvoering van het programma, weergegeven
door Sem(B). De concretisatie-functie γ formaliseert hierbij de notie van “correc-

Mercury Semantiek xi

te benadering”.
Dit theorema is daarom ook essentieel in deze thesis. Het laat ons namelijk toe

om de correctheid van onze programma analyses aan te tonen door eenvoudig-
weg de correcte relatie op te stellen tussen een concreet domein en diens concrete
operaties, en een abstract domein en de overeenstemmende abstracte operaties, on-
afhankelijk van de operationele semantiek van de programma analyses t.o.v. het
eigenlijke concrete uitvoeringsmechanisme.

In Hoofdstuk 5 van de thesis gebruiken we (Marriott, Søndergaard, and Jones
1994) als basis om een aantal semantieken voor Mercury programma’s op te stel-
len. We vertrekken hierbij van een natuurlijke semantiek, SemM genoemd, om dan
uit te komen bij een oproep-onafhankelijk gebaseerde semantiek, SemM•.

De natuurlijke semantiek is inherent oproep-afhankelijk. Dat betekent dat men
een predikaat een betekenis kan geven enkel en alleen in de context van een spe-
cifieke oproep naar dat predikaat. Dit komt ook overeen met de manier waar-
op men doorgaans een logisch programma gaat opvatten, wat onze benaming
natuurlijke semantiek verklaart. Een oproep-onafhankelijke gebaseerde semantiek
bestaat uit twee delen: een eerste deel definieert de betekenis van elk van de voor-
komende predikaten binnen een programma onafhankelijk van de manier waarop
deze predikaten zullen opgeroepen worden. In een tweede deel geeft men dan
een oproep-gerichte betekenis aan het volledige programma door telkens gebruik
te maken van de oproep-onafhankelijke betekenis van de predikaten. Het essen-
tiële voordeel van deze semantiek is dat het ideaal is om gebruikt te worden bij
analyses in de context van modules. Tijdens de analyse van een module weet men
namelijk niet hoe de predikaten die er in gedefinieerd worden door het program-
ma gebruikt zullen worden. Dit maakt een oproep-afhankelijke analyse onmo-
gelijk. Bij een oproep-onafhankelijke aanpak kan men deze predikaten echter
wel analyseren, om dan de bekomen analyse-resultaten verder te kunnen gebrui-
ken. Een tweede belangrijk voordeel is dat men in het oproep-onafhankelijke deel
van een oproep-onafhankelijk gebaseerde semantiek elk predikaat hoogstens één
maal een betekenis hoeft te geven, dit in tegenstelling tot de natuurlijke seman-
tiek waarin elke predikaat voor elk van de voorkomende oproepen geïnterpre-
teerd moet worden. Bij zware analyses kan dit een heuse kost-besparing beteke-
nen.

Hierbij zou duidelijk moeten worden dat we de natuurlijke semantiek wensen
te gebruiken als formalisatie van de concrete uitvoering van een programma, ter-
wijl we de oproep-onafhankelijke semantiek willen gebruiken als basis voor de
formalisatie van de eigenlijke programma analyses. Om echter de resultaten van
de programma analyses te kunnen relateren tot de concrete uitvoering van het
programma, moeten we aantonen dat de semantieken equivalent zijn. Uit nader
onderzoek blijkt dat deze semantieken over het algemeen niet zomaar equiva-
lent zijn, maar dat dit afhangt van het domein waarmee men deze semantieke
instantieert. In Stelling 5.4 in de thesis tonen we aan dat indien het specifieke

xii Geheugenstructuren

domein waarmee deze semantieken geïnstantieerd worden aan bepaalde voor-
waarden voldoet, dat deze geïnstantieerde semantieken equivalent zijn. Terwijl
deze voorwaarden niet meteen zullen opgaan voor de abstracte domeinen waar-
mee we onze concrete eigenschappen willen benaderen, zo blijkt echter dat ze wel
opgaan voor het domein van de concrete eigenschappen zelf. We verkrijgen dan
het volgende schema van geïnstantieerde semantieken, waarbij we het concrete
domein C noemen, en het overeenkomstige abstracte domein A. We gebruiken
het symbool ∝ om aan te duiden dat een semantiek een correcte benadering is
van een andere semantiek.

SemM(C) c⇐⇒ SemM•(C)
(Th. 5.4)

∝↓ ∝↓
SemM(A) SemM•(A)

Dit schema kan men als volgt opvatten. Indien men de concrete eigenschap-
pen van een programma beschrijft aan de hand van een domein C, en indien dit
domein aan de equivalentievoorwaarden voldoet, dan is de natuurlijke seman-
tiek van een Mercury programma m.b.t. deze eigenschappen equivalent met de
oproep-onafhankelijke gebaseerde semantiek van dit programma. Dit heeft als
gevolg dat zowel SemM(A) alsook SemM•(A) correcte benaderingen zijn van de
concrete uitvoering van het programma, voorgesteld door SemM(C). Natuurlijk
is voor ons vooral SemM•(A) van belang.

Merk op dat dit schema niets zegt over de equivalentie tussen SemM(A) en
SemM•(A). Voor bepaalde domeinen die wij in deze thesis ontwikkelen zal het
zelfs zo zijn dat SemM(A) een benadering is voor SemM•(A), wat dus betekent
dat men met SemM•(A) nauwkeurigere resultaten kan verkrijgen, wat dan ook
weer het voordeel van het gebruik van SemM• benadrukt voor deze abstracte
domeinen.

5 Geheugenstructuren

Om aan geheugen herbruik te kunnen doen hebben we een formele taal nodig
om de basiseenheid aan te kunnen spreken: namelijk de geheugencellen die men
inderdaad wenst te herbruiken. Hiervoor voeren we de notie van geheugenstruc-
tuur in (Eng. data structure). Een geheugenstructuur stelt niet één enkele geheu-
gencel voor maar wel een verzameling van geheugencellen die gebruikt worden
om een volledige term in het computer geheugen voor te stellen. Zo is de ge-
heugenstructuur van de term waaraan de variabele JackRecord gebonden is in Fi-
guur 1 (Deel a) de verzameling van 4 geheugencellen die nodig zijn om deze term
volledig voor te stellen: de 3 cellen om de argumenten van het functiesymbool

Geheugenstructuren xiii

employee/3 voor te stellen, en de geheugencel waarin de naam "Jack Newman" be-
waard wordt.

Omdat in Mercury elke term beschreven wordt door een type, zo kunnen we
de beschrijving van dit type gebruiken om elk van de delen van de geheugen-
structuur van een term aan te wijzen.

In Mercury1 zou men de volgende types kunnen definiëren:

t −−−> f (i n t) ; g (i n t , i n t) .
l i s t −−−> [] ; [t | l i s t]

Een term van type t is een term met functiesymbool f /1 of een term met functie-
symbool g/2. Beide vormen nemen getallen als argumenten (type int). Een lijst
wordt gedefinieerd als zijnde ofwel de ledige lijst ([]), ofwel een structuur met
als eerste argument een term van type t en als tweede argument opnieuw een
lijst. Men kan deze type-definities vertalen naar grafes, waarop men vervolgens
de functiesymbolen kan gebruiken om paden op te bouwen waarmee men dan
individuele stukken geheugenstructuren kan aanwijzen.

Indien we aannemen dat een variabele A tijdens de uitvoering van een pro-
gramma gebonden wordt aan een term [f (3) | [f (4) | [g (5,5) | []]]] van het bo-
vengedefinieerd type list, dan kunnen we bijvoorbeeld volgende geheugenstruc-
turen van A aanspreken:

• Aε stelt de volledige geheugenstructuur van A voor;

• A([|],1) selecteert langs het eerste argument van functor [|] de geheugen-
structuur van de term f (3) voor;
• A([|],2) selecteert langsheen het tweede argument van functor [|] de geheu-

genstructuur van sublijst [f (4) | [g (5,5) | []]] voor:

• met A([|],2)·([|],2) maken we twee stappen in de geheugenstructuur van A,
en verwijzen we naar de sublijst [5 | []] van A.

Op gelijkaardige manier kan men elke geheugenstructuur van elke term waar-
aan een variabele tijdens de uitvoering van een programma gebonden wordt aan-
spreken. We noemen de paden, in het voorbeeld ε, ([|], 2), ([|], 2) · ([|], 2) etc.,
die we hierbij opbouwen selectoren. Variabelen gecombineerd met zulke paden
noemen we concrete geheugenstructuren omdat we hiermee het geheugen kunnen
beschrijven zoals het tijdens de uitvoering van een programma gebruikt wordt.

Indien men een programma echter bekijkt zonder het uit te voeren, zo kan
men niet op voorhand weten aan welke termen de variabelen gebonden zullen
worden. Indien men de voorgaande voorstelling van geheugenstructuur blijft
hanteren, bestaat er het gevaar dat men oneindige paden opbouwt. Om dit te ver-
helpen gaat men een equivalentie-relatie opstellen voor selectoren op basis van

1Hier hebben we het dan niet over de formele syntax zoals hier boven voorgesteld waar deze
informatie impliciet aanwezig gezien wordt

xiv Basis Analyses

het type van het stuk geheugen dat een selector bij een variabele aanwijst, alsook
op basis van de hiërarchie van selectoren. Zonder in detail hierop in te gaan, zo
kan men bij de variabele A van type list tijdens de analyse van het programma
spreken over de volgende geheugenstructuren:

• Aε: de volledige geheugenstructuur waar A naar zal kunnen wijzen tijdens
de uitvoering van het programma of elke sublijst van A;

• A([|],1): het eerste argument van de lijst waar A tijdens de uitvoering naar
zou kunnen wijzen.

Bij deze notatie zal ([|], 2) als equivalent beschouwd worden met ε voor termen
van het type list omdat beide selectoren verwijzen naar al de sublijsten van list-
termen, waaronder de hoofdlijst zelf ook.

Het is duidelijk dat men met deze notatie niet één specifieke geheugenstruc-
tuur van een variabele beschrijft, maar meteen een hele verzameling geheugen-
structuren. We spreken hier dan ook over abstracte geheugenstructuren en gebrui-
ken ze als benadering voor de concrete geheugenstructuren die daadwerkelijk
tijdens de uitvoering van een programma opgebouwd worden.

In de thesis werken we het domein van concrete geheugenstructuren en het
domein van abstracte geheugenstructuren nauwkeurig uit en geven ze een tralie-
structuur. In de volgende paragraaf gebruiken we deze domeinen om de actieve
concrete geheugenstructuren van een programma te benaderen door de actieve
abstracte geheugenstructuren uit het programma af te leiden op basis van pro-
gramma analyse.

6 Basis Analyses

Beschouw het volgende code-fragment waarin we gebruik maken van het predi-
kaat updateSalary/3 dat we voorheen gedefinieerd hebben.

Voorbeeld 2

E = employee (" Jack Newman" , 19490319 , 40000) ,
EL = [E | []] ,
updateSalary (E, 42000 , NE) ,
NEL = [NE | EL]

Indien we deze code concreet uitvoeren, dan maken we hierin een employee/3
term aan en kennen het toe aan de variabele E. Deze variabele E wordt gebruikt
in een lijst-term waarnaar EL zal verwijzen. Door de oproep naar updateSalary/3
wordt er een nieuwe term NE aangemaakt, die dan wederom tesamen met EL ge-
bruikt wordt om een lijst van twee werknemers-termen op te bouwen, namelijk

Basis Analyses xv

NEL. We hebben gezien dat updateSalary/3 een mogelijkheid heeft tot geheugen-
herbruik, en de vraag is dus: mogen we bij deze oproep het geheugen waar E
naar verwijst gebruiken om NE op te laten bouwen? Puur intuïtief zien we dat
het antwoord natuurlijk “neen” is, maar hoe kunnen we dit antwoord formeel
aantonen?

Bij nader onderzoek stellen we vast dat hier twee factoren een rol spelen: (1)
op het moment van de updateSalary-oproep kan de geheugenstructuur waar E
naar verwijst ook via EL worden aangesproken (met name als EL([|],1)) — men
zegt dat E en EL geheugenstructuur delen (Eng. data structure sharing) — en (2) EL
wordt na deze oproep duidelijk nog aangesproken (bij de constructie van NEL).
Het feit dat EL nog gebruikt wordt betekent dat diens geheugenstructuren intact
moeten blijven en omdat EL en E gedeelde geheugenstructuren bevatten geldt
dit ook voor E.

Hierdoor wordt duidelijk dat de actieve geheugenstructuren van een pro-
gramma enerzijds bepaald worden door het al dan niet gebruik van de voor-
komende variabelen (EL komt na de oproep van updateSalary dus is diens gehele
geheugenstructuur op dat moment actief), en anderzijds door de gedeelde geheu-
genstructuren die tijdens de uitvoering van het programma kunnen voorkomen
(E en EL bevatten gedeelde geheugenstructuren, EL is actief, dus is E ook actief
op het moment van de oproep in kwestie). Aan de hand van deze twee elemen-
ten kan men voor elke literal de verzameling van actieve geheugenstructuren
opbouwen. Bij een concrete uitvoering verkrijgt men de actieve concrete geheu-
genstructuren, terwijl men bij een analyse actieve abstracte geheugenstructuren
zal verkrijgen als benadering van deze actieve concrete geheugenstructuren.

Terwijl men het voorkomen van de variabelen bijna puur op syntactische ba-
sis kan bepalen, zo vergt het afleiden van de gedeelde geheugenstructuren een
volledige programma analyse. Op basis van het domein van de geheugenstruc-
turen ontwikkelen we het domein van de gedeelde geheugenstructuren. Het voor-
naamste verschil is dat dit domein niet is opgebouwd uit eenvoudige geheugen-
structuren, maar uit koppels van deze geheugenstructuren. Zo kunnen we de
gedeeldheid van E en EL uitdrukken als

(
Eε − EL([|],1)

)
in het concrete geval,

en als
(

Eε − EL([|],1)
)

in het abstracte geval. Dit resulteert in het domein van
concrete gedeelde structuren enerzijds, en het domein van abstracte gedeelde
structuren anderzijds. In de thesis tonen we aan dat voor het concrete domein
de equivalentievoorwaarden opgaan van Stelling 5.4, wat betekent dat de na-
tuurlijke semantiek geïnstantieerd met dit domein theoretisch equivalent is met
de oproep-onafhankelijke semantiek geïnstantieerd met ditzelfde domein. Als
gevolg hiervan definiëren we de programma analyse voor het afleiden van de
abstracte gedeelde structuren (in het Engels noemen we dit de structure sharing
analysis) simpelweg als de oproep-onafhankelijke semantiek geïnstantieerd met
het domein van abstracte gedeelde geheugenstructuren. Gezien de equivalentie

xvi Basis Analyses

voor het concrete domein verkrijgen we automatisch dat deze analyse correcte
resultaten oplevert t.o.v. de geheugen situaties zoals ze verkregen worden tijdens
het eigenlijke uitvoeren van de geanalyseerde programma’s.

Door op gepaste wijze de gegevens over de gedeeldheid van de geheugen-
structuren te combineren met de informatie over de al dan niet gebruikte variabe-
len binnen een bepaald predikaat kan men voor elke beschrijving van een oproep
naar dat predikaat de actieve abstracte geheugenstructuren bepalen. Deze stap
noemen we de analyse naar de actieve geheugenstructuren van een programma
(Eng. liveness analysis). Uit deze formulering blijkt wel dat men de actieve ge-
heugenstructuren van een predikaat enkel kan bepalen indien men weet hoe het
opgeroepen wordt, dus indien men een beschrijving heeft van die oproep. Hier
komen we in de context van modules nog op terug.

Op basis van de kennis over de actieve geheugenstructuren binnen een pro-
gramma kan men tenslotte de mogelijkheden tot geheugenherbruik nagaan. De
plaats bij uitstek om dit te doen is bij deconstructie unificaties. Bij deze unifica-
ties wordt een term ontleed, en nieuwe verwijzingen aangemaakt naar elk van
de argumenten van de ontlede term. Indien blijkt dat bij deze deconstructie de
variabele die naar de te ontleden term verwijst de laatste verwijzing is naar de-
ze term, dan kan men hieruit besluiten dat de geheugencellen overeenstemmend
met deze term herbruikt mogen worden. Dit kan men uit de informatie over de
actieve geheugenstructuren na gaan door te controleren of de geheugenstructuur
overeenstemmend met deze term al dan niet actief is: als hij niet actief is, is hij
afgedankt, en zodus kan hij herbruikt worden na de deconstructie.

We illustreren dit a.d.h. van het gebruik van updateSalary zoals gedefinieerd
in Voorbeeld 1. De oproep naar updateSalary zoals in Voorbeeld 2 kan men als
volgt beschrijven: vermits Eε gedeeld is met EL([|],1), en ELε is een actieve gege-
venstructurur op dat moment, zo is Eε dus actief, wat we naar de context van de
formele variabelen van updateSalary kunnen vertalen naar het feit dat de variabele
EmployeeRecord verwijst naar een actieve geheugenstructuur. De eerste unificatie
is een deconstructie waarin de term van EmployeeRecord ontleed wordt. Gezien
echter de overeenstemmende gegevenstructuur actief is in deze oproep, kan men
niets herbruiken. Wat ons intuïtief antwoord op de vraag “kan men herbruiken?”
formeel bevestigt.

Laat ons nog een tweede voorbeeld beschouwen.

Voorbeeld 3

E = employee (" Jack Newman" , 19490319 , 40000) ,
updateSalary (E, 42000 , NE) ,
EL = [NE]

Hier wordt een employee-term aangemaakt en toegekend aan E, waarop met-
een updateSalary wordt opgeroepen. Na deze oproep wordt E zelf nergens meer

Module-gebaseerd Geheugen Herbruik xvii

in het programma gebruikt. Op het moment van de oproep zijn er geen ge-
deelde structuren, en ook geen actieve geheugenstructuren, wat betekent dat
updateSalary als laatste toegang heeft tot de term waar E naar verwijst. Vertaald
naar de context van de formele argumenten van updateSalary betekent dit dat er
geen gedeelde geheugenstructuren zijn bij deze oproep, alsook geen actieve ge-
heugenstructuren. Op het moment van de deconstructie blijkt de geheugenstruc-
tuur van EmployeeRecord dus niet tot de actieve geheugenstructuren te behoren,
waaruit de analyse mag besluiten dat het geheugen dat overeenstemt met de ont-
lede term herbruikt mag worden, met name de drie cellen zoals aangegeven in
Figuur 2 (Deel b). Gezien de deconstructie meteen opgevolgd wordt door een
constructie is het vanzelfsprekend om de afgedankte geheugencellen meteen te
herbruiken voor deze constructie en dus de toekenning van nieuw geheugen uit
te sparen.

Het is op deze manier dat men tijdens de analyse naar het herbruik van geheu-
genstructuren systematisch zal nagaan waar geheugenstructuren afgedankt wor-
den, en waar ze kunnen herbruikt worden. Hierbij zou het de lezer wel moeten
opvallen dat men altijd een beschrijving van de oproep van een predikaat nodig
heeft. Hoe we dit kunnen vermijden wordt in de volgende paragraaf geschetst.

7 Module-gebaseerd Geheugen Herbruik

Een welgekende manier om programma’s te structureren, zeker in de context van
een team van programma-ontwikkelaars, is het gebruik van modules. Zo ook bij
Mercury programma’s.

Een Mercury programma wordt dus onderverdeeld in verschillende modules.
In elk van deze modules maakt men een onderscheid tussen de predikaten die
door andere modules gebruikt mogen worden, de zogeheten geëxporteerde predi-
katen, en de predikaten die enkel voor intern gebruik dienen. Bij de vertaling van
een Mercury programma zal de vertaler één voor één elke module afzonderlijk
vertalen. Om echter de nodige controles te kunnen doen wat betreft het juist ge-
bruik van types, mode en determinisme, heeft de vertaler bij het vertalen van een
module toch een minimum aan informatie nodig over de modules waarop deze
module steunt. Men maakt hiervoor gebruik van interface bestanden. Deze be-
standen herhalen de belangrijkste informatie van hun overeenkomstige modules
opdat deze informatie gebruikt zou kunnen worden bij de vertaling van andere
modules. Typisch beperkt zich deze informatie tot de geëxporteerde predikaten.

Vermits we de programma analyses willen laten deel uitmaken van het verta-
lingsproces moeten we er voor zorgen dat ook onze analyses dit vertalingsmodel
volgen: elke module moet afzonderlijk kunnen geanalyseerd worden mist een
mogelijk minimaal gebruik aan informatie over de modules waar het eventueel
op steunt. Het moeilijke hieraan is dat men predikaten zal moeten analyseren
zonder dat men weet hoe ze opgeroepen zullen worden.

xviii Module-gebaseerd Geheugen Herbruik

Vermits we de gedeelde geheugenstructuren analyse hebben kunnen definië-
ren als een instantiatie van de oproep-onafhankelijk gebaseerde semantiek, vergt
het inpassen van deze analyse in een modulair schema geen verdere aanpassin-
gen. Het wordt echter wel problematisch indien we de actieve geheugenstructu-
ren alsook het herbruik van geheugenstructuren bestuderen. Beide hebben na-
melijk een inherent oproep-afhankelijk karakter: pas als je weet hoe een predikaat
opgeroepen wordt, pas dan kan je je actieve geheugenstructuren benaderen, en
pas dan kan je op veilige wijze mogelijk geheugenherbruik toelaten. Maar in de
aanwezigheid van modules heb je natuurlijk geen beschrijving van de oproep.

Om dit probleem aan te pakken hebben we beslist om als volgt te werk te
gaan. Voor elk predikaat voeren we een oproep-onafhankelijke analyse uit naar
diens actieve geheugenstructuren. Deze oproep-onafhankelijke analyse is equi-
valent met een analyse waarbij men aanneemt dat er bij de oproep van een predi-
kaat geen gedeelde geheugenstructuren voorkomen, alsook geen actieve geheu-
genstructuren. Voor elke literal binnen een predikaat verkrijgen we aldus een
beschrijving van welke geheugenstructuren zeker actief zullen zijn, losstaand van
een specifieke oproep. Deze informatie kunnen we gebruiken in de geheugen-
herbruik analyse om na te gaan welke structuren in deze ideale omstandigheden
herbruikt kunnen worden. Omdat we echter niet weten hoe een predikaat nu
juist opgeroepen zal worden, en welke vormen van geheugengebruik nu feite-
lijk gaan toegepast kunnen worden, hebben we beslist om voor elk predikaat
hoogstens twee versies of varianten aan te maken: één versie waarin geen geheu-
gengebruik voorkomt en één versie waarin elk van de gedetecteerde geheugen-
herbruik mogelijkheden verwezenlijkt wordt. Het spreekt voor zich dat de eerste
versie overeenstemt met de versie die men bij normale vertaling zou verkrijgen,
terwijl de tweede versie een volledig geoptimaliseerde versie is. De eerste versie
heeft als eigenschap dat elke oproep er naar altijd veilig is, terwijl dit bij de twee-
de versie niet het geval is. Men dient zich dan de vraag te stellen: wanneer mag
die geoptimaliseerde versie dan wel opgeroepen worden?

Hiertoe voeren we in Hoofdstuk 10 van de thesis de notie van herbruik in-
formatie (Eng. reuse information) in. Deze informatie is gekoppeld aan een literal
waarbij geheugencellen afgedankt kunnen voorkomen. Dit kan een deconstruc-
tie zijn — indien deze deconstructie gevolgd wordt door een adequate constructie
spreken we van een mogelijkheid tot rechtstreeks herbruik — maar het kan ook een
predikaat-oproep zijn waarin geheugen herbruik mogelijk kan zijn — in dat geval
spreken we van een mogelijkheid tot onrechtstreeks herbruik. De herbruik informa-
tie, bij een rechtstreekse of onrechtstreekse vorm van herbruik, zal al de nodige
informatie behelzen die nodig is om de veiligheid van dat herbruik na te kunnen
gaan voor een gegeven oproep-beschrijving. Het afleiden van de herbruik gege-
vens kan op oproep-onafhankelijke wijze gebeuren. Gezien het belang van de
veiligheid voor geheugen herbruik gaan we in deze thesis nauwkeurig in op de
manier waarop deze gegevens afgeleid kunnen worden, en tonen we zorgvuldig

Implementatie en Experimenten xix

de veiligheid van de bekomen resultaten aan.
Het resultaat van het analyseren van een module naar het geheugenherbruik

binnen diens predikaten bestaat zodoende uit twee delen: (1) een interface be-
stand dat zowel de oproep-onafhankelijke gedeelde structuren informatie be-
schrijft voor elk van de geëxporteerde predikaten alsook alle herbruik informatie
voor elk van deze predikaten; en (2) een vertaling van de module waarbij voor
elk geëxporteerd predikaat mogelijk twee varianten aangemaakt zijn: een altijd
veilig op te roepen variant waarin geen herbruik plaats vindt, en een volledig
geoptimaliseerde variant die enkel mag opgeroepen worden indien men aan de
hand van de bewaarde herbruik gegevens de veiligheid van de oproep kan aan-
tonen.

Bij het analyseren van een andere module volstaat het dan om gebruik te ma-
ken van de interface gegevens om ook deze module op de juiste manier te verta-
len. We illustreren dit aan de hand van een voorbeeld.

Laat ons een programma beschouwen dat o.a. bestaat uit een module waarin
het predikaat uit Voorbeeld 1 gedefinieerd en geëxporteerd wordt, en een module
waarin het predikaat create/1 gedefinieerd alsook geëxporteerd wordt:

Voorbeeld 4

create (EL) :−
E = employee (" Jack Newman" , 19490319 , 40000) ,
updateSalary (E, 42000 , NE) ,
EL = [NE]

Zoals u het wellicht al herkend heeft, is het lichaam van create niets minder
dan de code van Voorbeeld 3, waarvan we weten dat herbruik mogelijk kan zijn.
We zouden dit herbruik ook bij een modulaire analyse willen verkrijgen.

We weten reeds dat updateSalary een mogelijkheid tot (rechtstreeks) geheu-
genherbruik heeft. Zodus zal de analyse van de module waarin dit predikaat
gedefinieerd is twee varianten voor dit predikaat aanmaken: één variant waar-
in geen herbruik verwezenlijkt wordt, en één variant waarin dit wel gebeurt.
De voorwaarde opdat de herbruik-variant gebruikt mag worden is dat het eer-
ste argument van een oproep naar dit predikaat niet naar een actieve geheugen-
structuur mag wijzen. Dit wordt door de bijhorende herbruik informatie beschre-
ven2. Bij de oproep-onafhankelijke analyse van create zien we nu dat in dat geval
updateSalary inderdaad opgeroepen wordt met een eerste argument wijzend naar
een afgedankte geheugenstructuur, zodus kunnen we besluiten dat create een on-
rechtstreekse vorm van herbruik kan toelaten. Als resultaat van de analyse van
create zal er een geoptimaliseerde versie van create aangemaakt worden waarin

2In deze samenvatting kunnen we echter niet ingaan in de formele details van het domein van
herbruik informatie.

xx Implementatie en Experimenten

de oproep van updateSalary vervangen wordt door een oproep naar diens geop-
timaliseerde versie. De analyse zal de bijhorende herbruik informatie hiervoor
afleiden.3

8 Implementatie en Experimenten

We hebben elk van de hierboven beschreven analyses binnen een bestaande Mer-
cury vertaler geïmplementeerd om zodoende een volledig geheugenherbruik sys-
teem tijdens de vertaling van Mercury programma’s te verkrijgen. Opdat dit
systeem echter praktisch bruikbaar zou zijn hebben we nog enkele verdere prak-
tische aspecten moeten aanpakken:

• Tot nu toe zijn we er van uit gegaan dat het vinden van een adequate con-
structie unificatie bij een deconstructie waarin een afgedankte geheugen-
structuur ontleed wordt vrij triviaal is. Dit is echter niet zo. De keuze hier-
van beïnvloedt namelijk de hoeveelheid geheugenherbruik die men bij een
programma kan verkrijgen. In hoofdstuk 11 beschrijven we enkele moge-
lijkheden om interessante keuzes hierbij te maken.
• Echte Mercury programma’s beperken zich niet tot de formele syntax die

wij er voor definieerden. Onze analyse kan echter met de weggelaten taal-
constructies niets aanvangen. Om de correctheid van de resultaten te ga-
randeren moet de analyse een overschatting gebruiken van wat deze con-
structies daadwerkelijk als effect kunnen hebben. Deze overschatting kan
een desastreuze invloed hebben op de uiteindelijke nauwkeurigheid van de
analyse-resultaten. Hieraan moest duidelijk iets gedaan worden. De meest
voor de hand liggende aanpak is het voorzien van een manier om deze taal-
constructies manueel met de nodige analyse-informatie te voorzien. Ook
dat wordt in Hoofdstuk 11 uitvoerig besproken.
• De analyse van programma’s moet redelijk efficiënt gebeuren: de analyse-

tijd moet in proportie staan tot de normale vertalingstijd, en toch moeten
de analyseresultaten voldoende nauwkeurig zijn. Bij sommige program-
ma’s blijkt echter dat de analysetijd serieus uit de hand kan lopen. Om dit
te verhelpen definiëren we in deze thesis een manier om analyse resultaten
compacter voor te stellen, mits natuurlijk een deel aan nauwkeurigheid in
te boeten. Dit versnelt de analyse aanzienlijk, maar het verlies aan nauw-
keurigheid blijft beperkt waardoor de meeste interesante vormen van ge-
heugenherbruik vooralsnog afgeleid kunnen worden.

3In dit specifieke geval zal herbruik bij elke oproep toegelaten worden omdat de structuur die
herbruikt wordt enkel lokaal wordt aangemaakt, en dus niets te maken heeft met de manier waarop
het predikaat opgeroepen wordt. Dit betekent dat de analyse elke oproep naar create mag vervangen
door een oproep naar de geoptimaliseerde versie, en zodus kan men de niet geoptimaliseerde versie
gewoon verwijderen uit het programma.

Optimalisatie Raamwerk xxi

• Tenslotte voorzien we een manier om afgedankte geheugencellen die niet
binnen hun eigen predikaat-definitie herbruikt kunnen worden toch nog te
herbruiken. We doen dit door gebruik te maken van een cache.

We hebben elk van deze praktische elementen mee geïmplementeerd en konden
zodoende het uiteindelijk geheugenherbruik systeem op een aantal kleine maar
ook middelgrote voorbeelden uittesten.

Voor de kleine voorbeelden verkrijgen we elke vorm van vooropgesteld ge-
heugenherbruik. Daar hadden we dan ook niet anders van verwacht.

Als middelgrote programma’s hebben we gekozen voor een grafische toepas-
sing dat scene beschrijvingen omzet naar gerenderde beelden en een solver waar-
in een probleem beschreven aan de hand van een aantal beperkingen dient opge-
lost te worden. Deze toepassingen werden niet speciaal ontwikkeld of veranderd
met het geheugenherbruik systeem voor ogen, wat de resultaten natuurlijk des te
interessanter maakt.

Over het algemeen kunnen we stellen dat het geheugenherbruik systeem ook
bij deze middelgrote voorbeelden heel goede resultaten oplevert. Bij de grafische
toepassing kan men het algemeen geheugenherbruik met 50% verminderen, en
afhankelijk van het op te lossen probleem kan ook de solver een indrukwekkende
hoeveelheid geheugen besparen. Het opmerkelijke echter bij de solver is dat deze
gebruik maakt van niet-deterministische predikaten, t.t.z. predikaten die meerdere
oplossingen kunnen geven. Ook in aanwezigheid van zulke predikaten blijkt het
geheugenherbruik systeem mogelijkheden tot geheugenherbruik af te leiden.

9 Optimalisatie Raamwerk

Bij de studie van bovenstaande experimenten komt tot uiting dat onze beperking
van hoogstens twee varianten per predikaat aan te maken er helaas voor zorgt
dat vele vormen van herbruik uiteindelijk niet toegestaan worden. Dit betekent
dat men een lager geheugenherbruik verkrijgt dan wat er potentieel mogelijk is.
Dit probleem hebben we trachten aan te pakken in Hoofdstuk 13 waarin we een
raamwerk ontwikkelen voor een nieuwe manier om optimalisatie-criteria voor
predikaten af te leiden.

Dit raamwerk gelijkt in aanpak aan de achterwaartse analyse voorgesteld
door (King and Lu 2002). Zowel in ons raamwerk alsook in de achterwaartse
analyse gaat men voorwaarden afleiden op de oproeper opdat een bepaalde lite-
ral geoptimaliseerd kan worden. Deze voorwaarden gaat men op gepaste wijze
samenvoegen om zo een volledige beschrijving van de mogelijke optimalisaties
van een predikaat te verkrijgen. Het verschil tussen beide aanpakken komt tot
uiting in de manier waarop dat samenvoegen gebeurt. Bij een backwards analyse
gaat men de conjunctie van de onderlinge voorwaarden gebruiken — dit komt
overeen met wat we ook in onze implementatie gebruiken: een predikaat mag

xxii Besluit

enkel een geoptimaliseerd predikaat oproepen indien aan alle voorwaarden vol-
daan is — maar bij ons raamwerk willen we dit versoepelen en gebruiken we
de disjunctie. Dit heeft als resultaat dat we bij predikaat-oproepen optimalisatie-
criteria afleiden van zodra er een vorm van optimalisatie in het opgeroepen pre-
dikaat mogelijk zou kunnen zijn. In ons raamwerk verkrijgt men dus een beschrij-
ving van eventueel mogelijke optimalisaties, in tegenstelling tot zeker mogelijke op-
timalisaties. Dit verschil heeft als effect dat men de resultaten anders zal moeten
gebruiken: men mag ze enkel gebruiken als indicatie, en bij de eigenlijke code-
generatie (waarbij elke vorm van veiligheid gewaarborgd moet blijven) moet men
de optimalisatie-voorwaarden nogmaals nagaan.

10 Aanverwant Onderzoek

Alvorens over te gaan tot het eigenlijke besluit geven we hier enkele verwijzingen
naar aanverwant onderzoek.

Deze thesis situeert zich binnen het domein van programma analyse (Cousot
and Cousot 1977) voor logische programmeertalen (Cousot and Cousot 1992a; Bruyn-
ooghe 1991). We kiezen hier bewust voor een denotationele aanpak (Gordon 1979;
Allison 1986; Nielson and Nielson 1992) en komen zo terecht bij denotationele ab-
stracte interpretatie (Marriott, Søndergaard, and Jones 1994).

We verwezenlijken een geheugenherbruik systeem bij vertaling op basis van
twee essentiële analysen: gedeelde geheugenstructuren analyse, en actieve geheugen-
structuren analyse. Deze onderliggende analyses werden ontwikkeld op basis van
het werk van Mulkers (1991). Zij beschrijft gelijkaardige analyses voor de lo-
gische programmeertaal Prolog. Gezien de grote verschillen tussen Prolog en
Mercury was het overnemen van deze analyses naar onze context geen triviale
overgang. Mercury is een sterk getypeerde taal, heeft een sterk mode en deter-
minisme systeem, waardoor het zelf afleiden van types, modes en determinisme
niet meer nodig is — dit laat toe om de definitie van de programma analyses
enigszins te vereenvoudigen. In (Mulkers 1991) gaat men er van uit dat herbruik
in aanwezigheid van niet-deterministische code door het uitvoeringssysteem op-
gevangen wordt. Dit kunnen we in Mercury vermijden door rechtstreeks tijdens
de analyse met niet-deterministische code rekening te houden. De basis hiervan
werd gelegd in (Bruynooghe, Janssens, and Kågedal 1997).

Op basis van de gedeelde geheugenstructuren analyse en actieve geheugen-
structuren analyse ontwikkelen we een geheugenherbruik analyse. Voor zover
we weten werd dit in de context van logische programmeertalen enkel in (De-
bray 1993; Gudjonsson and Winsborough 1993) bestudeerd.

Tenslotte situeert dit werk zich binnen het brede domein van automatisch ge-
heugenbeheer. Het blijft echter een feit dat het meeste onderzoek binnen dit do-
mein zich richt naar geheugenbeheer tijdens de uitvoering van een programma.

Besluit xxiii

Een goede referentiepunt voor verdere lectuur rond geheugenbeheer tijdens de
uitvoering is (Boehm and Weiser 1988; Wilson 1992)

11 Besluit

In deze thesis hebben we een volwaardig automatisch geheugenbeheer systeem
ontwikkeld dat tijdens de vertaling van programma’s het geheugengebruik na-
gaat en hiervoor geoptimaliseerde code genereert. Dit systeem werd in de spe-
cifieke context van Mercury ontwikkeld, en we hebben er voor gezorgd dat elk
van de analyses waarop het steunt wiskundig onderbouwd is waarmee we de
veiligheid van de bekomen resultaten kunnen garanderen.

De belangrijkste bijdragen van dit werk zijn het ontwikkelenen van enkele
formele semantieken voor Mercury programma’s, het formaliseren van de ge-
bruikte analyses op basis van deze semantieken, het aanpassen van de analyses
aan een modulaire context, en tenslotte, het implementeren en evalueren van een
volledig geheugenbeheer systeem op basis van deze theorie.

Voor zover we weten is dit de meest volledige implementatie van dit type van
geheugenbeheer voor een in de praktijk gebruikte programmeertaal. De experi-
menten met deze implementatie geven voor sommige programma’s een geheu-
genbesparing van rond de 50%.

xxiv Besluit

